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Abstract—We study a stochastic model of electricity produc-
tion and consumption where appliances are adaptive and adjust
their consumption to the available production, by delaying their
demand and possibly using batteries. The model incorporates
production volatility due to renewables, ramp-up and ramp-
down time, uncertainty about actual demand versus planned
production, delayed and evaporated demand due to adaptation
to insufficient supply. We study whether threshold policies
stabilize the system. The proofs use Markov chain theory on
general state space.
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I. I NTRODUCTION

Recent results on modelling the future electricity markets
[11] suggest that they may lead to highly undesirable equi-
libria for consumers, producers or both. A central reason for
such an outcome might be the combination of volatility in
supply and demand, the delays required for any unplanned
capacity increase, and the inflexibility of demand which
leads to high dis-utility costs of blackouts. Further, the use of
renewable energy sources such as wind and solar increases
volatility and worsens these effects [8].

Flexible load is advocated in [6] as a mechanism to
reduce ramp-up requirements and adapt to the volatility of
electricity supply that is typical of renewable sources. A
deployments report [4] shows the feasibility of delaying
air conditioners using signals from the distributor. Adaptive
appliances combined with simple, distributed adaptation
algorithms were advocated in [5], [7]; they are assumed to
reduce, or delay, their demand when the grid is not able
to satisfy them. Some examples might be: e-cars, which
may have some flexibility regarding the time and the rate
at which their batteries can be loaded; heating systems or
air conditioners, which can delay their demand if instructed
to; hybrid appliances which use alternative sources in re-
placement for the energy that the grid cannot supply. If the
alternative energy source is a battery, then it will need to be
replenished at a later point in time, which will eventually
lead to later demand.

The presence of adaptive appliances may help address the
volatility of renewable energy supply, however, backlogged
demand is likely to be merely delayed, rather than canceled;
this introduces a feedback loop into the global system of

consumers and producers. Potentially, one might increase the
backlogged demand to a point where future demand becomes
excessive. In other words, one key question is whether it
is possible to stabilize the system. This is the question we
address in this paper.

To address this fundamental question, we consider a
macroscopic model, inspired by the model in [8]. We as-
sume that electricity supply follows a two-step allocation
process: first, in a forecast step (day ahead market) demand
and renewable supply are forecast, and the total supply
is planned; second, (real time market) the actual, volatile
demand and renewable supply are matched as possible. We
assume that the rate at which supply can be varied in the real
time step is subject to ramp-up and ramp-down constraints.
Indeed, it is shown in [3] that it is an essential feature of the
real time market. We modify the model in [8] and assume
that the whole demand is adaptive. While this is clearly
an exaggerate assumption, we do it for simplicity and as
a first step, leaving the combination of adaptive and non-
adaptive demand to a later research. We are interested in
simple, distributed algorithms, as suggested in [5], therefore,
we assume that the suppliers cannot directly observe the
backlogged demand; in contrast, they see only the effective
instantaneous demand; at any point in time where the supply
cannot match the effective demand, the backlogged demand
increases.

Our model is macroscopic, so we do not model in detail
the mechanism by which appliances adapt to the available
capacity; several possible directions for achieving this are
described in [5]. However we do consider two essential
parameters of the adaptation process. First, thedelay1/λ is
the average delay after which frustrated demand is expressed
again. Second, theevaporationµ is the fraction of back-
logged demand that disappears and will not be resubmitted
per time unit. The inverse delayλ is clearly positive; in
contrast, as discussed in Section II, it is reasonable to assume
that some adaptive appliances naturally lead to a positive
evaporation (this is the case for a simple model of heating
systems), but it is not excluded that inefficiencies in some
appliances lead to negative evaporation.

Within these modelling assumptions, the electricity sup-
pliers are confronted with a scheduling issue: how much
capacity should be bought in the real time market to match
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the adaptive demand. The effect of adaptation is to increase
the latent demand, due to backlogged demand returning into
the system. This is the mechanism by which the system
might become unstable. We consider a threshold based
mechanism as in [8]. It consists in targeting some fixed
supply reserve at any point in time; the target reserve might
not be met, due to volatility of renewable supply and of
demand, and due to the ramp-up and ramp-down constraints.

Our contribution is to show that if evaporation is positive,
then any such threshold policy does stabilize the system.
In contrast, if evaporation is negative, then there exists no
threshold policy which stabilizes the system. The case where
evaporation is exactly equal to 0 remains unsolved.

Thus, our results suggest that evaporation plays a central
role. Simple adaptation mechanisms as described in this
paper might work if evaporation is positive (as one may
perhaps generally expect), but will not work if evaporation
is negative, i.e. if the fact that demand is backlogged implies
that a higher fraction of demand returns into the system.
This suggests that future research be done in order to gain
a deeper understanding of evaporation, whether it can truly
be assumed to be positive, and if not, how to control it.

We use discrete time, for tractability. We use the theory of
Markov chains on general state spaces in [9]. In Section II
we describe the assumptions and the model, and relate our
model to prior work. In Section III we study the stability
of the system under threshold policies. We conclude in
Section IV.

II. M ODEL AND ASSUMPTIONS

A. Assumptions and Notation

We use a discrete model, wheret ∈ N represents the
time elapsed since the beginning of this day. The time unit
represents the time scale at which scheduling decisions are
done, and is of the order of the second.

The supply is made of two parts: the planned supply
Gf (t), forecast in the day-ahead market, and the actual
supplyGa(t), which may differ, due to two causes. First, the
forecasted supply may not be met, due to fluctuations, for
example in wind and sunshine. Second, the suppliers attempt
to match the demand by adding (or subtracting) some supply,
bought in the real time market. We assume that this latter
term is limited by ramp-up and ramp-down constraints. We
model the actual supply as

Ga(t) = G(t− 1) +Gf (t) +M(t), (1)

whereM(t) is the random deviation from the planned supply
due to renewables,G(t−1) is the supply decision in the real
time market. We viewGa(t) as deterministic and given(it
was computed yesterday in the day-ahead market),M(t)
as an exogenous stochastic process, imposed by nature, and
G(t− 1) as a control variable.

We call Da(t) the “natural” demand. It is the total
electricity demand that would exist if the supply would

be sufficient. In addition, there is, at every timet, the
backlogged demandB(t), which results from adaptation:
B(t) is the demand that is expressed at timet due to
a previous demand being backlogged. The total effective
demand, or expressed demand, is

Ea(t) = Da(t) +B(t). (2)

We model the effect of demand adaptation as follows.

B(t) = λZ(t), (3)

Z(t+ 1) = Z(t)−B(t)− µZ(t) + F (t), (4)

F (t) = [Ea(t)−Ga(t)]+. (5)

We used the convenient notation(a)+ := max(0, a).
In the above equations,F (t) is the frustrated demand,

i.e. the denied satisfaction at timet. Eq. (5) expresses that,
through adaptation, the demand that is served is equal to the
minimum of the actual demand and the supply. The variable
Z(t) is the latent backloggeddemand; it is the demand that
was delayed, and might later be expressed. It is incremented
by the frustrated demand.

The frustrated demand is expressed with some delay; we
model this with Eq. (3), whereλ−1 is the average delay, in
time slots.

The evolution of latent backlogged demand is expressed
by Eq. (4). The expressed demandB(t) is removed from the
backlog (some of it may return to the backlog, by means of
Eq. (5) at some later time). The remaining backlog may
evaporate at a rateµ, which captures the effect on total
demand of delaying some demand. Delaying a demand may
indeed result in a decreased backlogged demand, in which
case the evaporation factor is positive. For example this
occurs if we delay heating in a building with a heating
system that has a constant energy efficiency; such a heating
system will request more energy in the future, but the
integral of the energy consumed over time is less whenever
some heating requests are delayed. In this case, positive
evaporation comes at the expense of a (hopefully slight)
decrease in comfort (measured by room temperature). In
other cases, though, we may not exclude that evaporation
be negative. This may occur for example with heat pumps
[1].

As in [8], we assume that the natural demand can be
forecast with some error, so that

Da(t) = D(t) +Df (t), (6)

where the forecasted demandDf (t) is deterministic and
D(t), the deviation from the forecast, is modelled as an
exogenous stochastic process. We assume that the day ahead
forecast is done with some fixed safety marginr0, so that

Gf (t) = Df (t) + r0. (7)
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B. The Stochastic Model

We model the fluctuations in demandD(t) and renewable
supplyM(t) as stochastic processes such that their differ-
enceM(t)−D(t) is an ARIMA(0, 1, 0) Gaussian process,
i.e.

(M(t+ 1)−D(t+ 1))− (M(t)−D(t)) = N(t+ 1) (8)

whereN(t) is white Gaussian noise, with varianceσ2. This
is the discrete time equivalent of Brownian motion, as in
[8].

Let R(t) be the reserve, i.e the difference between the
actual production and the expressed demand, defined by

R(t) = Ga(t)−Ea(t) = G(t−1)−λZ(t)+r0+M(t)−D(t),
(9)

and letH(t) be the increment in supply bought on the real
time market, i.e.

H(t) = G(t)−G(t− 1). (10)

Putting all the above equations together, we obtain the
system equations:

R(t+ 1) = R(t) +H(t) +N(t+ 1)− λ (Z(t+ 1)− Z(t)) ,

Z(t+ 1) = (1− λ− µ)Z(t) + 1{R(t)<0}|R(t)|,

Thus we can describe our system by a two-dimensional
stochastic processX(t) = (R(t), Z(t)), with t ∈ N.

The sequenceH(t) is the control sequence. It is con-
strained by theramp-up and ramp-down constraints:

−ξ ≤ H(t) ≤ ζ, (11)

whereξ > 0 andζ > 0 are some positive constants.
We assume a simple, threshold based control, which

attempts to make the reserve equal to some threshold value
r∗ > ζ; therefore

H(t) = max (−ξ,min (ζ, r∗ −R(t))) . (12)

In summary, we have as model the stochastic sequence
X = (X(t))t∈N defined by

R(t+ 1) = R(t)− λ1{R(t)<0}|R(t)|+ λ(λ+ µ)Z(t)

+ (ζ ∧ (r∗ −R(t))) ∨ (−ξ) +N(t+ 1), (13)

Z(t+ 1) = 1{R(t)<0}|R(t)|+ (1− λ− µ)Z(t), (14)

whereN is an iid white Gaussian noise sequence of variance
σ2. Note thatX is a Markov chain on the state spaceS =
R× R

+.

C. Related Models

Let us now discuss some similar models which have been
considered in the literature.

In [9], the authors consider the so-called Linear State
Space model (LSS), which introduces ann-dimensional
stochastic processX = {Xk}k, with Xk ∈ R

n. For matrices
F ∈ R

n×n, G ∈ R
n×p, and for a sequence of i.i.d. random

variables of finite mean taking values inRp, the process
evolves as

Xk = FXk−1 +GWk, k ≥ 1. (15)

Our model (13)-(14) is in fact a superposition of three such
LSS models, depending on the current state of the Markov
chain. The challenge of showing that our model is stable
comes from the fact that in the part of the state space in
whichR(t) < 0, the corresponding LSS does not satisfy the
stability condition (LSS5) of [9] (which requires that the
eigenvalues ofF be contained in the open unit disk ofC).

In [10] a slightly different model for capturing elasticityof
demand is proposed. More specifically, the authors consider
a scenario in which a deterministicallyboundedamount of
demand arrives at each time step, while the supplier decides
whether to buy an additional amount of energy from an
external source at a certain cost. Unsatisfied demand is
backlogged. A threshold policy is analyzed and found to
be stable (the size of the backlog is found to be determin-
istically bounded) and optimal. Pricing decisions are also
explored. The main differences with the present work are
the following:

• Additional parameters which model delay and loss of
backlogged demand (i.e.λ andµ) enrich our model’s
expressivity.

• We consider potentially unbounded demand, modeled
as a0-mean Gaussian random variable, which makes
proving stability more challenging.

• No results on pricing and cost-optimality are included
in the present work.

The continuous time model used in [2] seeks to capture
the presence of two types of energy sources, primary and an-
cillary, the latter being less desirable (i.e. more costly)than
the former, both subject to (different) ramp-up constraints.
A threshold policy is again discussed in the context of rigid
demand, which is simply dropped if not enough energy is
available. The analyzed Markov chain is a two-dimensional
process having on the first coordinate the quantity of energy
used from the ancillary source in order to satisfy as much
demand as possible, and on the second coordinate the reserve
(i.e. energy surplus).

III. SYSTEM STABILITY UNDER A THRESHOLDPOLICY

For presentation ease, we consider like in [8] the caseξ =
∞. In other words, we relax the ramp-down constraint, i.e.
the surplus energy can be disposed of easily. In the extended
version of the paper [1] we show that a finite value ofξ does
not alter the results. Thus, (11) becomes:

H(t) ≤ ζ, (16)

and the threshold policy (12) writes as

H(t) = min (ζ, r∗ −R(t)) . (17)
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Let us study how the system stability of (13)-(14) depends
on the evaporation parameterµ.

Define the following three domains:

D1 = (−∞, 0)×R+,

D2 = [0, r∗ − ζ)×R+,

D3 = [r∗ − ζ,+∞)×R+.

Then, denoting

X(t) =

[

R(t)
Z(t)

]

, N0(t) =

[

N(t)
0

]

, ζ0 =

[

ζ
0

]

,

r∗0 =

[

r∗

0

]

, A1 =

[

1 + λ λ(λ+ µ)
−1 1− λ− µ

]

,

A2 =

[

1 λ(λ+ µ)
0 1− λ− µ

]

, A3 =

[

0 λ(λ+ µ)
0 1− λ− µ

]

,

the process (13)-(14) rewrites in matrix form:

X(t+ 1) = N0(t+ 1) +







A1X(t) + ζ0, X(t) ∈ D1,
A2X(t) + ζ0, X(t) ∈ D2,
A3X(t) + r∗0 , X(t) ∈ D3.

(18)
The main reason for which the analysis of system stability

is challenging is the fact that bothA1 andA2 admit1 as an
eigenvalue.

The first result of this section can be stated in the form
of the following

Theorem 1. If µ > 0, the Markov chain(13),(14) is positive
Harris and ergodic. For any initial distributionρ, the chain
converges to its unique invariant probability measureπ in
total variation norm, i.e. denoting the transition probability
by P,

‖

∫

S
ρ(dx)Pn(x, ·)− π(·)‖ →n→∞ 0.

Recall that the total variation norm of a signed measure
ν is defined as

‖ν‖ := sup
f :|f |≤1

|ν(f)|.

The proof uses the theory of general state space Markov
chains. The following lemmas are instrumental in proving
the result. For brevity, we only provide proof outlines, while
the complete proofs can be found in the extended version [1].

Lemma 1. If 1− λ− µ < 1, then there exists a measureϕ
on S such that the Markov chain(13),(14) is ϕ-irreducible.

Proof: (Outline) Fix some finite closed intervalI and
somea > 0, and consider the setE = I × [0, a].

Consider the measureϕE defined as follows: for any
Borel setA, ϕE(A) := ν(A ∩ E), where ν denotes the
Lebesgue measure onR2.

We show that our chain isϕE-irreducible, that is, ifA ⊂ S
is such thatϕE(A) > 0, then for allx ∈ S, there is a strictly

z

rB

r∗ − ζ

X(T )

X(T − 1)

X(2)

. . .

X(0) = x

D1 D2 D3

X(1)

Figure 1. Typical trajectory

positive probability that the timeτA of return inA is finite:
L(x,A) = P(τA < +∞) > 0.

We consider any measurable setB ⊂ E. By Proposition
4.2.1 (ii) from [9], it suffices to show that there exists a
finite T > 0, such that the probability of hittingB in T
steps starting from any pointx ∈ S is lower-bounded by a
factorα(B, T, x) > 0 (which might depend onB, T andx)
times the irreducibility measureϕE of B:

P
T (x,B) ≥ αϕE(B).

Indeed, ifϕE(B) > 0, then necessarilyPT (x,B) > 0, and
hence,L(x,B) > 0, sinceT is finite.

The key element in the proof is the observation that, at
each time step, theR coordinate positions the Markov chain
in regionD3 with a strictly positive probability due to the
Gaussian sequence(N(t))t. Furthermore, in this region the
Z coordinate decreases geometrically at rate1−λ−µ. This
property enables us to exhibit trajectories having a finite
number of steps and leading from any pointx to the setB.
Such a trajectory is shown in Figure 1.

Lemma 1 shows that for any compact set of strictly posi-
tive Borel measure of the state space, its hitting time starting
from any point is finite with strictly positive probability.

A set C is said to beνT -small for some non-trivial
measureνT and a positive integerT , if for all x ∈ C,
the probability of reaching any measurableB in T steps
is lower-bounded asPT (x,B) ≥ νT (B).

Furthermore, a setC is petite if there exists a distribution
h on the positive integers and a non-trivial measureνh, such
that for anyx ∈ C, and for any Borel setB, the transition
kernel of thesampled chainhas the following property:

Kh(x,B) :=
∑

t≥0

h(t)Pt(x,B) > νh(B).

A νT -small set is implicitlyδT -petite, whereδT is the Dirac
distribution.
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Lemma 2. For any setC = J × [0, b], with J a finite
closed interval andb > 0, there existsT0 > 0 and non-
trivial measures(νT )T≥T0

such thatC is νT -small for all
T ≥ T0.

Proof: (Outline) In Lemma 1 we essentially proved that
we can reach any bounded Lebesgue-measurable setB of
positive measure from any statex in a finite number of steps.
In order to give an upper bound on the required number of
steps, we defined the setE = I × [0, a] and we introduced
the measureϕE , which is defined as the Lebesgue measure
of the set obtained via intersection withE.

In order to prove smallness, we need to eliminate the
dependence of the number of stepsT on the specific starting
point x ∈ C and on the destinationB. Since we rely on
the deterministic geometric decrease of the coordinateZ
in region D3, a choice forB which is such that all the
points inB ∩ E have aZ-coordinate less than a certainδ,
automatically leads to a logarithmic number of steps inδ
(thus, arbitrarily large, forδ close to0).

Instead, we pick a finite closed intervalI and constants
∆ > δ > 0, and we define the setA := I × [δ,∆]. Then it
can be shown that there exists a minimum number of steps
T0 depending onA andC, and anα(T ) > 0 which does
not depend onB, or the starting pointx, but which does
depend onT , such that for measures

νT := α(T )ϕA,

the setC is νT -small, for allT ≥ T0.
We give two direct consequences of the two above lem-

mas.
Since any setC = J × [0, b] is bothνT - andνT+1-small

for someT > T0, it follows that

Corollary 1. The Markov chain(13),(14) is aperiodic.

Additionally,

Corollary 2. Any compact subset of the state space is petite.

We are now ready to give the following
Proof: (of Theorem 1)

We prove that the functionH : R×R+ → R+,

x =

[

r
z

]

7→ H(x) = (r + λz)2 + (r + (λ+ µ)z)2 (19)

is a Lyapunov function for the system (13)-(14). It can be
shown thatH is unbounded off petite sets, that is for any
n < ∞ the sublevel setCH(n) := {y : H(y) ≤ n} is
small. Furthermore, there exist constantsa, b, c > 0 and a
setC = [−a, a]× [0, b] such that the drift

DH(x) := ExH(X(1))−H(x)

satisfies
DH(x) ≤ −1 + c1C .
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Figure 2. 500 iterations of the Markov process (13)-(14) forζ = 1, r∗ =

10, σ = 5, λ = 0.3, µ = 0.1

Separate cases need to be considered for each of the three
regionsD1, D2 andD3.

A consequence of this result is that, by Theorem 9.1.8
of [9] and by Corollary 2, which shows that the setC
is small, the chain is Harris recurrent. Furthermore, by
Theorem 10.0.1 of [9], it admits a unique invariant measure
π. Finally, by Theorem 13.0.1 of [9] and by Corollary 1, we
get the finiteness ofπ and we conclude.

This first result signifies that for positive evaporation
µ > 0, the simple threshold policy (17) stabilizes the
system. A typical simulated trajectory is shown in Figure 2.
Most points are found around the state(r∗, 0), with some
excursions in domainD1 due to the variability of the
demand.

The second result of this section concerns the case for
which we have negative evaporationµ < 0. It is stated as
the following

Theorem 2. If µ < 0, the Markov chain(13)-(14) is non-
positive.

Proof: (Outline) Notice that ifµ ≤ −λ, then theZ
coordinate of the Markov chain cannot decrease. Hence the
chain is trivially unstable (it is not evenϕ-irreducible).

In the case−λ < µ < 0, we turn again to [9] for proving
the claim. In this case the Markov chain (13)-(14) isϕ-
irreducible. We need to find a functionH which satisfies
the hypothesis of Theorem 11.5.2 from [9] to show non-
positivity.
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DefineH : R×R+ → R+,

H(r, z) =

{

log
(

r+(λ+µ)z
µ

)

if r + (λ+ µ)z ≤ µ,

0 otherwise.
(20)

Then, it can be shown thatH has finite increments in any
point of the state space, namely that

sup
x∈S

Ex|H(X(1))−H(x)| < +∞. (21)

In order to show this property ofH, we need to consider
points x in all three domainsD1, D2 and D3, while
distinguishing between the pointsx = (r, z) in D1 for which
r + (λ+ µ)z ≤ µ holds, and those for which it does not.

Moreover, it can be shown that there exists a constant
v0 > 1 which is such that for allx = (r, z) ∈ S satisfying
r+(λ+µ)z ≤ µv0, the drift ofH evaluated in such points
is positive:

DH(x) := ExH(X(1))−H(x) > 0. (22)

Define the setC := {x = (r, z) : r+ (λ+ µ)z ≥ µv0} ∩S.
Then anyx in the complementarȳC := Cc ∩ S is such
that H(x) > supx1∈C H(x1) andDH(x) > 0. Using (21)
and (22) we can apply Theorem 11.5.2 from [9] and con-
clude.

Let us sum up these results. We have shown that:

• If a positive fraction of latent jobs disappear during
each time slot (µ > 0), then any threshold policy
stabilizes the system.

• On the other hand, if delaying any job results in
an increase of its requirement/workload by a positive
fraction (µ < 0), then there exists no threshold policy
that stabilizes the system.

The critical case for whichµ = 0 remains to be analyzed.

IV. CONCLUSION

In this paper, we considered a macroscopic model for
electricity production and consumption. We assumed that
the allocation process is done in two steps: a first step, in
which demand and renewable supply are forecast (the day-
ahead market) and a second step, in which real-time demand
and real-time supply are matched as closely as possible (the
real-time market), under ramp-up and ramp-down constraints
regarding the rate at which real-time supply can be varied.
We further assumed that all demand is adaptive and that
backlogged demand cannot be observed by the supplier.

We introduced two parameters:

• the average delay1/λ after which frustrated demand is
expressed again, and

• the evaporationµ, the fraction of backlogged demand
that dissappears.

We showed that, if the evaporationµ is positive, then
a threshold policy, targeting a fixed supply reserver∗ at

any time (under the ramp-up and ramp-down constraints),
manages to stabilize the system forany value ofr∗.

We also showed that, in case of negative evaporationµ,
there exists no threshold policy which stabilizes the system.

Further research is needed to understand and control the
phenomenon of negative evaporation.
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