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Abstract—Cataract is one of the most prevalent eye diseases
affecting the elderly population. In underserved regions, a low
ophthalmologist-to-patient ratio and a scarcity of specialized
medical devices pose challenges for early detection. This study
aims to harness recent advancements in Deep Learning (DL)
to automate cataract detection. Although numerous studies
have been conducted in this area, improving model accuracy
and minimizing overfitting, all while maintaining a simple
architecture that requires fewer computational resources, remains
challenging. This research proposes a hybrid method that merges
featurization achieved by a Convolutional Neural Network (CNN)
with classification techniques to improve prediction accuracy.
The model’s predictive performance is evaluated not only on
the original test dataset but also on a newly acquired image
set collected independently from a hospital. Experiments are
conducted across different model architectures, such as CNNs
and hierarchical Vision Transformers (ViTs) in combination
with classifiers, such as multi-layer perceptron (MLP), K-nearest
neighbors, and RandomForest. The highest accuracy is achieved
using a combination of the ConvNeXtXLarge architecture for
feature extraction coupled with a MLP classifier, reaching 92.3%
on the original test dataset and improving to 94% on the new
hospital-based dataset.

Keywords- cataract, convolutional neural network, vision trans-
former, multilayer perceptron.

I. INTRODUCTION

Cataracts are a predominant cause of visual impairment
and blindness, accounting for approximately 33% of cases of
impaired vision and 51% of first causes of blindness worldwide
[1]. This eye ailment occurs due to the clumping of proteins
in the lens, which significantly reduces its transparency. The
ophthalmologists detect it by performing a manual retinal exam.
They administer eye drops to dilate the pupil and then use the
slit lamp, which is a specialized microscope with bright light,
to clearly examine the retina for opacity.

Early detection of cataracts is crucial to preventing pro-
gressive blindness or avoiding costly surgical interventions,
particularly in underserved regions where the ophthalmologist-
to-patient ratio can be alarmingly low, often around 1 to 10,000.

Currently, cataract detection and diagnosis in hospitals are
primarily based on clinical examinations by ophthalmologists
using devices, such as slit lamps, ophthalmoscopes, and
biomicroscopy. These methods involve direct visualization of
the eyes’ lens to assess opacity levels, and in some cases,
specialized imaging techniques like ultrasound biomicroscopy
and Scheimpflug imaging may also be employed. However,
these procedures depend heavily on the availability of trained

medical professionals and advanced equipment, often resulting
in significant delays in diagnosis and treatment initiation,
particularly in underserved areas.

Fundus imaging, however, presents a simpler and more
accessible alternative, particularly suitable for underserved
regions. Fundus cameras are relatively portable, cost-effective,
and easy to operate, requiring less specialized training com-
pared to traditional ophthalmic diagnostic methods. These
characteristics enable broader deployment, even in remote
or resource-constrained settings, facilitating early detection
and continuous monitoring of cataracts. Thus, leveraging
fundus imaging could substantially improve the scalability and
reach of cataract screening programs, particularly benefiting
communities with limited healthcare infrastructure.

Recent advances in Artificial Intelligence (AI), particularly
Deep Learning (DL), have shown promising potential for au-
tomating medical diagnostics across various domains, including
ophthalmology. Deep learning-based systems, especially Con-
volutional Neural Networks (CNNs) and Vision Transformers
(ViTs), have successfully demonstrated high performance in
recognizing pathological conditions in ophthalmic imaging [2].
However, despite these successes, existing models often face
critical challenges, including overfitting, excessive computa-
tional complexity and costs, and limited generalizability when
exposed to datasets collected from diverse and independent
clinical settings [3][4].

To address these issues, it is crucial to develop streamlined
yet highly accurate models that are computationally efficient,
generalizable, and robust to varied imaging conditions and
demographic differences encountered in different regions. This
paper proposes a hybrid approach that integrates deep feature
extraction through advanced CNN architectures, specifically
ConvXtnet-large, with traditional classification methods, includ-
ing multi-layer perceptron (MLP), K-nearest neighbors (KNN),
and RandomForest classifiers, with MLP being the chosen
classification method. Evaluating the model performance not
only on standard benchmarking datasets but also on indepen-
dently acquired hospital datasets provides a more rigorous and
realistic assessment of its generalization capabilities.

Such comprehensive validation across diverse datasets is
essential for ensuring reliability and clinical applicability in
underserved regions where disparities in healthcare accessibility
demand robust, efficient, and accurate automated diagnostic
tools. The developed approach aims to bridge gaps in oph-
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thalmic care by providing a scalable, accessible, and precise
cataract detection system.

The remainder of the paper is structured as follows: In
Section II, the paper discusses prior work in the area of
automating cataract detection using machine learning, including
prior successes and limitations. Section III discusses the design
of the experiment, including data collection, data preprocessing,
feature extraction, architecture of classification models and of
the proposed approach, and experimental procedures. In Section
IV, the validation and testing results of the experiments are
disclosed. In Section V, the results are discussed and explained
and the limitations of the study are revealed. In Section VI,
future prospects of the proposed method are detailed, and in
Section VII, the paper is concluded and final thoughts are
summarized.

II. RELATED WORK | METHODS

Several studies have leveraged Machine Learning (ML)
and Deep Learning (DL) approaches to automate cataract
detection. Typically, these methodologies involve three primary
stages: data preprocessing, feature extraction, and classification.
Traditionally, CNNs have dominated this domain due to their
strength in image-based feature extraction. However, recently
ViTs have gained significant traction, demonstrating promising
results in ophthalmic disease diagnosis.

Multiple researchers have employed ViT-based methods with
considerable success. Ali et al. [5] introduced a hyperparameter-
optimized ViT model combined with Explainable AI techniques
to diagnose various eye diseases from a diverse medical image
dataset, achieving an accuracy of 91.40%. Similarly, Purba et al.
[6] utilized a ViT architecture tailored for human eye disease
classification, optimizing hyperparameters to attain an accuracy
of 92.86% and recall of 85.72%. Another pertinent work by
Gummadi et al. [7] implemented ViT for ocular disease classifi-
cation, achieving an F1-score of 83.49%. Complementing these
findings, Kumar et al. [8] conducted a comparative evaluation
between traditional CNNs, specifically Visual Geometry Group-
16 (VGG16) and ResNet50, and ViT on a consistent dataset,
concluding that ViT demonstrated superior performance with
an accuracy score of 70%.

Further advancements have been achieved through hybrid
transformer models and specialized feature engineering ap-
proaches. Wang et al. [9] proposed a Transformer-based
Knowledge Distillation Network (TKDNet) specifically tailored
for cortical cataract grading. Their innovative methodology
includes a zone decomposition strategy for extracting precise
features and introduces specialized sub-scores addressing key
clinical indicators, such as opacity location, area, and density.
Their multi-modal mix-attention Transformer efficiently fused
these sub-scores with image modalities, achieving a notable
accuracy of 95.1% and recall of 81.6%.

Despite the growing popularity of ViTs, CNN-based methods
remain highly relevant due to their computational efficiency
and high accuracy. Khan et al. [10] successfully utilized a pre-
trained VGG19 CNN model to detect cataracts from color fun-
dus images, reaching accuracy and precision scores of 97.47%.

Lai et al. [11] developed a custom CNN architecture comprising
seven layers—including convolutional, max-pooling, flatten,
and dense layers for cataract detection from digital camera
images, achieving outstanding accuracy and recall scores of
98.5% and 97.9%, respectively. Weni et al. [12] introduced
a CNN-based method incorporating dropout regularization to
mitigate overfitting, obtaining an accuracy of 88%. Further,
Ganokratanaa et al. [13] compared a LeNet-based CNN to a
traditional Support Vector Machine (SVM) classifier, with their
LeNet-CNN approach yielding an impressive 96% accuracy.

While significant progress has been made in automating
cataract detection, several challenges persist. Critical areas
for future research include enhancing prediction accuracy,
minimizing model overfitting and computational costs, and
improving generalizability by testing the model on different
geographical locations.

This paper proposes a hybrid, computationally efficient
approach that integrates deep feature extraction through
advanced CNN architectures, specifically ConvNeXtXLarge,
with traditional classification methods, including Multi-Layer
Perceptron (MLP) [14], K-Nearest Neighbors (KNN) [15],
and RandomForest classifier [16]. Evaluating the model per-
formance not only on standard benchmarking datasets but
also on independently acquired hospital datasets provides a
more rigorous and realistic assessment of its generalization
capabilities.

III. METHODS AND MATERIALS

A. Dataset

This study uses the Ocular Disease Intelligent Recognition
(ODIR) dataset [17] from Shanggong Medical Technology
Co., Ltd. It is a structured ophthalmic database of 5,000
patients with age, color fundus photographs from left and
right eyes and doctors’ diagnostic keywords from doctors. This
dataset represents a real life set of patient information collected
by Shanggong Medical Technology Co., Ltd. from different
hospitals and medical centers in China. It has images of normal
eyes and images of eyes with cataract. It is then randomly
divided into three parts, with 80% of the images being used
for training, 10% for validation and the remaining 10% for
testing the accuracy of the model. These three datasets contain
nearly equivalent numbers of normal and cataract eye images.
This study also utilizes additional fundus images of normal
(40 patients) and cataract (10 patients) eyes obtained from
GSVM Medical College, which is a public medical college
in Kanpur, India. This dataset represents a real life set of
fundus images of Indian patients. It is used only as a testing
dataset to assess the generalizability of the model trained on
the ODIR dataset. Figure 1 shows the retinal fundus images of
normal and cataract eyes. Both the ODIR and GSVM datasets
used in this work are publicly available and fully comply with
Health Insurance Portability and Accountability Act (HIPAA)
in protecting patients’ health information.
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Figure 1. Eye Fundus Images. (a) Cataract. (b) Normal.

B. Data Preprocessing

A pre-processing stage is crucial in standardizing the input
of fundus images obtained from multiple sources, as they may
have different characteristics. The ODIR dataset is from several
medical institutions in China where fundus images are captured
by various cameras in the market, such as Canon, Zeiss and
Kowa, resulting in varied image resolutions. The GSVM dataset
of raw images contained irrelevant visual components like
computer monitors and medical devices, which are cropped
out to have only retinal fundus images. Each fundus image
is then resized to 224x224 pixels for uniformity and then
converted to RGB color space resulting in a three-dimensional
(3D) array of 224x224x3. The three 2D arrays represent red,
green and blue channels respectively. It is then converted from
RGB to BGR and each color channel is zero-centered with
respect to the ImageNet dataset, without scaling, as required
by ConvNeXtXLarge.

C. Feature Extraction

ConvNets have always been popular for computer vision
related tasks due to their inherent inductive biases like transla-
tion equivariance and sliding window strategy. Translation
equivariance is important for object detection and sliding
window strategy allows neighbors to share computations, which
is essential for visual processing. Recently, ViTs have entered
this space with better accuracy rate than traditional ConvNets
and are getting increasingly dominant. The primary reason
for their superiority is their global attention design, which
has quadratic complexity with respect to the input image size
and can quickly become unmanageable with higher resolution
images. To address this limitation, hierarchical Transformers
like Swin Transformer have been developed, which incorporates
some of the inductive biases of ConvNets like sliding window
strategy. But the resulting design is still complex, requiring
significantly more computational resources than ConvNets.
ConvNeXtXLarge model [18] is an enhanced traditional Con-
vNets, which retains the design simplicity of convolution and
then incorporates features like depthwise convolution, inverted
bottleneck and large kernel sizes taken from the architecture of
hierarchical Transformers. It outperforms vanilla ViTs, while
maintaining the simplicity and efficiency of standard ConvNets
and for these reasons is used here to extract image features.

The weights used are from the pretraining of this model on the
ImageNet-21k dataset and then fine-tuned on the ImageNet-
1k dataset. The top layer of the ConvNeXtXLarge model is
replaced with a global average pooling layer to avoid overfitting.
It also ensures that some spatial information is retained by
averaging each feature map, which allows for higher versatility
across different input variations evident in datasets of this
study. It also helps in keeping the architecture simple, which
leads to faster featurization and less computational resource
consumption. Essentially, the idea was that intially featurizing
the images and then classifying them based on these numerical
features would provide better accuracies than solely applying
a CNN-variant. By stripping off the classifier head of the
ConvNextXlarge model, the model extracts 2048 features
from the images. As opposed to the classifier head making
the prediction, additional predictive models were added on
the ConvNextXLarge model to improve accuracy. The set of
features extracted from the dataset are randomly reshuffled
to avoid subsequent classification models from learning the
patterns based on the order of the images in the dataset.

In order to determine the importance of the ConvNextXLarge
featurizer in the proposed pipeline, an ablation study was
conducted. One of the variants of the pipeline tested in the
ablation study involved substituting the ConvNextXLarge model
for DenseNet-201, another featurizer model, pairing DenseNet-
201 with MLP. A DenseNet-201 model, pretrained on the
ImageNet-1k dataset, is a CNN that has dense connectivity,
meaning that each layer takes input from all the layers that
were before that particular layer and provides output to all
layer subsequent to that particular layer. The model has several
dense blocks, with each block containing a certain amount
of layers. Each block is separated from other blocks by
transition layers, which are composed of a 1 by 1 convolution
layer followed by a pooling layer, with the goal being to
compress the feature maps. Due to these characteristics of
the DenseNet-201 model, it has several advantages, such as
reducing the occurrence of vanishing gradients and cutting
down on parameter redundancy. The DenseNet-201 model
extracts 1920 numerical features from the fundus images
and also has its top layer stripped away, replaced with
a global average pooling layer for similar reasons as the
ConvNextXLarge model. The reason for choosing DenseNet-
201 as the substitute for ConvNextXLarge in this ablation study
lies in the fact that DenseNet-201, being a classic CNN, lacks
the ViT-like enhancements that ConvNextXLarge possesses,
such as inverted bottleneck, depthwise convolution, and large
kernels. The ablation study, in part, aims to determine the
effect of removing ViT-like enhancements on the performance
of the model.

D. Classification

The extracted features are then used to train MLP, KNN, and
Random Forest classifiers. The MLP Classifier is a feedforward
neural network having at least three layers, an input layer, one
or more hidden layers, and an output layer. Each node in
the input layer corresponds to a feature in the feature map.
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There can be any number of hidden layers and each can have
any number of nodes. They calculate a weighted sum of the
inputs followed by an activation function, which adds bias
and introduces nonlinearity. The output layer generates the
final prediction, so in this study acts as the binary classifier
having two nodes for "Normal" and "Cataract" prediction. The
predicted output is compared to the actual label using a loss
function and to minimize its value, weights of the nodes and
activation function are adjusted during backpropagation.

The KNeighborsClassifier is a simple yet powerful lazy
learning algorithm. It preserves the entire training data from
the training phase and uses it to classify based on similarity
measures. The class of a data point is determined by the
majority or average of its K neighbors, which are found based
on a distance metric.

The RandomForest Classifier is an ensemble tree learning
algorithm. During the training phase, it creates a number of
decision trees using random subsets of the features from the
feature map. Each individual tree makes its prediction and
the final prediction is determined by voting where the most
frequently predicted result is chosen. These three different
classifiers are paired with ConvNextXLarge and compared
in an ablation study to isolate the contributions of the MLP
classifier in the proposed pipeline and to assess its individual
importance to the performance of the proposed pipeline.

Figure 2 demonstrates the architecture of the proposed
method, including preprocessing, featurization, and the different
classification models that ConvNeXtXLarge is paired with.

In order to evaluate the performance of the proposed
methodology, the results have been compared with traditional
CNN models like ResNet50 [19], EfficientNetb2 [20], and
MobileNetv2 [21] as well as computationally costly ViTs, such
as Swin transformer [22] and vanilla ViT [23].

ResNet50 is a type of Deep Convolutional Neural Network
(DCNN) with 50 layers, a part of a group called Residual
Networks. It uses special connections, known as residual
connections, to help gradients flow effectively and overcome
issues like vanishing gradients, making it reliable for tasks like
image classification. EfficientNetB2 is a CNN that enhances
width, depth, and resolution of images through a calculated
scaling method. As the third model in the EfficientNet series,
it expands upon previous models (B0 and B1) with more
layers, wider channels, and higher resolution. This allows
EfficientNets to achieve high accuracy with fewer parameters
and less computational demand compared to older models
like ResNet. ViTs break down images into small, equal sized
patches, flatten these patches, and feed them into a global
attention module, using positional embeddings for each patch.
This approach allows ViTs to focus on broad patterns in images,
often surpassing traditional CNNs, especially in large-scale
datasets. SwinTransformers are a specialized version of ViTs
that apply attention mechanism within local windows that are
shifted across the image. By incorporating convolutional layers,
they create hierarchical feature maps similar to those in CNNs,
which helps them be effective in classification tasks.

E. Experimental Procedures

For training MLP, the hyperparameter learning_rate_init,
which controls the step size in updating the weights during
backpropagation to minimize loss function, is evaluated for
values 0.01, 0.05, 0.001, 0.0001, 0.00001, 0.1 and 0.000001. For
each value of learning_rate_init, the hyperparameter max_iter,
which is the epoch value, is evaluated for values ranging from
10 to 110 increasing in intervals of 10.

For KNN, the hyperparameter n_neighbors, which is the
number of nearest neighbors to consider in deciding the class
of a data point, is evaluated for values ranging from 1 to 15.

For RandomForest, the hyperparameter max_depth, which
is the depth of the decision tree, is evaluated for values in the
range 1 to 7. For each value of max_depth, the hyperparameter
n_estimators, which is the number of the decision trees in the
forest, is evaluated for values ranging from 10 to 110.

The performance of the proposed methodology is also bench-
marked against the MobileNetV2, ResNet50, EfficientNetB2,
SwinTransformer, ViT model, which has a similar architecture,
to assess improvements in detection accuracy, highlighting the
effectiveness of the featurization over classification methods
in enhancing cataract prediction performance. The hyperpa-
rameter epochs values ranging from 10 through 50 with the
learning_rate hyperparameter ranging from 0.000001 to 0.05,
depending on the model, are used to fine-tune the models.

Performance metrics like accuracy, precision and recall
are used to identify the most effective model. Accuracy is
the percentage of true prediction out of the total prediction.
Precision is the percentage of true positive prediction (i.e.,
cataract eye) out of total positive prediction. Recall is the
percentage of true positive prediction out of the total positive
samples. For tasks like medical diagnosis, the cost of false
negative prediction (i.e., cataract eye predicted as normal) is the
highest, so a higher recall value is given the highest precedence
followed by precision and then accuracy.

Finally, the computational efficiency and speed of the
proposed pipeline was quantified by measuring the wall time
(s) as well as CPU time (s) of the entire pipeline, including
both featurization and classification, during training, validation,
and testing. Wall time is the elapsed time from when the task
began to when it ended, taking into account computation of the
models, waiting for inputs and outputs, network delays, and
several other real world factors to represent the real world time
that a user must wait for the result. On the other hand, CPU
time is the amount of time that the computer processing spent
executing the pipeline. For the validation, testing, and collected
testing dataset, two additional performance metrics were
measured: inference latency (s) and throughput (samples/s).
Inference latency is the total elapsed time it takes a trained ML
model to take in a singular input, in this case a fundus image,
and make a prediction. Inference latency is critical in this
context as it measures how long a user may have to wait for a
diagnosis for cataract, with speed being essential to lessen the
impact of cataract. Throughput, which is mathematically the
inverse of inference latency, measures the amount of predictions
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Figure 2. Architecture of proposed hybrid approach.

a trained ML model can make within a certain unit of time.
Throughput is essential in this context as it measures the
efficiency of the pipeline, which is essential when processing
batches of patients, a common occurrence in overwhelmed and
understaffed rural clinics.

IV. RESULTS

In the case of MLP, the highest accuracy of 98.28% is
achieved, with minimum number of epochs, when epochs are
40 and learning rate is 0.01. In Figure 3, the performance of
MLP based on different pairs of epochs and learning rates
is shown. Other combinations of epochs and learning rate
result in this accuracy, including 50 epochs and 0.01 learing
rate, 60 epochs and 0.01 learning rate, 80 epochs and 0.01
learning rate, and 70 epochs and 0.05 learning rate. This is the
highest validation accuracy, higher than every model except
RandomForest.

In the case of KNN, the highest accuracy of 96.55% is
achieved with 2 neighbors and the lowest accuracy of 89.50%
is achieved when the number of neighbors increases to 5, 6,
7, and 13. This performance is demonstrated by Figure 4a
based on different numbers of neighbors. For RandomForest,
the highest accuracy of 98.28% is achieved with 20 trees and
a depth of 2. This performance is demonstrated by Figure 4b
based on different pairs of trees and depths.

In the ablation study, which is documented in Table I, the
combination of ConvNextXLarge and MLP yielded an accuracy
of 98.28% in the validation dataset, 92% in the testing dataset,
and 94% in the collected GSVM testing dataset. These were
the highest recorded accuracies out of all combinations of
components tested in the ablation study. The combination
of ConvNextXLarge and KNN yielded a testing accuracy
of 90.40% and a GSVM testing accuracy of 75.50%. The
combination of ConvNextXLarge and RandomForest yielded a
testing accuracy of 88.50% and a GSVM testing accuracy of

79.60%. The combination of DenseNet201 and MLP yielded a
validation accuracy of 93.10%, a testing accuracy of 86.30%,
and a GSVM testing accuracy of 91.80%.

TABLE I. ABLATION STUDY ACCURACY RESULTS

Variant Val.(%) Test(%) GSVM(%)
ConvNextXLarge+MLP 98 92 94
ConvNextXLarge+KNN 97 90 76
ConvNextXLarge+RF 98 89 80
DenseNet-201+MLP 93 86 92

For each classification model paired with ConvNeXtXLarge,
each of the graphs depicting their validation accuracy has
learning rate on the horizontal axis, validation accuracy on the
vertical axis, and each line represents a different epoch number
in the sequence 10, 20, 30, 40, and 50. The performance metrics
of each model on the testing portion of the ODIR dataset as
well as on the collected GSVM dataset are depicted in Table
II and Table III, respectively.

For EfficientNetB2, according to Figure 5a, the highest
validation accuracy was 96.55% at 30 epochs and 0.01 learning
rate. For ResNet50, according to Figure 5b, the highest
validation accuracy was 98.28% at 10 epochs and 0.001 learning
rate. For MobileNetv2, according to Figure 5c, the highest
validation accuracy was 94.83% at 30 epochs and 0.005 learning
rate.

Moving on to ViTs, for Swin Transformer, the highest
validation accuracy, according to Figure 6a was 94.83% at
30 epochs and 0.0001 learning rate. Finally, for the vanilla
ViT, according to Figure 6b the highest validation accuracy
was 98.04% at 50 epochs and 0.000001 learning rate.

In Table II and Table III, the performance of the classification
models on ODIR and GSVM test dataset is summarized,
respectively. The testing of the ODIR test dataset on the MLP
model resulted in an accuracy score of 92.30%. The same
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Figure 3. Hyperparameter tuning of the MLP model.

model is also tested using the GSVM test dataset resulting in
an accuracy of 94%. Each of these is depicted by Figures 7a
and 7b, respectively.

(a) K-Nearest Neighbors

(b) RandomForest

Figure 4. Validation accuracy of ML models across their parameters.

The computer system performance metrics for the proposed
pipeline when applied to each dataset were measured to
quantify its computational efficiency. For the training dataset,
the recorded CPU time was 2 hours, 43 minutes, and 43
seconds. The recorded wall time was 2 hours, 17 minutes, and
30 seconds. The wall time of the validation dataset was 21

(a) EfficientNetB2 model

(b) ResNet50 model

(c) MobileNetv2 model

Figure 5. Validation accuracy of CNN models across learning rates and
epochs.
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(a) Swin Transformer

(b) Vanilla ViT

Figure 6. Validation accuracy of ViT models across their parameters.

(a) ODIR Testing Portion (b) Collected GSVM

Figure 7. Performance of proposed model on testing datasets.

minutes and 5 seconds, yielding an average inference latency,
for the validation dataset, of 21.8 seconds per fundus image and
a throughput of 0.046 fundus images per second. For the testing
dataset, the wall time was 18 minutes and 9 seconds, yielding
an average inference latency of 21.4 seconds per fundus image
and a throughput of 0.047 fundus images per second. For the
collected GSVM testing dataset, the wall time was 15 minutes
and 4 seconds, yielding an inference latency of 18.4 seconds
per fundus image and a throughput of 0.054 fundus images
per second. All these measurements are referenced from Table

TABLE II. PERFORMANCE OF CLASSIFICATION MODELS ON ODIR TEST
DATASET

Model Acc.(%) Prec.(%) Rec.(%) F1.(%)
MLP 92 92 92 92
ResNet50 90 90 90 90
EfficientNetB2 92 92 92 92
ViT 90 92 90 90
Swin Trans. 92 92 92 92
MobileNetV2 86 86 86 86

TABLE III. PERFORMANCE OF CLASSIFICATION MODELS ON GSVM TEST
DATASET

Model Acc.(%) Prec.(%) Rec.(%) F1.(%)
MLP 94 97 83 88
ResNet50 92 93 92 92
EfficientNetB2 94 95 94 94
ViT 86 93 61 64
Swin Trans. 96 93 93 93
MobileNetV2 90 94 72 78

IV below.

TABLE IV. COMPUTER SYSTEM PERFORMANCE METRICS OF PROPOSED
PIPELINE

Dataset Wall
time(s)

CPU
time(s)

Inference
Latency(s)

Throughput

Train 8250 9823 - 0.058
Val. 1079 1275 21.8 0.046
Test 850 1089 21.4 0.047
GSVM 904 1059 18.4 0.054

V. DISCUSSION | EVALUATION

The combination of ConvNeXtXLarge and GlobalAverage-
Pooling2D for featurization with MLP Classifier as the classifier
resulted in the highest validation accuracy, which was higher
than similar prior studies, albeit with a different and smaller
dataset. Convolution does not have high computational costs
like global attention design of ViTs, which requires computa-
tionally expensive global attention modules. Additionally, just
one hidden layer with 100 nodes in MLP classifier also helps in
keeping the architecture simple, requiring less resources. KNN
and RandomForest also had decent validation accuracies, with
RandomForest actually matching MLP in validation accuracy.
However, KNN and RandomForest require comparatively more
resources than the proposed method.

For KNN, more neighbors after K=2 results in a drop
in accuracy. This is likely due to the bias-variance tradeoff
involved with involving more neighbors. In the case of
RandomForest, there is not much variation in accuracy for
different combinations of depth and number of trees. Every
evaluated combination results in the accuracy within the
range of 91.38% to 98.28%. It is also evident during tuning
that computational requirements of this classifier are directly
proportional to the number of trees.
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In the case of MLP, the highest accuracy of 98.28% is
achieved when epochs are 40 and learning rate is 0.01. The
accuracy increases with the increase in epochs for every single
value of learning rate. After an optimal value of epochs is
reached, the accuracy plateaus for each learning rate. The
lowest learning rate of 0.00001 has the maximum deviation in
accuracy ranging from around 74% to 97% as epochs increase.
The highest learning rate of 0.05 has second highest deviation
in accuracy ranging from around 89% to 98% with increase in
epochs. It demonstrates that too low or too high learning rate
during backpropagation can adversely impact accuracy. For
higher learning rates, such as 0.05, weights are updated too
quickly, resulting in oscillations around convergence and thus
making number of epochs cause large variation in validation
accuracies. However, since 0.05 as a learning rate is not too
large, the deviation in accuracy based on epochs is not too
drastic and maximum accuracy of 98.28% is still achievable
with this learning rate when paired with enough epochs, in
this case 70.

In the ablation study, given that the combination of ConvNex-
tXLarge as the featurization model and MLP as the classifier
model yielded the highest accuracies in classifying the fundus
images among all three of the datasets (validation, testing, and
GSVM testing), clearly, both of these models contribute heavily
to the performance of the pipeline. Likely, ConvNextXLarge
and MLP outperformed the pairing of ConvNextXLarge and
KNN because when there is a large number of features
involved, such as 2048 features, the Euclidean distances that
KNN calculates between points to classify a point tend to
concentrate as close neighbors and far away neighbors appear
to be roughly equidistant from the datapoint currently being
classified, thus making KNN’s prediction inaccurate. MLP
likely trumped RandomForest’s performance as well since
RandomForest uses the aggregate prediction of axis-aligned
decision trees, which perform optimally on tabular data but
often stumble when trying to classify an image based on the
smooth, high-dimensional feature maps produced by CNNs
such as ConvNextXLarge. The ConvNextXLarge model likely
outperformed the DenseNet-201 model due to its ViT-like
enhancements, such as depthwise convolutions and inverted
bottleneck, which boosted its accuracy without requiring
computationally expensive global attention modules.

The evaluation of various models, including MobileNetv2,
ResNet50, EfficientNetB2, ViT, and SWINTransformer, across
different learning rates and epochs shows the impact of
hyperparameter tuning on model performance. Lower learning
rates frequently demonstrate slower convergence, leading to
suboptimal accuracy, as observed with MobileNetv2 and
similarly noted in other models like EfficientNetB2 and ViT. In
contrast, moderate learning rates, particularly around 0.0001 to
0.005, consistently yield higher stability and precision, resulting
in efficient convergence without the risk of overshooting the
global minimum, a pattern evident across both ResNet50 and
MobileNetv2. High learning rates, such as 0.05, introduce
significant volatility, destabilizing the training process as
illustrated by diminished results in MobileNetv2, ViT, and

EfficientNetB2.
For the ODIR testing performance of each model, the

proposed hybrid approach of pairing ConvNeXtXLarge to
featurize fundus images and using MLP to classify each image
based on these features got the highest accuracy of 92%
and highest recall of 92%. These performance metrics were
matched by Swin Transformer as well as EfficientNetB2. The
proposed approach likely performed one of the best because
ConvNeXtXLarge leverages the strengths of both the CNNs
(ConvNet / CNN) and hierarchical ViTs for featurization. The
inherent inductive biases of CNN, like translation equivariance
and sliding window strategy, work together with the depthwise
convolution and inverted bottleneck of ViTs to extract image
features. Thus, strong spatial representations are fed into MLP,
which allows MLP to make accurate predictions.

EfficientNetB2 also shared the same high performance
metrics due to its compound scaling of fundus images, which
effectively scales the width, depth, and input resolution of
inputted images using a user-specified scaling coefficient.
This scaling allows it to capture finer details and improve
representation of images. For Swin Transformer, it first splits
the images into patches that it then flattens into feature
vectors. By applying self-attention to small local windows
that are then shifted across the image to ensure cross-window
communication, the model is capable of paying attention to
local features as well as maintain global awareness, thus
allowing it to notice small features in the fundus images and
generalize better on new datasets.

On the GSVM dataset, the differences between each of
these three respective model were more. While the hybrid
proposed approach, EfficientNetB2, and Swin transformer had
similar accuracies despite the proposed approach’s simplified
architecture, Swin transformer and EfficientNetB2 had higher
recall values than the proposed approach did. This is likely
because the MLP head, with only 100 nodes in one hidden
layer, was unable to properly detect all positives, hence its
lower recall. The model likely requires more training on noisy
real world hospital data to be able to properly generalize to real
world datasets and their quality issues. The hierachial window-
based self-attention of Swin Transformer and the compound
scaling of EfficientNetB2 likely allowed each model to notice
small details in fundus images of the training dataset, thus
allowing them to generalize to hospital data even with its flaws.

The vanilla ViT likely performed much worse than the
others because ViTs, due to their global attention modules,
require large training datasets to properly generalize to other
datasets and often miss small localized details. MobileNetv2
is a lightweight model that does not translate well to datasets
that have a lot of noise. While the proposed approach has a
lower recall than Swin Transformer and EfficientNetB2 on
real-world hospital data due to the relatively low quality of the
data, the proposed approach still performs on par with, and
sometimes better than (in the case of validation dataset) state
of the art models on quality datasets that resemble its training
dataset, and further training on more real world hospital data
will likely allow it to generalize to imperfect hospital data.
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Additionally, since MLP has only one layer with 100
nodes and ConvNeXtXLarge lacks computationally expensive
attention-based modules, the proposed approach is computa-
tionally more efficient than other models, including vanilla
ViTs with their global attention modules. Finally, the proposed
approach, due to the replacement of ConvNeXtXLarge’s FTC
with a Global Average Pooling Layer, is able to reduce
overfitting of the model on the training dataset.

Considering the computer system performance metrics for
the proposed pipeline, the inference latency times, computed
for each of the three non-training datasets, are roughly similar
to each other. Taking into account the relative number of images
in each of the three datasets, the average inference latency is
20.6 seconds, which is much faster than the standard 30-60
minutes a standard cataract examination may take involving a
specialist and advanced equipment. For each dataset, the CPU
time exceeded the wall time, regardless of the other delays that
the wall time considers. This is because of the use of parallel
processing when running the pipeline, using multiple cores at
the same time as opposed to a single-threaded process.

The limitations of this study include a lack of large datasets
to train classifier models and the local nature of the datasets.
The study uses ODIR dataset for training, which has just a few
hundred fundus images for cataract as opposed to thousands
of images typically required to train models efficiently and
avoid overfitting. Both the ODIR and GSVM fundus image
datasets are of patients from south Asia. It is not clear if the
accuracy of the model will be the same if tested on fundus
image datasets from other parts of the world. Further study
and more diverse sources of datasets are required to address
these aspects.

VI. CONCLUSION AND FUTURE WORK

This study establishes a robust framework for cataract detec-
tion using deep learning and traditional classifiers, showcasing
strong performance on both benchmark and hospital-based
datasets. The few seconds that it takes the web app to predict
the presence of cataract from a fundus image is much faster than
skilled medical personnel, using advanced detection equipment,
would be able to without even considering the fact that these
personnel can only visit a clinic once every few weeks or
even months due to understaffing. Nonetheless, there remain
several promising avenues for future research. Expanding
the dataset size with diverse fundus images from various
geographic locations will help improve the generalizability
and robustness of the model across different populations.
Moreover, incorporating techniques like transfer learning from
larger ophthalmologic datasets or integrating advanced data
augmentation methods could further mitigate overfitting and
improve performance.

Additionally, incorporating explainability methods and vi-
sualization tools to interpret model predictions could provide
clinicians greater confidence in AI-assisted diagnoses, promot-
ing better clinical acceptance and decision-making.

Integration of multimodal data, combining fundus imaging
with other diagnostic modalities, such as Optical Coherence

Tomography (OCT) or clinical patient histories, could further
enhance diagnostic accuracy and reliability. Furthermore,
longitudinal studies assessing the real-world clinical impact and
economic feasibility of deploying this AI-based cataract detec-
tion system will be crucial to translating research advancements
into practical healthcare improvements.

With regards to the use of this web app by clinicians, a
possible improvement to the web app could be "Clinician-in-
the-Loop Testing," where a clinician could participate in the
predictions made by the web app by having the web app identify
certain fundus images that it is unsure of and thus passing
them off to the clinician for a more detailed review. The rate
at which clinicians accept or reject the predictions of the web
app could also be recorded as another metric for performance.
Finally, efficiency benchmarks can be used to demonstrate
the efficiency and speed of the model on different hardware.
For instance, a possible benchmark is throughput, which is
the number of fundus images that can be classified within a
certain amount of time. Other measures, such as CPU usage,
memory consumption, and power draw of the web app when
predicting can also be measured. These benchmarks are heavily
affected by the quality of hardware used. Since rural clinics
will often be limited to hardware with limited computing power,
these metrics help further quantify the computing resources
that the pipeline may require to ensure that it does not exceed
computational limits.
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