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Abstract—An increasing number of retail energy markets
exhibit price fluctuations and provide home users the oppor-
tunity to buy energy at lower than average prices. However,
such cost savings are hard to realize in practice because they
require human users to observe the price fluctuations and shift
their electricity demand to low price periods. We propose to
temporarily store energy of low price periods in a home battery
and use it later to satisfy user demand when energy prices are
high. This enables home users to save on their electricity bill by
exploiting price variability without changing their consumption
habits. We formulate the problem of minimizing the cost of
energy storage purchases subject to both user demands and prices
as a Markov Decision Process and show that the optimal policy
has a threshold structure. We also use a numerical example to
show that this policy can lead to significant cost savings, and we
offer various directions for future research.

Index Terms—Battery storage, dynamic pricing, dynamic pro-
gramming, energy storage, threshold policy.

I. I NTRODUCTION

Wholesale energy prices exhibit significant fluctuations dur-
ing each day due to variations in demand and generator
capacity. Home users are traditionally not exposed to these
fluctuations but pay a fixed retail energy price, as shown in
Figure 1(a). Economists have long argued to remove the fixed
retail prices in favor of prices that change during the day. Such
dynamic pricing reflects the prices of the wholesale market and
has been predicted to lead to lower demand peaks and lower
average level and volatility of the wholesale price [5].

Dynamic pricing has been enabled by recent smart-grid
technologies such as smart meters. A first example of dy-
namic pricing that is being increasingly adopted is time-of-use
pricing (Figure 1(b)). Such schemes typically provide two or
three price levels (e.g., ‘off-peak’, ‘mid-peak’ and ‘on-peak’)
where the level is determined by the time of day. The price
levels are determined well in advance and are typically not
changed more than once or twice per year. A second example
of dynamic pricing is real-time pricing (Figure 1(c)) wherethe
retail energy price changes hourly or half-hourly to reflectthe
price on the wholesale energy market.

Dynamic pricing creates an opportunity for users to reduce
energy costs by exploiting the price fluctuations. However,in
practice users show only a minor shift in their demand to
match the energy prices [2]–[4], [8]. A possible remedy is to

(a) fixed pricing

(b) time-of-use pricing

(c) real-time pricing

Figure 1. The wholesale energy price (gray) and various approaches to retail
pricing (black).

equip homes with a battery that can be used for home energy
storage. This battery can be charged when the energy price is
low and the stored energy can then be used to protect against
high prices. This allows users to benefit from the varying
energy price without having to adjust their usage patterns
accordingly. Energy can be stored both by a dedicated battery,
or by using the battery pack of an electric car [9]. In the past
such setup was not economically viable due to the high cost
of batteries, but current developments have brought storage
applications within reach.
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In this paper, we address the problem of organizing home
energy storage purchases to minimize long term energy costs
under variable demands and prices. This problem involves
deciding whether to satisfy demand directly from the grid or
from the battery, as well as up to what level to charge or
discharge the battery. The resulting optimization problemis
difficult to handle due to the stochastic nature of price and
demand and due to the fact that we aim to minimize the
long-term costs. In our approach, we model the problem as
a Markov Decision Process and we show that there exists a
threshold-based stationary cost-minimizing policy. Whenthe
battery level is below this threshold, the battery is charged up
to it, while the battery is discharged when above the threshold.
By comparing the costs incurred under this policy with the cost
of satisfying the demand directly from the grid, we can show
that energy storage may lead to significant cost savings. In the
current paper we provide an outline of this approach, which
will be discussed in more detail in a follow-up paper.

To the best of our knowledge, previous work on home
energy storage is limited and does not propose optimal control
solutions subject to stochastic price and demand fluctuations.
Home energy storage has been studied for the case ofarbitrage
i.e., buying energy when it is inexpensive, and selling it later
to the grid for a higher price [6]. This problem has been
studied assuming no demands and that prices are known in
advance in a finite horizon setting. These assumptions allow
deterministic optimization problem formulations which can be
solved using linear programming techniques [1], [7]. However,
these formulations do not take into account the stochasticity
in prices and demands and do not allow for long-term cost
optimization. Our approach can be readily adapted to an
arbitrage problem in an infinite-horizon setting, where the
behavior of the price process may be stochastic. A similar
threshold-based optimal policy can be shown to hold in this
case.

We also recently became aware of a parallel work that
uses a model similar to ours to investigate control of energy
storage in the context ofdata centers [10]. The model in [10]
assumes that the battery is fully efficient and the proposed
scheduling algorithm is a sub-optimal heuristic, whose gap
from optimality increases as storage size decreases. In contrast,
our model incorporates battery inefficiencies and we show that
the optimal scheduling policy is threshold-based.

The rest of the paper is structured as follows. In Section II
we introduce the model and describe the various decision
variables. In Section III we propose an optimal policy and
apply this policy to a numerical example. Section IV gives
some concluding remarks and directions for future research.

II. M ODEL OUTLINE

Consider a residential user with certain energy requirements
and a battery that can be used for energy storage. Time is
slotted, and we denote byB(t) the buffer level (i.e., the state of
charge) of the battery at timet, t = 0, 1, . . . . Let B̄ represent
the maximum buffer level, soB(t) ∈ [0, B̄]. In each time slot
t, some demandD(t) arises, and we may purchase energy

at a price ofP (t) per unit. The demand has finite support
D(t) ∈ [0, D̄], as does the priceP (t) ∈ [0, P̄ ].

Denote byΩ = [0, D̄]×[0, P̄ ] the set of possible realizations
of demand and price, and for anyx ∈ Ω, denote byd(x) and
p(x) the corresponding price and demand, respectively. We
assume that the demand and price level may be correlated,
and evolve according to some stationary process. Specifically,
we denote byfx(y) the probability density function of moving
from statex to statey in the next slot, for anyx, y ∈ Ω.

The battery may not be completely efficient, and its per-
formance is affected by the charging efficiencyηc ∈ (0, 1]
and discharging efficiencyηd ∈ (0, 1]. Energy purchased to
charge the battery is reduced by a factorηc, and only a fraction
ηd of the discharged energy is converted into electricity. In
addition to satisfying the demand from the battery, we also
allow demand to be met directly from the grid, bypassing the
battery.

Let A1(t) denote the amount of energy purchased directly
from the grid in slott, A2(t) the amount of energy bought to
charge the battery, andA3(t) the energy from the battery used
towards satisfying demand , see Figure 2.

HomeGrid battery

A1(t)

A2(t) A3(t)

D(t)

Figure 2. A graphical representation of the model.

We assumeA1(t), A2(t), A3(t) ≥ 0, and since all demand
must be met, we require that

D(t) = A1(t) + ηdA3(t).

The battery has a finite charging rate, so the amount of energy
that can be used for charging the battery is bounded asA2(t) ≤
Ā, for someĀ ∈ [0, B̄].

The buffer level of the battery evolves according to

B(t + 1) = B(t) + A2(t)ηc − A3(t),

and the energy costs in slott is given by

g(t) = (A1(t) + A2(t))P (t).

Our goal is to choose in each slotA1(t), A2(t) andA3(t) as
to minimize the total discounted cost

g =

∞
∑

t=0

g(t)αt, (1)

with 0 < α < 1 the discount factor. Note that the total
discounted cost is finite, since the per-slot costs are bounded.

Before we consider in more detail the infinite-horizon
problem (1), we first note that it is never optimal to charge
and discharge the battery in the same slot, i.e., we have
A2(t)A3(t) = 0, t = 0, 1, . . . . This is intuitively clear,
because charging and discharging the battery in the same slot
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corresponds to routingmin{A2(t), ηdA3(t)} energy from the
grid to the user, through the battery. Because of the battery
inefficiency it is beneficial to instead circumvent the battery,
and satisfy the demand directly from the grid.

This observation simplifies the minimization problem signif-
icantly, by reducing the number of decision variables. Specifi-
cally, denote by∆(t) the buffer level difference between slott

and t + 1, i.e.,

B(t + 1) = B(t) + ∆(t).

Then, in view of the restriction on simultaneous charging and
discharging:

A1(t) = D(t) + ∆(t)ηd1{∆(t)<0},

A2(t) = ∆(t)η−1
c 1{∆(t)>0},

A3(t) = −∆(t)ηd1{∆(t)<0}.

Thus, the choice for∆(t) fixes A1(t), A2(t) andA3(t), and
the model reduces to a single-variable decision problem. The
per-slot costs may be rewritten in terms of∆(t) as

g(t) = (D(t) + (∆(t))+η−1
c + (∆(t))−ηd)P (t),

with x+ = max{x, 0} andx− = −max{−x, 0}.

III. T HE OPTIMAL POLICY

In this section, we discuss how to choose in each slot the
∆(t) that minimizes the total discounted costs. To this end, we
rewrite our model as a Markov decision process. We denote by
Jx(b) the minimal total discounted costs, starting from state
x ∈ Ω, and buffer levelb ∈ [0, B̄]. The cost function satisfies
the Bellman equation

Jx(b) = inf
δ∈Ux(b)

{γx(δ) + αGx(b + δ)},

with γx(δ) = (d(x) + δ+η−1
c + δ−ηd)p(x) the immediate

costs,Gx(b′) =
∫

y∈Ω

fx(y)Jy(b′)dy, andUx the control set

that contains all allowed decisions for the difference in buffer
level. It is readily seen that

Ux(b) = [U−
x

(b), U+
x

(b)],

whereU−
x

(b) = −min{b, d(x)} andU+
x

(b) = min{B̄−b, Ā}.
In the remainder we restrict ourselves to the caseηc =

ηd = 1, although the optimal policy for the more general case
is similar to the policy described below for the completely
efficient scenario.

The optimal policy specifies for each pricep = p(x) a
buffer thresholdβ(p) ∈ [0, B̄]. If b ≤ β(p), then the optimal
policy is to charge the buffer as close toβ(p) as the control
set allows. Ifb ≥ β(p), the battery should be discharged up to
β(p) within the boundaries of the control set. Formally stated,
the cost-minimizing choice for the buffer difference∆∗

x
(b) is

given by

∆∗
x
(b) =

{

min{β(p) − b, U+
x

(b)}, b ≤ β(p),
max{β(p) − b, U−

x
(b)}, b ≥ β(p).

(2)

β(p)

B(t)
β(p) − Ā

B∗(t + 1)

β(p) + D(t)

Figure 3. The structure of the optimal policy as a function ofB(t).

This policy is illustrated in Figure 3, which showsB∗(t+1) =
B(t) + ∆∗

x
(b) plotted againstB(t), for some price levelp.

According to (2), whenB(t) ≥ β(p), the battery will be
charged, and all demand will be met from the grid, soA1(t) =
D(t). Conversely, whenB(t) > β(p) the demand is (partially)
met from the battery, and we haveA1(t) = (D(t) − (B(t) −
β(p)))+ andA3(t) = min{D(t), B(t) − β(p)}.

The full analysis of the optimal policy (2) will appear in a
subsequent paper.

A. A numerical example

We now present an example of energy storage under time-
of-use pricing. We numerically determine the thresholdsβ(p)
through policy iteration, and use these to study the cost savings
obtained from energy storage. The example below makes
various simplifying assumptions on the demand and price
processes. However, it clearly demonstrates the functionality
of the optimal storage policy and the gains obtained from using
energy storage.

Each day is divided into three periods of equal length, with
corresponding prices (in Euro/kWh)p1 = 0.04, p2 = 0.06 and
p3 = 0.07. The demands (in kWh) are i.i.d. (independent and
identically distributed), with the demand in periodi, Di having
the distributionDi = (di + X)+, i = 1, 2, 3, with d1 = 5,
d2 = 6, d3 = 7 and X ∼ N (0, 1). We assume that̄A = B̄,
so there are no restrictions on charging the battery, and we
set α = 0.99. We discretize the state space into sections of
0.5 kWh, and use policy iteration to compute the thresholds
β1, β2 andβ3. Figure 4 shows these thresholds plotted against
B̄. Note thatβ3 = 0, as is to be expected for the threshold
corresponding to the highest price.

We then simulate the demand process for105 slots, and
compute the total discounted costs over this period, both
with and without battery storage. Figure 5 shows relative
cost savings up to40% obtained from energy storage, plotted
againstB̄. We see that the cost savings initially increase with
B̄, but converge when the thresholds stabilize.
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Figure 4. The optimal thresholds as a function ofB̄.
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Figure 5. The cost savings as a function ofB̄.

IV. CONCLUSIONS AND OUTLOOK

We studied the control of residential energy storage under
price fluctuations. We introduced a model for the battery
operation and argued that the cost-minimizing storage policy
is threshold-based. We showed by means of a small numerical
example that residential energy storage can lead to significant
savings in electricity cost.

We believe that this work opens up several avenues for
future research. First, it is necessary to analytically show the
existence of optimal threshold policies. Second, the compu-
tation of the optimal thresholds for more complex scenarios
is challenging. Analytic expressions may be hard to derive
and the large state space may make policy iteration com-
putationally infeasible. Thus, it might be necessary to use
approximations and bounds for the optimal threshold levels
or use simple heuristics that provide reasonable performance.

It would also be interesting to incorporate in the model
the battery lifetime and the costs of buying and replacing the
battery. Battery lifetime benefits from longer sustained periods
of charging and discharging. On one hand, this may complicate
analysis because the optimal policy may depend on whether
the battery was charged or discharged in previous slots. On
the other hand, it may give rise to simple heuristics where the
battery is alternatively fully charged and discharged. Taking
into account the costs for buying and replacing the battery
introduces the problem of battery dimensioning. Smaller bat-
teries are cheaper but may provide less opportunity to exploit

price fluctuations.
Finally, we may ask ourselves what will happen to the

energy market when a significant fraction of users adopt
energy storage. A possible outcome is that the resulting steady
demand process will cause convergence of the energy market
resulting in smaller price variations. While this is good from
the perspective of both energy producers and users without
energy storage, a less volatile price process will decreasethe
possibilities for exploiting price fluctuations for users with
storage capacities. Consequently, the cost savings obtained
from energy storage may decrease beyond the break-even
point. The interplay between energy storage and the energy
market is an interesting topic for future research.
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