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Abstract—Monitoring energy consumption at appliance level
is a necessary condition for many energy efficient applications.
In this paper, we have identified non-intrusive load monitoring
(NILM) as a transitional technology, and competing NILM
methods must be evaluated not only on performance, but
also economical feasibility and user usability of now. Since
in the event of maturing an IoT infrastructure, there would
be no need for NILM. In this paper, we proposed a NILM for
now, a complete solution with novel features: i) pre-processing
for effective data, thus more accurate and faster training for
user. ii) generative modelling for appliance configuration states,
thus without the need for exhaustive training, and iii) LETE
algorithm for a simple stateful enhancement. Experiments show
the proposed methodology perform well even under only the
most simplistic assumptions.
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I. INTRODUCTION

In an effort to become a smarter energy world, the
movement towards smart grid infrastructure along with
the advances in information communication technologies,
there is a need for consumer energy management system.
Energy management on the consumer side can be monitor-
ing, planning, control consumer’s energy consumption. To
reduce waste in energy consumption, building occupants and
facilities managers need to better understand how buildings
use energy, broken down over space and time through
appliance monitoring [1]. Today, however, energy usage
statistics are usually available only in the aggregate and
monthly time resolution or sometimes in 15 minute intervals
with the advance metering infrastructure. Disaggregated
energy usage statistics are more useful than aggregated
when implementing new efficient energy services, e.g., bill
disaggregation, high bill resolution, incentive plan based on
individual appliances, bad user usage or appliance operation
diagnostics [2].

This ideal paradigm of smarter energy aligns with the
developments towards the Internet of Things (IoT) [3], i.e.,
all things or significant appliances will be connected to the
internet with the capability to upload energy usage statistics.
There are few obstacles against the disruptive technology

of IoT: i) legacy systems, i) cost of communication devices
and iii) infrastructure including network protocols to service
applications. For now, the cost of adding additional sensors
to appliance individually is not feasible, economically, for
most appliances especially at home. Thus there exists a
window of opportunity, before we reach the confirmation
stage of IoT for smarter energy applications, to develop
a transition technology, viz. the disaggregation of energy
usage consumption using algorithms, devices, deployments
methods, etc. This dis-aggregating of energy usage is non-
intrusive load monitoring (NILM).

There are several approaches on formulating this NILM
problem by making different assumptions on the signal
properties, environment, application scenario, etc. Here we
first make the distinction between NILM and appliance
recognition type approaches. These approaches aim to rec-
ognize which unknown appliance is operating and does not
aim to do disaggregation. Disaggregation is important to
reduce cost using less sensors and communication devices.
Aggregated load can be analyzed on the transient state or
power line noise or the steady-state. Steady-state can also be
divided into enveloped-based or harmonic-based. However
methods that analyze on the transient or harmonics or noise
require a much higher sampling rate from 1 kHz to even
1 MHz, which require either one or both of the following
support which are not quite yet the state of the art: i) higher
communication bandwidth infrastructure to transmit larger
data, ii) additional micro controller chip on the meters to
perform more complex NILM. When such a support is ready,
NILM is probably not needed.

In additional to monitoring from appliance load, it is also
possible other modes of (ambient) signals, such as light,
acoustic, vibration, motion, RIFD tags electro-magnetic in-
terference, etc. The assumption for using these multi-modal
sensors, is that these ambient sensors are already in everyday
house-hold or commercial buildings for various ubiquitous
computing applications. We do not believe this assumption
is a viable candidate as a transitional technology before the
full maturation of IoT. Since i) the sensing, computation,
network structure required for such ubiquitous sensing is

81

ENERGY 2011 : The First International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-136-6



Pre-processing

Statistical Analysis

More Appliances?

Generative Modelling

Build Classifier

Pre-processing

Classification

Ambiguity?

LETE

Appliances State

Training Monitoring

Figure 1: Overview of the proposed methodology for the training
stage and the monitoring stage.

essentially a mature IoT infrastructures. Furthermore ii)
under such assumptions, appliance of significance would
need to be controlled or automated intelligently therefore
communication device for the downlink is a necessary
condition as well as the uplink. Some methods leverage
the knowledge of an given environment, e.g., Jiang et al.
proposed to disaggregate specific appliance load under a
tree structure [1]. This requires domain experts to customize
sensor deployment with specific load distributions, which
would not be economically-feasible for most users. Schoofs
proposed a niche solution to leverage networked business
equipment through LAN network [4].

To attract users to NILM, methodologies should be in-
expensive, simple, ready to use and provide the services
that are demanded. This paper is structured as follows: in
Section II, we present a total solution with the following
contributions: i) pre-processing effective data, ii) generative
appliance model for simpler training and iii) least effort tran-
sition enhancement (LETE) for more accurate and stateful
monitoring. Experiments and related work are discussed in
Section III and Section IV. We conclude in Section V.

II. METHODOLOGY

In this section, we discuss the methodology of the pro-
posed NILM solution as can be seen in Fig. 1(a) and
(b) for the training and monitoring stage respectively. In
the training stage, the energy usage statistics, namely the
load, is pre-processed before the statistical modelling is
carried out. An individual appliance model is next computed
for all appliances. Finally a statistical generative appliance
configuration model is formed using a naı̈ve Bayesian clas-
sifier. Pre-processing is also done during the monitoring
stage. Classification of the appliance configuration states
(ACS) is done next. A Least Effort Transition Enhancement
(LETE) algorithm is proposed to solve ‘ambiguity’ after the
classifier.

A. Pre-processing: Effective Data

The objective of pre-processing in the training stage is
to train only on ‘enough’ steady-state load while bypassing

transient load, therefore making the training data more
effective. The objective of pre-processing in the monitoring
is to only classify when there is a transition in steady state
there making it more effective, i.e., transients and same
steady-states are not classified in monitoring. Computation
is not wasted and less messy classified data will be post-
processed.

The aggregate load, lt, can be modelled as a non-
stationary signal, and can be decomposed into sequences
of transient and steady states. When the aggregated load
reaches steady-state conditions, we can assume the load to be
a weak stationary process. We assume that the load has reach
its steady-state when a large enough window of load data is
stationary. We first define an adaptive window, wt−Ωt+1(lt),
on a sequence of load at time t ∈ N :

wt−Ωt+1(lt) = [lt−Ωt+1, lt−Ωt+2, . . . , lt−1, lt], (1)

and the finite sample distribution, Wt, for the load within
the window at at time t:

lτ ∼ Wt ∀τ ∈ N : t− Ωt + 1 ≤ τ ≥ t. (2)

We form the following hypotheses that the current load value
distribution and the test statistics as:

H0
t : lt ∼ Wt = Wt−1,

|lt − µ(Wt−1)|√
Var(Wt−1)

≤ α (3)

where α represent the confidence interval. The logic of the
adaptive window Ωt is then defined as for t > ωmin:

Ωt =

{
ωmin + 1 H0

t−1 is rejected
Ωt−1 + 1 H0

t−1 is accepted
, (4)

where ωmin denotes the implementation parameter for min-
imum training window. In the training stage, when Ωt′ is
greater than a specified training window ωtrain, then the
load values wt′−Ωt′+1(lt′) are used to train the individual
appliance statistical model. In the monitoring stage, when
Ωt′ is greater than a specified monitoring window ωmon, then
the load values µ(wt′−Ωt′+1(lt′)) are used for classifier as
input.

B. Generative Models
The main objective here is to train each appliance once

only, which we define as non-exhaustive training, i.e., with-
out the need to train all the different combinations. This
can increase the user-acceptability greatly by decreasing the
training effort on the user. We propose a statistical model,
ynt (s

n) ∼ Y n(sn), for the apparent power of n−th appliance
with 3 operation states sn = {0, 1, 2}.1 The statistical model
of steady-state appliance load can be written as:

ynt (s
n) ∼ Y n(sn) =


0 sn = 0

xn
t ∼ Xn sn = 1

x
′n
t ∼ X

′n sn = 2,

(5)

1The proposed method can be generalized for higher dimension feature
space and similarly for appliance with more than 3-states.
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Figure 2: Load distribution of (a) appliance 1, (b) appliance 2
(c) appliance 3, state 2, (d) appliance 1 and appliance 2 and (e)
appliance 1 and appliance 2 and appliance 3.

Distribution Xn can be trained by either forming an empir-
ical distribution or some common probability distribution2

and their parameters can be estimated. We now define a
vector, the appliance configuration state (ACS), s , for N
total appliances:

s = [s1, s2, . . . , sN ]T (6)

then the total aggregated load can be written as:

lt(s) =
N∑

n=1

ynt (s
n). (7)

Assuming each appliance load is independent with respect
to ACS, the distribution of the total aggregate load for a
given ACS can be written as:

L(s) = ΥN
n=1Y

n(sn), (8)

where Υ denotes the cumulative convolution operator. For
example if

s = [1 1 2 0 0 . . . 0]T, (9)

total load can be written as

lt(s) = x1
t +

2
t +x

′3
t + 0 + . . .+ 0, (10)

thus the distribution of the the total load for this ACS can
be written as:

L(s) = X1 ∗X2 ∗X
′3, (11)

where ∗ denotes the convolution operator. An illustration of
(11) can be seen in Fig. 2. The load distribution of appliance
1, 2 and 3 are shown in Fig. 2(a), (b) and (c) respectively.
The load distribution of the ACS, s = [1 1 0 0 . . . 0]T

is next shown in Fig. 2(d) as the convolution on load
distribution appliance 1 (Fig. 2(a)) and 2 (Fig. 2(b)). The

2i.e., a Gaussian distribution, a Rayliegh distribution, etc.

load distribution of the ACS, s = [1 1 2 0 . . . 0]T is then
shown in Fig. 2(e) as the convolution on the load distribution
of the ACS, s = [1 1 0 0 . . . 0]T (Fig. 2(d))and appliance
3 Fig. 2(c)). Therefore, in the proposed method, only N
training on each individual appliance is required, different
combinations are generated by convolution of individual
distributions, instead of total combination of 2n or more
for exhaustive training. In the monitoring stage, each steady
state value can be evaluated in a simple Bayesian sense i.e.

max
s

{p[L(s)|µ(wt′−Ωt′+1(lt′))]}. (12)

C. Least effort transition enhancement

We proposed an heuristic module: Least Effort Transition
Enhancement (LETE). When there are more than one can-
didate ACS that score a relatively significant likelihood in
the generative model, e.g.,

di ff
⋆=c1,c2

p[L(s⋆)|µ(wt′−Ωt′+1(lt′))] < pσ (13)

The rational behind this is: it is less likely to have a sudden
transition of many appliance at once, i.e., many switching
on and off of appliances. Thus the hypothesis is that the
less the effort in the transition from the previous ACS to the
candidate ACS, the more likely the candidate ACS. Let us
define the ACS transition, ∆sc, for candidate, c ∈ C, with
respect to the previous ACS as

∆sc = st−1 ⊕ sct , (14)

where ⊕ denotes the XOR or exclusive disjunction operator.
The estimated effort can then be calculated as

min
c∈C

{ϵ∆s}, (15)

where ϵ = [1 1 . . . 1]. Other weights can be chosen that
reflect the effort more realistically, e.g., switching off the
fridge is less likely than the TV. This module is heuristic
because we do not formulate a probability model for an
given ACS transition, i.e., we can only minimize effort but
cannot maximize posterior probability. The weights are also
chosen heuristically, without the need for training. Training
would defeat the purpose of advantages of the training
only N -times on each individual appliance using generative
modelling.

III. EXPERIMENTS

In this section, we discuss the experiment setup and
results. Load data are collected by a power meter EZ-
RP-15 3at 1 Hz sampling rate and transmitted via the
Zigbee protocol and processed by a PC. Each individual
appliance model is found during the training stage. The three
different appliance sets and the total number of reference
ACS transitions collected are shown in Table I. A reference
script for different ACS are generated randomly for all the

3www.joseph-tech.com.tw
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Table I: APPLIANCE SETS FOR TESTING. NUMBER (#) OF s
DENOTES THE NUMBER OF DIFFERENT STATES TESTED.

Set / appliances
# of s
1 / Desk lamp (24W), adjustable lamp (170W),
(70) tungsten light bulb (100W), tungsten light bulb

(160W), fan (50W), Halogen light bulb (250W)
2 / Desk lamp (24W), fan (40W), tungsten light
(71) bulb (40W), tungsten light bulb (60 W),

tungsten light bulb (200W), Halogen light
bulb (230W), LCD monitor (12W)

3 / Refrigerator (120W), laptop (40W), tungsten
(101) light bulb (100W), tungsten light bulb (180W),

Halogen light bulb (400W), Halogen light bulb
(500W), computer server (230W)

appliances except for the computer server and refrigerator,
where we manually placed, to better reflected actual practise
in everyday life. The computer server is on for the first two-
thirds and the refrigerator is on for last two-thirds of the
total configurations. This script is carried out and the load
is measured and stored. The performance is evaluated using
word recognition rate (WRR) [5]:

WRR =
MR − EI − ED − ES

MR
, (16)

where MR is total number of reference ACS, ES is the
number of substituted appliance states in classified ACS,
ED is the number of appliance states from the reference
ACS deleted in the classified ACS, and EI is the number of
appliance states inserted in the classified ACS not appearing
in the reference ACS.

We first test the performance of with and without pre-
processing for different waiting times. The waiting time for
without preprocessing is the training time, but with pre-
processing the waiting time is the sum of the training time
and transient bypassing time. It can be seen that in Fig. 3(a)
with pre-processing, the performance is greatly improved for
shorter waiting times. For a 90 % WRR, the waiting time
is reduced approximately from 90 seconds to 30 seconds
with pre-processing and for a 95 % WRR, the waiting time
is reduced approximately from 2 minutes toward 1 minute.
For waiting times over 3 minutes, the two methods are the
same, i.e., the effect transients on the appliance model is
negligible.

We next test the performance of LETE for pσ = 0.1
and pσ = 0.5. It can be seen in Fig. 3(a) that LETE with
pσ = 0.1 does not make a significant difference in appliance
set 1 or in appliance set 2, where LETE correctly corrects
one substation error. In the case of relatively constant load
appliances sets, 1 and 2, LETE with pσ = 0.5 mistakenly
corrects too many ACS of a lower likelihood. Since pσ = 0.5
allows the difference of likelihood of competing candidate
ACS up to 0.5, which might allow LETE to mistakenly deter-
mine the transition of the higher likelihood of the candidate
ACS to be of too much effort. However for a more load
varying appliance set 3, LETE with pσ = 0.5 outperforms
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Figure 3: (a) WRR for different waiting times for with and without
pre-processing on appliance set 1. (b) WRR for different appliance
sets with and without LETE.

LETE with pσ = 0.1 and without LETE greatly. Since LETE
with pσ = 0.5 allows higher likelihood discrepancies, it
allows the hypothesis of least effort to work more. Thus this
resulted a more stateful classifier, which can handle load
varying appliances better. There is a performance tradeoff
for the selection of pσ, depending on the assumption of
appliances being monitored.

IV. RELATED WORK

Recent interests in industry show towards improving
building energy monitoring. Several startups, such as Tendril
and EnergyHub, etc., provide detailed power measurements
of selected individual loads. While this approach is useful in
observing a few loads at high fidelity, it is neither practical
nor cost-effective when full coverage of many appliances is
desired.

An appliance recognition approach distinguishs the differ-
ence between a variety of appliances by individual appliance
properties. Ito et al. [6] proposed several feature parameters,
such as average, peak, crest factor, form factor, etc., to
characterize the power waveform of individual appliance.
They applied nearest neighbors method to recognize which
appliance was in use. Kato et al. applied one-class SVM
to classify appliance state based on individual current and
voltage [7]. However they do not solve problem of one meter
to monitoring multiple appliances problem.

The original work on NILM was done by George W.
Hart [8], grouped appliance events in the real/reactive power
space and built a finite state machine to infer the operat-
ing status of appliances according to the power difference
between two steady-state periods. Laughman et al. discuss
the two limiting assumptions used in Hart’s method [9]: i)
different loads of interest must exhibit unique signatures.
ii) load composition is determined by steady-state power
consumption only. Assumption 1 typically hold for homes
or small offices, however as there are more appliance in a
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total load it gets harder to satisfy assumption i). Laughman
et al. then proposed to use higher harmonics in the aggregate
current signal to distinguish loads with overlapping clusters
in the real/reactive signature space [9]. Lee et al. proposed
to use signature correlations in harmonic content to estimate
appliances with variable speed drive [10]. This relaxes
assumption ii) described by laughman et al. Kushiro et
al. attached sensors to a distribution board and employed
wavelet transform on current waveform to obtain frequency
domain features and utilized pattern matching method to
identify the operating status of those target appliances which
performed well in recognizing the operating status of ap-
pliances with irregular load [11]. Patel et al. measured the
electrical noise delivered via power lines to detect the states
change of appliances [12]. Such noise is generated by the
fast switching of relatively high currents. They employed
Fast Fourier Transform (FFT) on the measured noise to
separate the component of frequencies and adopt SVM to
classify the appliance’s state. These frequency/harmonic ap-
proaches require higher sampling rate which would require
additional hardware to process inside the meter or increase
the communication bandwidth greatly.

Jiang et. al proposed a method based on the assumption
that the fundamental structure of residential and commercial
electrical power flow can be modelled as a load tree.
It branches through several levels transformers, bus bars,
panels, breakers, power strips, receptacles to individual ap-
pliances and within those appliances to various subsystems
[1]. Jung and Sawides proposed a method for estimating
the power consumption breakdown per appliance inside a
home assuming simple ON/OFF appliance state information
is available [13]. Schoofs et al. presented NetBem, a novel
energy monitoring technique ad hoc to office buildings,
capturing the contribution of networked business equipment
to a power load through the LAN [4]. The above method
are based on the assumption of extra information based on
domain knowledge sensor deployment, which would restrict
the universality of methods to be used in the real world.

Gupta et al. and Rowe et al. both relied on the fact that
most modern consumer electronics and fluorescent lighting
employ switch mode power supplies which continuously
generate high frequency electromagnetic interference dur-
ing operation that propagates throughout a homes power
wiring which can be measured via electromagnetic sensors
[14] [15]. Kim et al. proposed ViridiScope, a finegrained
power monitoring system that uses ambient signals from
magnetic, light, and acoustic sensors placed near appliances
to estimate power consumption [16]. Schoofs et al. proposed
a system to automate electricity data annotation leveraging
cheap wireless sensor nodes. Characteristic sensory stimuli
captured by sensor nodes placed next to appliances are
translated into appliance operating state and correlated to the
electricity data, autonomously generating the annotation of
electricity data with appliance activity [4]. These approaches

are base on different mode of sensors which is still far from
commercialization.

We now discuss two similar approaches to our work,
namely i) super-second sampling so no additional hardware
is needed in existing meters or increased communication
requirements. ii) non-exhaustive training, i.e., appliance
configuration are generated instead of trained, for better
user acceptance. Marchiori et al. proposed two methods
for NILM, i) a heuristic approach which process individual
appliance models into peak points in a feature space and
then generated appliance configuration models in a simple
vector addition sense therefore uncertainty is measured by
distance not probability, and ii) a Bayesian approach which
require training of randomly generated different configura-
tions, therefore a semi-exhausitive training is needed. In our
proposed non-heuristic generative modelling, the uncertainty
based on probability. Ruzzelli et al. presented a plug-and-
play tool identify consumption of individual appliances
using a neural network (NN). Although a NN require much
more training effort than a simple statistical appliance model
proposed in our work, Ruzzelli et al. championed NN over
a simpler Bayesian type of classifier to incorporate different
state or parameter variations. In our work, the proposed
LETE improves a simple Bayesian classifier by giving it
a sense of states. It is to the knowledge of the authors, this
work is also the first to study the acceleration of training.

V. CONCLUSION AND FUTURE WORK

Monitoring energy consumption at appliance level is a nec-
essary condition for many energy efficient applications. In
this paper, we have identified non-intrusive load monitoring
(NILM) as a transitional technology, and competing NILM
methods must be evaluated not only on performance, but also
economical feasibility and user usability of now. Since in the
event of maturing an IoT infrastructure, there would be no
need for NILM. In this paper, we proposed a NILM for now,
a complete solution with novel features: i) pre-processing for
effective data, thus more accurate and faster training for user.
ii) generative modelling for appliance configuration states,
thus without the need for exhaustive training, and iii) LETE
algorithm for a simple stateful enhancement. Experiments
show the proposed methodology perform well even under
only the most simplistic assumptions. The next step in our
research is to convert appliance configuration states into
human activities, therefore enabling value-added services for
energy efficiency, comfort and convenience.
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