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Abstract—Recent developments in energy metering technologies
have allowed electric load data to be more easily accessible.
Services that use this data to inform customers can raise
awareness about electricity consumption and provide sugges-
tions to encourage energy efficient behavior. Quantifying the
flexibility of the demand combined with accurate predictions
of the total electric load allow information services to provide
suggestions to end-users on how to reduce electric consumption
that are appliance and time specific. With the arrival of new
electric generation technologies, such as photovoltaic or wind
energy, demand side flexibility will play an important role in
the optimization of the future electric system. The accurate
prediction of demand flexibility at a building level, therefore
can contribute to the optimization of load scheduling. This
study presents an effective multi-step technique to forecast the
average hourly demand flexibility for a household, using neural
networks, unsupervised clustering techniques and an optimization
algorithm, combined with statistical studies. The model is mainly
based on the historical electric use of a building and does not
require significant computational capacity, thus making it widely
applicable and informative for residential customers, helping
them improve their behavior to be more energy efficient in the
future.

Keywords–non-intrusive load monitoring; demand flexibility;
long short-term memory; recurrent neural network.

I. INTRODUCTION

Worldwide, the energy sector is increasing the penetration
of decentralized renewable power generation systems and
therefore, reducing more traditional centralized fossil fuel
generation. This transition presents several challenges, such
as moving from a more stable and controllable power gener-
ation to a more volatile and less predictable one. Mitigating
this volatility and simultaneously decreasing the number of
conventional power generators makes it harder to balance out
supply and demand in order to ensure a stable and reliable
grid. In addition, emissions from buildings have risen in the
last few years, reaching an all-time high in 2018 [1], making
this transition even more challenging. In particular, households
in the European Union (EU) represented one-fourth of its total
final energy consumption [2]. This results from several factors,
including extreme weather conditions that increase energy
demand for heating and cooling and inefficient behavioral
habits that result in high energy use which is unnecessary for
the comfort of building inhabitants.

Accordingly, demand side management is important to
reduce overall emissions of buildings while guaranteeing end-
user comfort. Accurate forecasts of individual building electric
loads are crucial to effectively inform end-users about their

energy consumption habits. The willingness of end-users to
change their energy use habits can therefore provide demand
flexibility. Accurate predictions of the energy demand and
demand flexibility at a building level can help encourage
energy efficient behavior, stabilize the electricity grid and
reduce the electricity bill, while accelerating the sustainable
energy transition.

Recent developments in technology have allowed energy
consumption data to be more easily accessible. Several studies
show that real-time feedback about appliance specific enery
use in energy efficiency awareness programs results in the
highest energy savings [3]. In this regard, an awareness raising
project has been put in place by the company Eco CO2 in the
context of a public tender in France put forth by ADEME
related to a funding mechanism called Investissement d‘avenir
[4]. This awareness raising service called Tableu de Bord de
l’Habitat (TBH) Alliance aims to test different interfaces with
varying information about the electric load of each user to
encourage energy efficient behaviour. A digital tablet and a
website is available for users to observe their electric load data,
load profile analysis metrics and suggestions to reduce their
consumption. In this context, quantifying demand flexibility
combined with accurate predictions of the total electric load
can lead to services that provide action plans to reduce energy
consumption that are appliance and time specific.

Models used in building energy analysis can be grouped
into two categories: the top-down approach, and the bottom-
up approach [5]. Top-down approaches do not consider the
occupant behavior inside, and very little information is needed
about the building, they rely mostly on historical consumption
data. Bottom-up techniques take into consideration the physical
characteristics of a building and occupant behavior resulting
in more detailed models. The bottom up approaches require
a significant amount of detailed input information about each
building and often require complex models that require a high
computational time. Therefore, a pure bottom-up approach is
not feasible for the assessment of a large group of end-users
where detailed information is not available.

Many different top-down methods have been developed for
load forecasting, such as curve fitting using numerical methods
or machine learning algorithms [6]–[9]. Load forecasting is
a complex multi-step time series regression problem. Some
forecasting techniques, such as curve fitting using numerical
methods, do not provide accurate results as they often fail
to track seasonality and trends accurately. Machine learning
algorithms, such as neural networks are more effective at
integrating seasonal trends. In particular, they can be applied
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to energy consumption data to forecast electric load profiles. In
spite of new developments in literature and applied modeling,
this remains to be a difficult problem [6].

Traditional machine learning algorithms are often inef-
fective at predicting sequential data, where each data point
represents an observation at a certain point in time. The
algorithm assumes that the data is non-sequential, and that each
data point is independent of the others. As a result, the inputs
are analyzed independently, without the intrinsic temporal
dependencies. Consequently, some models are successful at
predicting a single value, but they fail to attain multi-step
forecasting. A benefit of neural network models over many
other machine learning techniques is that they are able to
compute multi-step predictions. This is useful in time series
forecasting as the forecasts are multiple future time steps. In
the field of building energy consumption forecasting methods,
Artificial Neural Networks (ANN) are the most commonly
used models for making load and energy use predictions [7].
ANN modeling techniques have been used to estimate energy
consumption in multiple studies [6], [8], [10], [11] using
Convolutional, Nonlinear Autoregressive and Feed Forward
Neural Networks.

Recurrent Neural Network (RNN) has been proven to be
a powerful tool for modeling sequential data as a regression
time-series problem. The RNN is able to remember the anal-
ysis that was done up to a given point by maintaining a
state, considering past observations. The state can be thought
of as the memory of the RNN, which captures information
about whats been previously calculated and is integrated into
each step in the training process. This allows RNNs to pro-
cess information sequentially and exhibit temporal behavior
for a time sequence while retaining information from the
past. Nonetheless, there are a few challenges in the effective
implementation of this algorithm. Recurrent networks are
computationally intensive since they keep track of past states.
Some other common issues that may appear during the training
phase are the vanishing or exploding gradient. As a result, the
simple Vanilla RNN is not useful for long sequences of data.
To solve these problems, a specific type of RNN that maintains
a strong gradient over many time steps is used, thus being able
to efficiently work with long sequences: the Long Short-Term
Memory (LSTM) model.

Once accurate predictions of the load profile are acquired,
it is necessary to then assess the flexibility of this future
load. Several strategies to quantify the demand response of
the residential sector to optimize electricity consumption are
present in literature. Furthermore, the individual flexibility of
different smart appliances has been quantified. Sancho Tomas
et al. [12] applied a time-inhomogeneous Markov process to
model energy variations over time for different appliances.
Laicane et al. [13] investigated the potential for demand side
management to reduce peak load. Load shifting algorithms
were developed by Dlamini and Cromieres [14] to achieve sig-
nificant household load reduction. DHulst et al. [15] presented
a demand response flexibility analysis based on measurements
from appliances within a large-scale implementation of smart
grid technologies in a distribution grids project. These studies
allow for the quantification of the flexibility of individual
appliances.

In this paper, a LSTM model is used to predict the load
profile of individual households. This predicted load profile

is then decomposed into specific load categories using a
combination of both top-down and bottom-up non-intrusive
analysis. The prediction of appliance specific load profiles
then allows for the forecast of total demand response potential
of a household and the associated flexibility. Firstly, limited
information about households is gathered through a question-
naire about the building energy systems and operational set
points. Then, an effective supervised learning algorithm is used
to forecast the energy consumption of the households, using
historical load profile data. Thirdly, in a top-down approach,
a decomposition algorithm is used to partition the predicted
load profile into two main categories: active (manual control of
appliances by inhabitants) and inactive (appliances that cycle
automatically and are not controlled directly by inhabitants)
loads. These categories are then further separated by applying
statistical studies of typical appliance uses to provide an
estimate of the expected energy use per device [16]. Finally,
an optimization algorithm is used to reconstruct a load forecast
and the average flexibility of the demand is determined for each
hour of the day. This multi-step hybrid approach is applied to
a case study of three residential clients and the results are
presented. The following sections of this paper are composed
of Section II describing the methodology of the algorithm
including Section II-A detailing the forecasting algorithm,
Section II-B describing the estimation of the load flexibility
and Section II-C presenting details on the evaluation of the
load predictions. It is followed by Section III, which describes
the case study where results are presented in Section IV and
final conclusion in Section V.

II. METHODOLOGY

The electric load data used for this study was collected
through the services offered by the company Eco CO2. Using
a LSTM model, total load profiles were forecasted for each
household. These forecasted load profiles are then analyzed
with a non-intrusive load decomposition technique. Addition-
ally, an optimization algorithm is used to reconstruct the
hourly load profile for each appliance type. Finally, the hourly
flexibility potential for each household is determined.

A. Forecasting
For the load forecasting, an LSTM model was used. The

RNN has two hidden layers: a 200-neuron LSTM layer, and a
100-neuron dense layer, implemented in python with the Ten-
sorFlow and Keras sequential model packages. To determine
the best choice of hyperparameters for the model, a sensitivity
test was performed on multiple hyperparameters of the LSTM
algorithm. Different architectures of LSTM networks were
compared, each one with different hyperparameters, reaching
an optimal compromise between forecasting accuracy and
low computational time. The number of time steps used as
input was ninput = 24 prior observations, and both the
input and output layers have the same number of time steps
(ninput = noutput).

The network was trained on 43 weeks of historical data in
each run. This 43 week period was choosen based on the max-
imum historical data available for all users. This was repeated
four times in order to obtain 1 full month of load predictions
for each user. The default number of epochs and batch size
for all analysis was nepochs = 400 and nbatch = N/25,
respectively, being N the total number of training samples.
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Finally, the rectifier (ReLU) was chosen as the activation
function, and ADAM (Adaptive Moment Estimation [17]) as
the optimizer.

B. Energy Flexibility
To determine the flexibility potential of a 24-hours period

for a household, a two-step approach was applied to the load
forecasts. The load category partitioning algorithm published
in [3] is applied to forecasted profiles obtained from the
LSTM model to classify the total weekly energy use into eight
categories listed in Table I. Active load periods are classified
as the time intervals with a relatively high value and high
variance.

TABLE I. HOUSEHOLD CHARACTERISTICS

Active load categories Inactive load categories
Cooking Domestic Hot Water (DHW)
Lighting Refrigeration
Multimedia active Multimedia standby
Washing Continuous Mandatory Ventilation (CMV)

The load categories classified as inactive were assumed
to be a constant percentage of the inactive load profile for
the whole week period. The load categories classified as
active required an optimization algorithm to assign the active
consumption to different time periods of the active load
profile. Therefore, identifying the expected times of use of
each category. This was achieved by minimizing the objective
function:

min

T∑
t

Xact,t ∗ pact − bact,t (1)

where Xact,t is the unknown binary variable matrix where
each column corresponds to a specific active load category time
series, bact,t is a column vector with the forecasted total energy
use of each category for the week, and pactis a column vector
with the average hourly power values for each category. These
last values were collected from statistical household energy
consumption studies [18]–[21]. In addition, four constraints
were defined, one per each active load category:

T∑
t

jt ≤ jtot (2)

where jt is the value of the active category j corresponding
to timestep t and jtot is the weekly energy use obtained in the
previous step, corresponding to the same category j of the
active consumption.

With this two-step approach, hourly load profiles were
obtained for each consumption category. The average hourly
flexibility potential was then determined. Flexibility depends
on both the total load value and the end use device or category.
For categories labeled as inactive, reducing consumption en-
tails changing the temperature set-point for different inactive
appliances or reducing the consumption of phantom loads.
Literature studies show that Domestic Hot Water (DHW)
demand response potential can be reduced 3% by decreasing
the set-point by 3◦C, while refrigeration can attain a 40%
reduction by increasing its set-point by 3◦C [15]. Standby or

phantom loads from the multimedia category have shown a
17% flexibility potential if devices are unplugged when not
in use [22]. For categories labeled as active, demand side
flexibility correlates more with postponing the cycle of active
appliances: 1 washing event over 3 can be shifted in order to
increase flexibility potential [15].

C. Forcasting evaluation
Different criteria can be used to evaluate the performance

of the regression forecasting model. Commonly used metrics
are the coefficient of determination (R-squared, R2), the Root
Mean Square Error (RMSE), and the Mean Absolute Error
(MAE). These error measures are defined in (3), (4) and (5),
respectively.

R2 =

∑N
i=0(yi − ŷi)

2∑N
i=0(yi − ȳi)2

(3)

RMSE =

√∑N
i=0(yi − ŷi)2

N
(4)

MAE =
1

N

N∑
i=0

|yi − ŷi| (5)

where yi denotes the observed values from the test set, ŷi
the predicted values, and ȳ the mean of the observed data as
defined in (6).

ȳ =
1

N

N∑
i=0

yi (6)

The RMSE is the most used evaluation metric for regres-
sion models. On the other hand, averaging values makes MAE
more robust to outliers while the RMSE gives a relatively high
weight to large errors. For the coefficient of determination,
high values are preferable. However, even a model with low
R2 can be accurate if the RMSE is low [23].

III. CASE STUDY

The data used for this study was collected through the
services offered by the company Eco CO2. Load data from
3 French households was collected through sensors that are
capable of reading and transmitting the total electric load data
for each household. Additionally, limited information about
the households was gathered through a questionnaire. The
characteristics of the case study households is summarized in
Table II.

TABLE II. HOUSEHOLD CHARACTERISTICS

Household 1 Household 2 Household 3
Surface (m2) 100 110 160
Heating type Natural gas Natural gas Natural gas
DHW electric electric electric
CMV yes no yes
Cooking electric electric electric
Refrigeration 2 3 3 + freezer
Washing 3 3 3
Multimedia 6 6 7
Annual consumption (kWh) 5786 10193 4172
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Household 1 shows an annual electric consumption of 5786
kWh. Household 3 presents the lowest measured value, roughly
exceeding 4000 kWh, whereas household 2 uses more than
10000 kWh per year. The maximum consumption attained for
one-hour period ranges between 4 kWh to almost 7 kWh, for
users 2 and 3, respectively.

All households present gas heating, electric cooking de-
vices and roughly the same number of washing and multimedia
appliances. Regarding the refrigeration category, household 1
presents the lowest number of appliances (two). Both house-
holds 2 and 3 have three refrigeration devices, taking into
consideration that, for the latter, one of these appliances is
a freezer. User 3 is the only one without electric DHW and
user 2 does not have a Continuous Mandatory Ventilation
(CMV) system. For this reason, these end-use appliances will
not be considered for these users during the decomposition
algorithm. In addition, the studied households present different
surface dimensions. This variation is taken into account in
the optimization model when applying normalized values of
statistical household energy consumption studies. For example,
the lightning category is highly dependent on the area of the
household.

IV. RESULTS

The LSTM model used to forecast electricity consumption
was efficient after finding the optimal hyper-parameters. Error
measure results are shown in Table III.

TABLE III. PERFORMANCE OF FORECASTING MODEL

Household ID R2 RMSE MAE
1 0.692 0.432 0.334
2 0.625 0.464 0.402
3 0.496 0.157 0.125

R-squared values were calculated for the monthly time
series forecasts for each user. The calculated values ranged
from 0.496 to 0.692, showing a good fit to the test values. The
calculated RMSE and MAE showed low values for all cases.
Household 3 showed smaller results not because of under
fitting issues, but because its average electricity consumption
was lower than the other two cases, hence leading to smaller
forecasted values and metric results.

The optimization algorithm was then applied to determine
the partitioned consumption forecast as shown in Figure 1.
Active and inactive loads are highlighted in shades of gray.
An example day for each user is presented in Figure 1 with
the associated partitioned load curve for the different categories
presented in Table I.

Of the three users analyzed, household 3 did not have
electric domestic hot water and household 2 did not have a
CMV. Accordingly, during the decomposition algorithm, these
end use appliances were not considered for these users. The
variability of the total consumption may change according
to each user and their energy behavior. However, an overall
decrease of global consumption occurs for all studied cases
during nighttime hours, around 12am, or between 1am and
3am.

Overall, most of the consumption corresponds to the in-
active category, reaching 60% and up to 78% of the total
consumption. This is mainly caused by the use of DHW,

Figure 1. Example electric load forecasts partitioned into appliance
categories for a 24-hour period for household 1 (top), household 2 (middle)
and household 3 (bottom). Inactive load categories are shown at the bottom
of each graph, while active loads are shown at the top of the stacked bars

one of the highest consumption appliances, followed by the
refrigeration category. As could be expected, inactive load
consumption stays almost constant for all forecasted periods,
while active consumption changes depending on user behavior.

The consumption of the active part is dominated by
the multimedia and lighting categories, showing consumption
peaks several times a day. The washing and cooking categories
are only active approximately once every 24 hours. For all
end-users, active periods corresponding to multimedia and
lightning categories usually occur during the same intervals.
These intervals are often between 4am and 6am, or during the
afternoon between 1pm and 19pm. With respect to the cooking
and washing categories, they occur more often between 10am
and 1pm or between 8pm to 10pm.

It is important to notice when these forecasted active and
peak inactive periods occur during the day, considering that
these could be the possible periods where demand response
programs could be more efficiently deployed.

The final average forecasted flexibility potential for each
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household is shown in Figure 2. These results are based on
the possible consumption savings obtained from the different
guidelines mentioned in Section II-B: for inactive loads, re-
ducing consumption entails diminishing the consumption of
phantom loads or changing the temperature set point; for active
loads, demand side flexibility correlates more with postponing
the cycle of active appliances.

Figure 2. Average demand flexibility values for the three households for a
24-hour period

Average flexibility potential is dependent on the household
characteristics, time of day and inhabitant behavior. For all
cases, the smallest values for a 24-hour period are found
around midnight, between 11pm and 1am, or during the early
morning, between 3am and 4am.

Household 1 shows the lowest flexibility values, mostly
between 0 and 0.08 kW. This is explained by the characteristics
of the household, such as having the lowest number of refrig-
eration appliances (see Table II) and refrigeration consumption
values of all study cases. The adjustment of refrigeration
temperature set points results in the largest flexibility in the
inactive category, thus not allowing for significant load flex-
ibility in this particular case. Moreover, flexibility associated
with changing domestic hot water temperature set points result

in only 3% savings. Therefore, for this household, where 70%
of the inactive load corresponds to the use of DHW, this results
in overall lower flexibility potential.

On the contrary, household 3 presents the highest flexibility
values, around 0.08 kW for every hour. This household has the
lowest total electricity consumption of all three and does not
have electric DHW, usually responsible of a large percentage
of the inactive loads. Additionally, more than 50% of his
inactive consumption corresponds to the refrigeration category,
resulting in a possible 40% inactive load flexibility.

Finally, household 2 shows the greatest variability in the
flexibility potential values since it is the household with the
highest total consumption. Besides, during all the studied
period, the percentage of the active load is higher and more
variable, providing a higher active load flexibility but a lower
inactive load flexibility.

V. CONCLUSION

This paper has presented an effective multi-step tech-
nique to forecast the average hourly demand flexibility of a
household. This model is widely applicable, does not require
high computational capacity, and is also compatible with the
type and resolution of data available through the massive
deployment of smart meters. This solution allows for end-
users to learn about their energy use and receive behavior
adjustment suggestions for future possible use to encourage
energy efficient behavior in advance.

The average demand flexibility values vary between
0.015kW and 0.08kW for each hour depending on the house-
hold characteristics, time of day and user behavior. For all
cases, the smallest values for a 24-hour period are found
around midnight, between 11pm and 1am, or during the early
morning, between 3am and 4 am, where it has been noted that
the load is relatively low.

The largest flexibility comes from the inactive part of
the consumption: changes of temperature set points and un-
plugging unused multimedia devices causing phantom loads
that increase total consumption. Particularly, the adjustment of
refrigeration set points results in the largest flexibility values
in the inactive category, while DHW usage leads to smallest
values: domestic hot water appliances are often responsible
of a large percentage of the inactive consumption but its
temperature set point change results in only 3% savings. Active
consumption appliances contribute to smaller flexibility values
since it concerns end-user active behavior, rescheduling activ-
ities, postponing appliances or actively changing consumption
habits.

Overall, the individual demand flexibility of each user is
limited, between 15W and 80W every hour, but the aggregate
demand flexibility is interesting to exploit in a massive de-
ployment program. With the arrival of new electric generation
technologies, such as photovoltaic or wind energy, demand
side flexibility will play an important role in the optimization
of the future electric system.
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