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Abstract—Random neural networks (RNN) have strong general-
isation capabilities and are easy to implement on hardware as
compared to Artificial Neural Networks (ANN). In this paper, a
novel RNN controller is proposed to maintain a comfortable in-
door environment in a single zone residential building fitted with
radiators for heating. This controller is capable of maintaining a
comfortable indoor environment on the basis of a predicted mean
vote (PMV)-based set point. The implemented RNN controller is
compared with ANN controller for energy consumption, indoor
room temperature, and minimum square error. Results show that
for same training data and learning algorithm parameters, RNN
converges faster and it consumes less energy, results in better
comfortable room temperature as compared to ANN controller.

Keywords-random neural network; artificial neural network;
building simulation; residential heating system; energy efficient
controller

I. INTRODUCTION

Buildings currently consume 40% of the total energy in
most developed countries. The International Energy Agency
(IEA) has set a target to reduce energy consumption in
buildings by improving energy efficiency. This will result
in estimated energy saving of 1509 million tonnes of oil
equivalent (Mtoe) by 2050 [1]. The energy efficiency policy of
IEA will not only save energy but it will also reduce carbon
dioxide (CO2) emission from the building sector. This will
result in possible mitigation of 12.6 gigatonnes (Gt) of CO2

emissions by 2050. According to Intelligent Energy Executive
Agency (IEAE), in European households, 68% of energy
consumption is for space heating, 14% for water heating and
13% for electric appliances [2].
The number of homes in UK has increased from 18 million
to 26 million during the period of 1970-2011. The energy
used in homes is equal to quarter of total energy used and
CO2 emission in UK [3]. UK’s carbon emission reduction
targets therefore will be impossible to achieve without reduc-
ing CO2 emission in households. While many fabric-based
and equipment-based interventions are needed, controllers for
residential heating systems could play a useful part without
compromising the occupants comfort.
According to [4], 95% of radiators were controlled using
thermostatic radiator valves (TRVs). It was found that majority

of TRVs failed to reduce the heating output once the room
temperature is greater than the setpoint, as a result energy was
wasted. The survey further revealed that 32% of TRVs were
positioned at ”Max” and more than 65% of TRVs were set for
greater flowrates than required. If TRVs were kept within 2-3
settings (max 5), about 12.4% reduction of heat consumption
could be gained compared with the situation in which the TRVs
were kept fully open [5].
In non-domestic buildings for controlling the Heating Ventila-
tion and Air Conditioning (HVAC), the control techniques are
categorized in two parts, i.e., Local control and Supervisory
control [6]. For local control, ON/OFF and proportional-
integral derivative control schemes are normally used. The
control settings of these local controllers might be optimal and
energy efficient for certain subsystem however they may not
be energy efficient for overall system as these control schemes
are unable to maintain indoor comfort of the building by
taking in to the account the ever changing indoor and outdoor
environmental variables.
Supervisory control techniques are used for maintaining com-
fortable indoor environment by considering indoor and outdoor
environment variables. Supervisory control techniques can be
implemented by using physical model based techniques and
black box techniques. Physical model-based techniques require
physical model of the building to predict energy/cost of the
concerned system which is computationally expensive and
requires lot of memory. Black box techniques are normally
implemented by ANN and RNN models. The ANN models are
developed on empirical model of the system and are capable
to mathematically relate the input and output variables of the
system. ANN models are computationally less expensive than
physical model based techniques but requires extensive training
data to achieve accuracy.
The main contributions of this paper are:
1. Novel variable set point RNN and ANN controllers have
been developed for optimisation of energy consumption by
residential heating systems without compromising the thermal
comfort of the occupants. The gradient descent algorithm is
used to train the RNN and ANN controllers for predicting the
optimised inflow of hot water in to the radiator. Variable set
point estimated by PMV thermal comfort model, indoor envi-
ronmental variables, and meteorological data have been used
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by RNN and ANN controllers to predict the flow rate from
the TRVs for optimised energy consumption and comfortable
thermal environment.
2. The energy consumption by residential heating system con-
trolled by RNN and ANN controller is compared by simulating
the single zone building model in Matlab/Simulink for 100
days. The single zone building model is developed by using
International Building Physics Toolbox (IBPT).
3. The training algorithm for RNN and ANN is critically
analysed in terms of no. of iterations and minimum square
error attained. The percentage of periods when air temperature
overshoots the specified range of room temperature set point
is calculated for ANN and RNN controller.
The rest of this paper is organized as follows. Brief intro-
duction to RNN and ANN and learning algorithm for RNN
are given in Section II. The implemented building model is
described in Section III followed by description of intelligent
heating control system in Section IV. The experimental results
are provided in Section V followed by the discussions and
conclusions in Section VI.

II. RELATED WORK

A. Artificial Neural Network

The ANNs have been used in different applications for
BEMS such as modeling the thermal dynamics of building
space, estimation of heating loads of buildings, control of
HVAC, prediction of energy consumption in buildings, and
solar radiation predictions for non-domestic buildings [7]-
[13]. The above mentioned ANN techniques are difficult to
implement on hardware as they are computationally expensive.
Residential water heating systems and radiant floor heating
systems were effectively controlled by ANN based predictive
control methods. In [14], the authors proposed an ANN based
predictive control model. The results of their work showed
that the performance of proposed predictive control is better
than that of the current two-position ON/OFF control. In [15],
[16], the authors showed that ANN based predictive control
strategies are better than conventional control techniques in
terms of energy saving, building thermal control with reduced
overheating and overcooling. In [17], the authors developed
an ANN based adaptive and predictive control method that
ensures more comfortable thermal conditions than typical
thermostat systems in terms of increased comfort periods of
air temperature, humidity, PMV [18] - the most commonly
used indoor thermal comfort index in buildings, and reduced
over and undershoots. The ANN based models takes into
account not only indoor air temperature but also PMV as a
control variable in order to reduce overshoot and undershoot
of the temperature which resulted in energy conservation. In
[19],the author proposed the PMV index based variable set
point control scheme and compared the results with fixed set
point control scheme.

B. Random neural network

Gelenbe [20], [21] proposed the new class of ANN as RNN
in which signals are either +1 or -1 due to which it is an
excellent modeling tool. RNN can give more detailed system
state description because the potential of neuron is represented
by integer rather than binary value [22]. RNN is easy to
implement on hardware as its neurons can be represented by

Figure 1. Random Neural Network

simple counters [23], [24].
Applications of RNN have been reported for modeling, pattern
recognition, image processing, classification, and communica-
tion systems [22], [25]. However, no such application has been
reported so far in implementing control scheme for HVAC in
residential/commercial buildings.
In RNN shown in Figure 1, signal travels in the form of im-
pulse between the neurons. If the receiving signal has positive
potential (+1) it represents excitation, and if the potential of
the input signal is negative (-1) it represents inhibition to the
receiving neuron. Each neuron i in the random neural network
has a state ki(t) which represents the potential at time t.
This potential ki(t) is represented by non-negative integer. If
ki(t) > 0 then neuron i is in excited state and if ki(t) = 0
then neuron i is in idle state. When neuron i is in excited
state, it transmits impulse according to the poisson rate ri. The
transmitted signal can reach neuron j as excitation signal with
probability p+(i, j) or as inhibitory signal with probability
p−(i, j), or can leave the network with probability d(i) such
that

d(i) +

N∑
j=1

[
p+(i, j) + p−(i, j)

]
= 1∀i (1)

w+(i, j) = rip
+(i, j) > 0 (2)

w−(i, j) = rip
−(i, j) > 0 (3)

combining (1)-(3)

r(i) = (1− d(i))
−1

N∑
j=1

[
w+(i, j) + w−(i, j)

]
(4)

The firing rate between the neuron is represented by r(i) =∑N
j=1 [w+(i, j) + w−(i, j)]. As ’w’ matrices are the product

of firing rate and probabilities, therefore these matrices always
hold non-negative values. External positive or negative signal
can also reach neuron i at poisson rate Λi and λi respectively.
When positive signal is received at neuron i its potential ki(t)
will increase to +1. If neuron i is in excitation state and it
receives negative signal the potential of neuron i will decrease
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TABLE I
DESCRIPTION OF RNN SYMBOLS

RNN Symbols Description
qi Probability neuron i excited at time t
p+(i, j) Probability neuron j receives positive signal from neu-

ron i
p−(i, j) Probability neuron j receives negative signal from neu-

ron
ri Firing rate of neuron i
Λi Arrival rate of external positive signals
λi Arrival rate of external negative signals
d(i) Probability a signal from neuron departs from the

network
ki(t) Potential of neuron i at time t

to zero. Arrival of negative signal will have no effect on neuron
i if its potential is already 0. The description of symbols used
is given in Table 1.
Consider the vector K(t)= (k1(t), .....kn(t)) where ki(t) is the
potential of neuron i and n is the total number of neurons in
the network. Let K is continuous time Markov process. The
stationary distribution of K is represented as:

lim
t→∞

Pr(K(t))) = (k1(t).......kn(t)) =

n∏
i=1

(1− qi)qnii (5)

For each node i

qi =
G+
i

ri +G−i
(6)

where

G+
i = Λi +

N∑
j=1

qjw
+(j, i) (7)

G−i = Λi −
N∑
j=1

qjw
−(j, i) (8)

For three layer network, qi for each layer is calculated as

qiεI =
Λi

ri + λi
where Iis input layer (9)

qiεH =

∑
iεI qiw

+(i, h)

rh +
∑
iεI qiw

−(i, h)
where His hidden layer

(10)

qiεO =

∑
iεH qhw

+(h, o)

rh +
∑
iεI qhw

−(h, o)
where Ois Output layer

(11)
In this paper, we propose a novel variable set-point RNN
controller for maintaining comfortable indoor environment in
single zone residential building by controlling the motorized
TRVs mounted on radiator. RNN controller uses room tem-
perature, error (difference between current room temperature
and variable setpoint), and outside temperature as Inputs to
predict flow rate m′ (m

3

hr ) from the TRVs for optimized
energy consumption while maintaining comfortable thermal
environment.

C. Gradient Descent learning algorithm for RNN

Suppose we have data set F composed of M input-output
pairs (xm, ym) where m = 1, 2, .....M and xm = [Λmλm]
such that xm are pairs of excitation and inhibition signal
ow rates entering each neuron from outside of the network.

Output ymε[0..1] where ym = f(xm). The goal of the learning
algorithms is to find parameters for RNN such that difference
between qmi and ymi is minimum. Similarly gradient descent
algorithm developed by Gelenbe [26] adjusts the parameters
in order to minimize the cost function Em

Em =
1

2

n∑
i=1

ai(q
m
j − ymj )2, ai > 0 (12)

The rule of updating the weights by using mth input-output
data pair for connection between neuron e and f is

w+t
(e,f) = w

+(t−1)
(e,f) − η

n∑
i=1

ai(q
m
j − ymj )

[
∂qi

∂w+
(e,f)

]t−1

w−t(e,f) = w
−(t−1)
(e,f) − η

n∑
i=1

ai(q
m
j − ymj )

[
∂qi

∂w−(e,f)

]t−1

(13)

where [
∂qi

∂w+
(e,f)

]
= γ+

e,fqe[I −W ]−1

[
∂qi

∂w−(e,f)

]
= γ−e,fqe[I −W ]−1 (14)

γ+
e,f ;i =


−1

ri+G
−
i

if e = i, f 6= i
1

ri−G−i
if e 6= i, f = i

0 else

γ−e,f ;i =


(−1+qi)

ri+G
−
i

if e = i, f = i
−1

ri+G
−
i

if e = i, f 6= i
−qi

ri+G
−
i

if e 6= i, f = i

W (i, j) =
w+

(i,j) − w
−
(i,j)qj

Dj
i, j = 1......, N (15)

Steps for gradient descent learning algorithm are as followings:
a) Initialize w+

(e,f) and w((e, f))− ∀ e, f and choose suitable
value for learning rate
b) For all input output pairs, initialize Λim, λim according to
Xim.
c) Solve (6)-(8) by using current weight values
d) Calculate W, γ+

(e,f), γ
−
(e,f)∀e, f

e) Calculate ∂qi
∂w+

(e,f)

and ∂qi
∂w−

(e,f)

by solving (14)

f) Update the weights from (13)
Weights are product of firing rate and probability and can never
have negative values. After solving (13) negative weights can
either be set to zero or repeat the iteration with smaller value of
η. Repeat the procedure (b)-(f) until convergence or maximum
number of iterations.

III. IMPLEMENTATION OF MODEL

In this work, a single zone building made of three
layered walls/roof, fitted with Intelligent Controllers for
heating/cooling system management is modeled in Mat-
lab/Simulink using IBPT.
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Figure 2. Layout of Walls

A. Target Building

A single zone residential house is considered as the target
building. The size of the house is 6 x6 x2.7 m3. The house has
a window in south and west wall with flat ceiling and three
layered walls. Concrete blocks are used for exterior/interior
material on each wall while mineral wool is used for insulation.
Thicknesses of the materials are 0.15m, 0.25m and 0.12m
respectively shown in Figure 3. Area of the uncoated double-
glazed south & west windows is 4 m2 and U-Value of window
is 2.44 and resistance of air gap is 0.23.
In the simulation heat gains from lights, occupants and equip-
ment are ignored. External parameters that affect the building
environment such as ambient temperature, dewpoint temper-
ature, global irradiation, diffuse horizontal irradiation, direct
normal irradiation, longwave sky radiation, global luminance,
diffuse horizontal illuminance, direct normal illuminance, wind
direction, and wind speed are included in the weather data file.
The building model is affected by meteorological parameters
and heat emitted from radiator inside the room. The room is
fitted with the radiator and TRV is mounted on inlet pipe of the
radiator for controlling the flow rate of hot water entering the
radiator. Heat emission from radiator is controlled by changing
the flow rate m

′
of hot water.

B. Radiator Model

The heat transfer from radiator to surrounding is repre-
sented by (16). At low mass flow rate the radiator exhaust
temperature is nearly equal to room temperature and heat
emission from the radiator is linear function of mass flow rate.

q = m
′
cp(Tsu − Ten) (16)

Where,
q = heat flux W
m
′

= fluid mass flowrateKgs
cp = specific heat capacity of fluid J

Kg−K
Tsu = radiator supply temperature ◦C.
Ten = environment temperature ◦C

Figure 3. Control Scheme

C. Thermostatic Radiator Valve Model

The TRV used in this model is 15mm valve whose flow
rate Kv varies between 0 to 0.56 (m

3

hr ) at differential pressure
of 0.6 bar. The flowrate through the valve is represented by
(17).

Kv =
Q√
4P

(17)

Q = the flow rate in m3

hr
4P = differential pressure of 0.6 bar.
The relationship between the position of the thermostatic radi-
ator valve, flow rate and differential pressure is implemented
in Simulink. The kv -value as a function of the TRV position
is included in a lookup table.

IV. INTELLIGENT HEATING CONTROL SYSTEM

The main goal of the controller design is to reduce en-
ergy consumption while maintaining acceptable indoor thermal
comfort for occupants. In Figure 4, the block diagram of
intelligent heating system controller is shown. The variable
set point estimator estimates the variable set point TVset for
the building temperature by using PMV index as proposed in
[19]. The intelligent controller takes the difference between the
TV set and room air temperature (Tair), room air temperature
(Tair), and outside temperature (Tout) as inputs and controls
the heat emission from the radiator by changing the flowrate
(m
′
) through TRV mounted on the radiator. Two types of

intelligent controllers are investigated in this study, i.e., ANN
and RNN controller.

A. Variable Set Point Estimator

The Institute for Environmental Research at the Kansas
State University conducted the research study under the con-
tract of ASHRAE and defined PMV in terms of easily mea-
sured parameters [19].

PMV = at+ bpv − c (18)

Where a, b, c are constants defined in Kansas State university
research, pv is vapour pressure and t is temperature.
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By setting the required PMV (in this work between -0.3 and
+0.3) and using the constants (a=0.220, b=0.233, c=5.673)
heating setpoint for room temperature varies between room
temperature varies between 22.76 oC to 23.77 oC and cooling
setpoint varies between 26.59 oC to 27.58 oC.

B. Training Data

The training dataset have been generated by simulating the
single zone building for 30 days in Matlab/Simulink using
IBPT toolbox. During this period the outside temperature of
the building varies between -20 oC and 10.2 oC. The building
has radiator fitted with motorized TRV and simple ON/OFF
controller to control the TRV for maintaining the required flow
rate (m

′
) of hot water entering the radiator. The training data

is recorded after every 30 seconds and both ANN and RNN
controllers are trained with this data.

C. Artificial Neural Network Controller

Feed forward neural network (FFNN) consists of simple
neuron like processing unit and is organised in layers. In this
network all neurons in ith layer are connected to all neuron
in (i-1)th layer. In FFNN, the learning rule tries to adjust the
weights and biases of the network in order to move the network
output closer to the target. The output of each neuron in the
hidden layer and output layer is the result of non linear transfer
function f represented by (19).

yi = f(

m∑
j=1

wijxj + bi) (19)

Where x is the input presented to the network, w are the
weights of the network, b is the constant term which is referred
as bias, and y is the output predicted by the network.
The intelligent ANN controller is three layered neural network
model and it has three neurons in input layer, eight neurons
in hidden layer and one neuron in the output layer. The ANN
controller is trained by using gradient descent algorithm with
learning rate η = 0.01. It took 20000 iterations by gradient
descent algorithm to converge with minimum square error
(MSE) of 2.3e-04.

D. Random Neural Network Controller

Similar to ANN controller the proposed RNN controller is
three layer random neural network model with three neurons
in the input layer, eight neurons in the hidden layer and one
neuron in the output layer. When random neural network is
trained by using gradient descent algorithm it took only 500
iterations to achieve the MSE of 1.6288e-06 at learning rate η
= 0.01.

V. RESULTS AND DISCUSSION

The single zone building is simulated for 100 days for
testing the performance of RNN and ANN controller. During
this period of 100 days the outside temperature varies between
-20.89 oC to 14 oC. The indoor air temperature of the building
with RNN and ANN controller is shown in Figure 5. The heat
supplied by the RNN controller is shown in Figure 6. Similarly,
Figure 7 represents the heat supplied by the ANN controller.
The variable heating set point for room temperature varies

Figure 4. Indoor Air Temperature during testing

Figure 5. Heat Supplied by the RNN controller

between 22.66 oC to 23.00 oC in order to maintain the PMV
of at least -0.3. As shown from Figure 5, ANN controller failed
to keep the temperature within the specified range of variable
set point while RNN controller achieved more accurate results
than ANN controller.
In Figure 7, it is shown that ANN controller caused frequent
oscillation between maximum and minimum flow rate as a
result heat supplied to the rooms oscillate between 0 and
4000 watts. The RNN controller kept the stable flow rate
due to which the heat suplied to the room didnt oscillate
between minimum and maximum. In Table 2, the comparison
of RNN and ANN in terms of MSE, no. of iterations, energy
consumption, maximum overshoot and percentage of overshoot
periods is given. The percentage of overshoot periods is
percentage of instances when air temperature Tair exceeds
the specified range of room temperature set point during 100
days simulation. From Table 2, it is shown that percentage
of overshoot periods is only 4.27% for RNN controller while
for ANN it is 45.96%. Similarly the energy consumption by
heating system with RNN controller is 1282.4 MWh while
with ANN controller energy consumption is 1292.5 MWh.

VI. CONCLUSION

In this paper, two variable set point intelligent heating sys-
tem controllers are developed and their performances are com-
pared for energy efficiency, and accuracy for maintaining the
comfortable room temperature. To compare the performance
of RNN and ANN controller, both controllers were trained
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Figure 6. Heat Supplied by the ANN controller

TABLE II
COMPARISON OF RNN AND ANN CONTROLLER

RNN ANN
Learning Algorithm Gradient

Descent
Gradient
Descent

No. of Iterations 500 20000
MSE 1.8266e-06 2.3 e-04
Energy Consumption 100 days
(MWh)

1282.4 1292.5

Max Overshoot (oC) 0.81 2.73
Percentage of overshoot periods 4.27% 45.90%

with same dataset and same training algorithm i.e., gradient
descent algorithm. During training RNN showed impressive
generalization capabilities and gradient descent algorithm for
RNN converges in 500 iterations while gradient descent algo-
rithm of ANN took 20000 iterations to converge. The RNN
controller outperformed the ANN controller in testing phase
where both controllers were tested for unknown data set. The
heating system with RNN controller consumes 10 MWh less
energy than with ANN controller. The RNN controller stopped
the flowrate of hot water to the radiator by sensing the increase
in outside temperature at correct time as a result percentage of
overshoot periods is less compared to the ANN controller. The
PMV index based variable set point control scheme ensured the
comfortable indoor environment by suggesting the variable set
points for maintaining PMV index of 0.3. The performance of
RNN controller can further be improved by training the RNN
with Levenberg Marquardt algorithm [27].
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