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Abstract—We study a stochastic model of electricity produc- consumers and producers. Potentially, one might incrémse t
tion and consumption where appliances are adaptive and adjust  packlogged demand to a point where future demand becomes
their consumption to the available production, by delaying their excessive. In other words, one key question is whether it

demand and possibly using batteries. The model incorporates . . . L. .
production volatility due to renewables, ramp-up and ramp- 1S possible to stabilize the system. This is the question we

down time, uncertainty about actual demand versus planned address in this paper. _ _
production, delayed and evaporated demand due to adaptation To address this fundamental question, we consider a

to insufficient supply. We study whether threshold policies macroscopic model, inspired by the model in [8]. We as-
stabilize the system. The proofs use Markov chain theory on sume that electricity supply follows a two-step allocation
general state space. process: first, in a forecast stegay ahead markgtdemand
Keywords-Dynamical Systems, Smart Grids, Elastic Demand, and renewable supply are forecast, and the total supply
Magcroscopic Model, Stability is planned; secondrdal time markek the actual, volatile
demand and renewable supply are matched as possible. We
assume that the rate at which supply can be varied in the real
Recent results on modelling the future electricity marketstime step is subject to ramp-up and ramp-down constraints.
[11] suggest that they may lead to highly undesirable equitndeed, it is shown in [3] that it is an essential feature ef th
libria for consumers, producers or both. A central reason foreal time market. We modify the model in [8] and assume
such an outcome might be the combination of volatility inthat the whole demand is adaptive. While this is clearly
supply and demand, the delays required for any unplannedn exaggerate assumption, we do it for simplicity and as
capacity increase, and the inflexibility of demand whicha first step, leaving the combination of adaptive and non-
leads to high dis-utility costs of blackouts. Further, tke of  adaptive demand to a later research. We are interested in
renewable energy sources such as wind and solar increassisple, distributed algorithms, as suggested in [5], toeeg
volatility and worsens these effects [8]. we assume that the suppliers cannot directly observe the
Flexible load is advocated in [6] as a mechanism tobacklogged demand; in contrast, they see only the effective
reduce ramp-up requirements and adapt to the volatility ofnstantaneous demand; at any point in time where the supply
electricity supply that is typical of renewable sources. Acannot match the effective demand, the backlogged demand
deployments report [4] shows the feasibility of delayingincreases.
air conditioners using signals from the distributor. Adegpt Our model is macroscopic, so we do not model in detalil
appliances combined with simple, distributed adaptatiorthe mechanism by which appliances adapt to the available
algorithms were advocated in [5], [7]; they are assumed t@apacity; several possible directions for achieving this a
reduce, or delay, their demand when the grid is not ablelescribed in [5]. However we do consider two essential
to satisfy them. Some examples might be: e-cars, whiclparameters of the adaptation process. Firstdglay 1/ is
may have some flexibility regarding the time and the ratethe average delay after which frustrated demand is expglesse
at which their batteries can be loaded; heating systems again. Second, thevaporationy is the fraction of back-
air conditioners, which can delay their demand if instrdcte logged demand that disappears and will not be resubmitted
to; hybrid appliances which use alternative sources in reper time unit. The inverse delay is clearly positive; in
placement for the energy that the grid cannot supply. If thecontrast, as discussed in Section Il, it is reasonable tmnaess
alternative energy source is a battery, then it will needeao b that some adaptive appliances naturally lead to a positive
replenished at a later point in time, which will eventually evaporation (this is the case for a simple model of heating
lead to later demand. systems), but it is not excluded that inefficiencies in some
The presence of adaptive appliances may help address tla@pliances lead to negative evaporation.
volatility of renewable energy supply, however, backlodige  Within these modelling assumptions, the electricity sup-
demand is likely to be merely delayed, rather than canceledliers are confronted with a scheduling issue: how much
this introduces a feedback loop into the global system otapacity should be bought in the real time market to match

I. INTRODUCTION
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the adaptive demand. The effect of adaptation is to increadee sufficient. In addition, there is, at every tinig the
the latent demand, due to backlogged demand returning intbacklogged demand3(¢), which results from adaptation:
the system. This is the mechanism by which the systenB(¢) is the demand that is expressed at timelue to
might become unstable. We consider a threshold basea previous demand being backlogged. The total effective
mechanism as in [8]. It consists in targeting some fixeddemand, or expressed demand, is
supply reserve at any point in time; the target reserve might
not be met, due to volatility of renewable supply and of E%(t) = D*(t) + B(1). (2
demand, and due to the ramp-up and ramp-down constraints. .

Our contribution is to show that if evaporation is positive, W& model the effect of demand adaptation as follows.
then any such threshold policy does stabilize the system.

In contrast, if evaporation is negative, then there exists n B(t) = AZ(t), ©)
threshold policy which stabilizes the system. The case avher Z(t+1)=2Z(t)— B(t) — pZ(t) + F(t), 4
evaporation is exactly equal to 0 remains unsolved. F(t) = [E*(t) — G“(t)]T. (5)

Thus, our results suggest that evaporation plays a central
role. Simple adaptation mechanisms as described in thig/e used the convenient notati¢a) ™ := max(0, a).
paper might work if evaporation is positive (as one may In the above equations(¢) is the frustrated demand,
perhaps generally expect), but will not work if evaporationi.e. the denied satisfaction at timeEq. (5) expresses that,
is negative, i.e. if the fact that demand is backlogged ie®li through adaptation, the demand that is served is equal to the
that a higher fraction of demand returns into the systemminimum of the actual demand and the supply. The variable
This suggests that future research be done in order to gaifi(¢) is thelatent backloggedlemand; it is the demand that
a deeper understanding of evaporation, whether it can trulwas delayed, and might later be expressed. It is incremented
be assumed to be positive, and if not, how to control it. by the frustrated demand.

We use discrete time, for tractability. We use the theory of The frustrated demand is expressed with some delay; we
Markov chains on general state spaces in [9]. In Section Ilmodel this with Eq. (3), whera~—! is the average delay, in
we describe the assumptions and the model, and relate otme slots.
model to prior work. In Section Ill we study the stability  The evolution of latent backlogged demand is expressed
of the system under threshold policies. We conclude irpy Eq. (4). The expressed demaRdt) is removed from the
Section IV. backlog (some of it may return to the backlog, by means of

II. M ODEL AND ASSUMPTIONS Eq. (5) at some later time). The remaining backlog may
. . evaporate at a ratg, which captures the effect on total
A. Assumptions and Notation demand of delaying some demand. Delaying a demand may

We use a discrete model, whetee N represents the indeed result in a decreased backlogged demand, in which
time elapsed since the beginning of this day. The time unitase the evaporation factor is positive. For example this
represents the time scale at which scheduling decisions atgcurs if we delay heating in a building with a heating
done, and is of the order of the second. system that has a constant energy efficiency; such a heating

The supply is made of two parts: the planned supplysystem will request more energy in the future, but the
G'(t), forecast in the day-ahead market, and the actughtegral of the energy consumed over time is less whenever
supplyG«(t), which may differ, due to two causes. First, the some heating requests are delayed. In this case, positive
forecasted supply may not be met, due to fluctuations, foevaporation comes at the expense of a (hopefully slight)
example in wind and sunshine. Second, the SUpp"GI’S attempecrease in comfort (measured by room temperature). In
to match the demand by adding (or subtracting) some supplyther cases, though, we may not exclude that evaporation

bought in the real time market. We assume that this |attebe negati\/e_ This may occur for examp|e with heat pumps
term is limited by ramp-up and ramp-down constraints. Wef1].

model the actual supply as As in [8], we assume that the natural demand can be
Gt) = G(t — 1) + GF(t) + M (t), (1) forecast with some error, so that
whereM (¢) is the random deviation from the planned supply DA(t) = D(t) + D’ (t), (6)

due to renewableg;(t—1) is the supply decision in the real

time market. We viewG“(t) as deterministic and given(it Where the forecasted demard/(t) is deterministic and

was computed yesterday in the day-ahead markit)t) D(t), the deviation from the forecast, is modelled as an
as an exogenous stochastic process, imposed by nature, agkbgenous stochastic process. We assume that the day ahead

G(t — 1) as a control variable. forecast is done with some fixed safety margin so that
We call D*(t) the “natural” demand. It is the total ; ;
electricity demand that would exist if the supply would G'(t) = D' (t) + ro. (7

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-136-6 164



ENERGY 2011 : The First International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

B. The Stochastic Model variables of finite mean taking values R?, the process

We model the fluctuations in demat{¢) and renewable €volves as
supply M (t) as stochastic processes such that their differ- X, — FX.u CWoe. k> 1 15
enceM (t) — D(t) is an ARIMA(0, 1,0) Gaussian process, b k-1 Wiy B2 L (15)
ie. Our model (13)-(14) is in fact a superposition of three such
B B B _ LSS models, depending on the current state of the Markov
(M(t+1) = D(t+1) = (M(t) = D(t) = N(t + 1) (8) chain. The challenge of showing that our model is stable
where N (t) is white Gaussian noise, with varianeé. This  comes from the fact that in the part of the state space in
is the discrete time equivalent of Brownian motion, as inwhich R(t) < 0, the corresponding LSS does not satisfy the
[8]. stability condition (LSS5) of [9] (which requires that the
Let R(t) be the reserve, i.e the difference between theeigenvalues of' be contained in the open unit disk @.
actual production and the expressed demand, defined by  In[10] a slightly different model for capturing elasticity
o arn demand is proposed. More specifically, the authors consider
R(t) = G*(t)-E*(t) = G(t_1)_)‘Z(t)+r°+M(t)_D(€9)5 a scenario in which a deterministicalboundedamount of
. . demand arrives at each time step, while the supplier decides
?nd IetHlit)t b_e the increment in supply bought on the realwhether to buy an additional amount of energy from an
Ime market, 1.e. external source at a certain cost. Unsatisfied demand is
H(t)=G(t) — Gt —1). (10) backlogged. A threshold policy is analyzed and found to
. ) ) be stable (the size of the backlog is found to be determin-
Putting all the above equations together, we obtain thestically hounded) and optimal. Pricing decisions are also

system equations: explored. The main differences with the present work are
R(t+1)=Rt)+H({t)+ N({t+1)—X(Z(t+1)— Z(t)), the following:
Z(t+1) =1 =A=p)Z{) + Lirw<oy | R(E)], « Additional parameters which model delay and loss of

backlogged demand (i.e. and x) enrich our model's
Thus we can describe our system by a two-dimensional  expressivity.

stochastic procesX (t) = (R(t), Z(t)), with t € N. « We consider potentially unbounded demand, modeled
The sequencdi(t) is the control sequence. It is con- as a0-mean Gaussian random variable, which makes

strained by theamp-up and ramp-down constraints proving stability more challenging.
E<H(t) <, (11) « No results on pricing and cost-optimality are included

in the present work.

where¢ > 0 and¢ > 0 are some positive constants. _ The continuous time model used in [2] seeks to capture
We assume a simple, threshold based control, whichhe presence of two types of energy sources, primary and an-
attempts to make the reserve equal to some threshold Va“éfﬂlary the latter being less desirable (i.e. more costygn
" > (; therefore the former, both subject to (different) ramp-up constsaint
H(t) = max (—¢, min (¢, 7* — R(t))). (12) A threshold poliqy is_ again discusse_d in the context of rigi_d
_ demand, which is simply dropped if not enough energy is
In summary, we have as model the stochastic sequencgailable. The analyzed Markov chain is a two-dimensional
X = (X(t))ten defined by process having on the first coordinate the quantity of energy
R(t+1) = R(t) — AL RO+ M+ ) Z(¢ used from the ancillary source in order to satisfy as much
( ) (®) *{R(t)@}‘ Ul A+ wZ() demand as possible, and on the second coordinate the reserve
+ (A" =R(@)) V(=) +N(+1), (13)

(i.e. energy surplus).
Z(t+1) = Lipmy<op R + (1 = A — p) Z(1), (14)
. . . . . ) I1l. SYSTEM STABILITY UNDER A THRESHOLDPOLICY
whereN is an iid white Gaussian noise sequence of variance

o2. Note thatX is a Markov chain on the state spaBe= For presentation ease, we consider like in [8] the ¢ase

R x R+. oo. In other words, we relax the ramp-down constraint, i.e.
the surplus energy can be disposed of easily. In the extended

C. Related Models version of the paper [1] we show that a finite value afoes

Let us now discuss some similar models which have beenot alter the results. Thus, (11) becomes:
considered in the literature.

In [9], the authors consider the so-called Linear State
Space model (LSS), which introduces andimensional ;.4 the threshold policy (12) writes as
stochastic proces’s = { X}, with X, € R™. For matrices
F e R™™™, G € R"*P, and for a sequence of i.i.d. random H(t) = min (¢,r" — R(t)). a7)

H(t) < ¢, (16)
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Let us study how the system stability of (13)-(14) depends z

on the evaporation parameter
Define the following three domains:

Dy = (—0070) X R+7
Dy = [0,7‘* - C) 2 ]R-H
Ds =[r* —(,+o0) x Ry.

Then, denoting

xo=| 0 | o= M5 o= § ],
7"8:|:7g:|>141:|:1_+1)\ f\(—A;—uL:’
R RS A

the process (13)-(14) rewrites in matrix form:

AlX(t)+<07 X(t) €D17
X(t4+1) = No(t+1)+4 AsX(t)+ o, X(t) € Do,
AsX (1) + 15, X(1) € Ds.

(18)

Figure 1. Typical trajectory

positive probability that the time, of return in A is finite:
L(z,A) =P(74 < +00) > 0.

We consider any measurable 9@¢tc E. By Proposition
4.2.1 (i) from [9], it suffices to show that there exists a

The main reason for which the analysis of system stabilityfinite 77 > 0, such that the probability of hitting? in T

is challenging is the fact that both; and A, admit1 as an
eigenvalue.

steps starting from any point € S is lower-bounded by a
factora(B, T, z) > 0 (which might depend o, T and x)

The first result of this section can be stated in the formtimes the irreducibility measureg of B:

of the following

Theorem 1. If u > 0, the Markov chain(13),(14) is positive
Harris and ergodic. For any initial distributiorp, the chain
converges to its unique invariant probability measurdn
total variation norm, i.e. denoting the transition probhtyi
by P,

|| /S p(d2)P" (2,) — ()] —>nroc 0.

IP’T(z, B) > apg(B).

Indeed, ifpr(B) > 0, then necessarilp? (z, B) > 0, and
hence,L(z, B) > 0, sinceT is finite.

The key element in the proof is the observation that, at
each time step, th& coordinate positions the Markov chain
in region D3 with a strictly positive probability due to the
Gaussian sequendéV (¢));. Furthermore, in this region the
Z coordinate decreases geometrically at fdate\ — . This

Recall that the total variation norm of a signed measureyroperty enables us to exhibit trajectories having a finite

v is defined as

[v] == sup [v(f)].
i<t

number of steps and leading from any painto the setB.

Such a trajectory is shown in Figure 1. [ ]
Lemma 1 shows that for any compact set of strictly posi-

tive Borel measure of the state space, its hitting timeistart

The proof uses the theory of general state space Markokom any point is finite with strictly positive probability.
chains. The following lemmas are instrumental in proving A set C' is said to bevy-small for some non-trivial

the result. For brevity, we only provide proof outlines, ighi

measurevyr and a positive integefl’, if for all z € C,

the complete proofs can be found in the extended version [1}he probability of reaching any measurabiein 7' steps

Lemma 1. If 1 — X\ — u < 1, then there exists a measupe
on S such that the Markov chai(i3),(14) is ¢-irreducible.

Proof: (Outline) Fix some finite closed intervdl and
somega > 0, and consider the séf = I x [0, al.

Consider the measurer defined as follows: for any
Borel setA, ¢orp(A) := v(AN E), wherer denotes the
Lebesgue measure dr?.

We show that our chain isg-irreducible, that is, ifA C S
is such thatpr(A) > 0, then for allx € S, there is a strictly

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-136-6

is lower-bounded a®* (z, B) > v (B).

Furthermore, a sef' is petiteif there exists a distribution
h on the positive integers and a non-trivial measyyesuch
that for anyx € C, and for any Borel seB, the transition
kernel of thesampled chairhas the following property:

Kn(x,B) := Y _ h(t)P'(z, B) > vy(B).
t>0

A vp-small set is implicitlydr-petite, whereyr is the Dirac
distribution.
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Lemma 2. For any setC = J x [0,b], with J a finite
closed interval andb > 0, there existsI; > 0 and non-
trivial measures(vr) >, such thatC' is vp-small for all
T > Tp.

250

200
Proof: (Outline) In Lemma 1 we essentially proved that
we can reach any bounded Lebesgue-measurabl® st
positive measure from any statén a finite number of steps.
In order to give an upper bound on the required number o
steps, we defined the sét= I x [0,a] and we introduced
the measure g, which is defined as the Lebesgue measure
of the set obtained via intersection with
In order to prove smallness, we need to eliminate the
dependence of the number of stépsn the specific starting sor
point z € C and on the destinatiof3. Since we rely on
the deterministic geometric decrease of the coordirate
in region D3, a choice forB which is such that all the o0 80 60 40 20 o 20 4
points in BN E have aZ-coordinate less than a certain Reserve (R)
automatically leads to a logarithmic number of stepsiin
(thus, arbitrarily Iarge, fop close toO), Figure 2. 500 iterations of the Markov process (13)-(14) = 1,7* =
Instead, we pick a finite closed intervaland constants %7 = 5,A=03,p=01
A > 6> 0, and we define the sed := I x [§, A]. Then it
can be shown that there exists a minimum number of steps
Ty depending ond and C, and ana(7) > 0 which does
not depend onB, or the starting pointr, but which does Separate cases need to be considered for each of the three

i
a
=]

Backlogged demand (Z)
=
o
o

depend oril", such that for measures regionsD1, Dy and Ds.
vr = a(T)pa, A consequence of this resuIF is that, by Theorem 9.1.8
of [9] and by Corollary 2, which shows that the sét
the setC is vp-small, for allT > Tj. | is small, the chain is Harris recurrent. Furthermore, by
We give two direct consequences of the two above lemTheorem 10.0.1 of [9], it admits a unique invariant measure
mas. m. Finally, by Theorem 13.0.1 of [9] and by Corollary 1, we
Since any seC = J x [0, ] is bothvp- andvr,1-small  get the finiteness of and we conclude. [ |

for someT" > T, it follows that This first result signifies that for positive evaporation

Corollary 1. The Markov chair(13),(14) is aperiodic. p > 0, the simple threshold policy (17) stabilizes the

- system. A typical simulated trajectory is shown in Figure 2.
Additionally, Most points are found around the stdie’, 0), with some
Corollary 2. Any compact subset of the state space is petitefXcursions in domainD; due to the variability of the

demand.
We are now ready to give the following

Proof: (of Theorem 1)
We prove that the functiod/ : R x Ry — R,

The second result of this section concerns the case for
which we have negative evaporatipn< 0. It is stated as
the following

_| T _ 2 2
= [ 2 } = H(z) = (r+A2)" + (r+ (A+1)2)” (19)  Theorem 2. If 4 < 0, the Markov chain(13)-(14) is non-
. i positive.
is a Lyapunov function for the system (13)-(14). It can be
shown thatH is unbounded off petite setthat is for any Proof: (Outline) Notice that ify < —\, then theZ
n < oo the sublevel seCy(n) := {y : H(y) < n}is  coordinate of the Markov chain cannot decrease. Hence the
small. Furthermore, there exist constant$,c > 0 and a  chain is trivially unstable (it is not evep-irreducible).

setC’ = [~a,a] x [0, 5] such that the drift In the case-\ < p < 0, we turn again to [9] for proving

DH(z) :=E,H(X (1)) — H(x) the claim. In this case the Markov chain (13)-(14)s
irreducible. We need to find a functioH which satisfies
satisfies the hypothesis of Theorem 11.5.2 from [9] to show non-
DH(x) < -1+ clc. positivity.
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DefineH : R x Ry — R,

Hir,2) = { log (W) if -+ (.>\+u)z <,
0 otherwise.
(20)
Then, it can be shown thdf has finite increments in any
point of the state space, namely that

supE,|H(X (1)) — H(z)| < +o0.
€S

(21)

In order to show this property off, we need to consider

points = in all three domainsD;, Dy and Dj3, while

distinguishing between the points= (r, z) in D for which

r+ (A + p)z < p holds, and those for which it does not.
Moreover, it can be shown that there exists a constant

(2]

vo > 1 which is such that for all: = (r, z) € S satisfying (3]
r+ (A4 p)z < pwg, the drift of H evaluated in such points
is positive:
DH(z) := B, H(X (1)) — H(z) > 0. 20
Define the seC := {z = (r,z) : r+ (A+u)z > pvo} N S.
Then anyz in the complementanC' := C¢ N S is such 5]
that H(x) > sup,, cc H(x1) andDH (x) > 0. Using (21)
and (22) we can apply Theorem 11.5.2 from [9] and con-
clude. [ ]
Let us sum up these results. We have shown that: [6]
« If a positive fraction of latent jobs disappear during
each time slot 4 > 0), then any threshold policy
stabilizes the system. 71
o On the other hand, if delaying any job results in
an increase of its requirement/workload by a positive
fraction (u < 0), thenthere exists no threshold policy
8]

that stabilizes the system.
The critical case for which, = 0 remains to be analyzed.

IV. CONCLUSION

In this paper, we considered a macroscopic model for [©]
electricity production and consumption. We assumed that
the allocation process is done in two steps: a first step, i
which demand and renewable supply are forecast (the day-
ahead market) and a second step, in which real-time demand
and real-time supply are matched as closely as possible (ﬂEl]
real-time market), under ramp-up and ramp-down consgaint
regarding the rate at which real-time supply can be varied.
We further assumed that all demand is adaptive and that
backlogged demand cannot be observed by the supplier.

We introduced two parameters:

« the average delay/\ after which frustrated demand is
expressed again, and

« the evaporation., the fraction of backlogged demand
that dissappears.

We showed that, if the evaporatign is positive, then
a threshold policy, targeting a fixed supply reserveat

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-136-6
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any time (under the ramp-up and ramp-down constraints),
manages to stabilize the system fory value ofr*.
We also showed that, in case of negative evaporation
there exists no threshold policy which stabilizes the gyste
Further research is needed to understand and control the
phenomenon of negative evaporation.
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