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Abstract—Accurate modeling of wireless channels is essential
for the design and optimization of next generation communi-
cation networks such as 6G. Traditional ray tracing techniques
provide physically consistent simulations but suffer from high
computational complexity, limiting their scalability and real-
time applicability. This work proposes a neural network based
surrogate model for ray tracing in complex 3D environments.
This approach leverages multilayer perceptrons to predict the
interaction of electromagnetic rays with surfaces, estimating
critical channel parameters such as gain, time-of-flight, and
propagation angles. The model is trained and validated using
datasets generated by the Sionna ray tracing engine in both
indoor and large urban scenarios. Results demonstrate that the
neural surrogate achieves low prediction errors in key metrics
and generalizes well across different environments. This neural
ray tracing framework offers a scalable, flexible, and efficient
alternative to conventional physics based simulators.
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I. INTRODUCTION

In recent years, many 6G network research topics have re-
quired the simulation of specific radio environments using ray
tracing. This requirement arises from the need for a spatially
consistent correspondence between a physical location in a
scene and the impulsive channel response, a feature not readily
provided by widely used stochastic channel models. The main
challenges for the design, deployment and optimization of
wireless communication networks are based on understanding
and accurately modeling the characteristics of the real-time
propagation channel, allowing fast and accurate simulations of
complex scenarios such as massive Multiple-Input Multiple-
Output (MIMO) systems and the deployment of digital twins,
among others [1].

The physics of such ElectroMagnetic (EM) wave propaga-
tion between a transmit and receive point are analytically given
by the Maxwell equations: the transmitted wave undergoes
different interactions with the environment (e.g., reflection),
and the receiver gets the wave through multiple paths with
different times-of-flight and powers, and from different direc-
tions. However, solving the Maxwell equations with boundary
conditions requires in-depth knowledge of the propagation
environment, therefore, classically modeling EM propagation
is intractable for most engineering applications [2].

Ray tracing-based simulators are commonly employed for
modeling wireless channel properties [3]-[6]. In the ray tracing

process, electromagnetic rays are uniformly launched from the
transmitter antenna, undergoing reflections, transmissions, and
diffractions with various buildings and floors, ultimately reach-
ing the receiver locations. These ray paths and interactions
yield valuable wireless channel information, such as channel
gain, channel transfer function, and channel impulse response
[7].

While ray tracing has been a popular tool in wireless
channel modeling, its computational complexity escalates with
the number of ray-object interactions. To address these needs,
neural network based forward surrogate models emerge as an
attractive solution.

A neural network is a mechanism that takes inputs and
learns associations to predict some outputs [8]. Artificial
Neural Network (ANN) models are gaining importance in
the field of predictive modeling because of their capability to
model nonlinear relationships in a high-dimensional dataset.
ANN models can predict a complex relationship between
variables, which is not otherwise possible with other models
such as logistic regression models [9].

ANN models work on the principles of biological neural
networks containing nodes (analogous to cell bodies) that com-
municate with other nodes through connections (analogous to
axons and dendrites) [10]. An ANN consists of an input layer,
hidden layers and an output layer while the information is fed
into the model through the input layer, processed through the
hidden layers and put out from the output layer [9] (Figure 1).

Inputlayer

Hidden layers Output layer

— Output

Figure 1. Structure of a neural network showing input features, hidden layers
for pattern learning, and output neurons representing predicted quantities.
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Among the main types of neural network models generally
used in predicting, Multi-Layer Perceptron (MLP) stands out.
It is one of the feedforward networks where the input values
are multiplied with their corresponding weights and fed into
the hidden layer while the hidden layer process transfers the
weighted input to the output layer with values of multiplied
weights corresponding to the output layer. MLP uses the
backpropagation algorithm to recalculate the weights [9]. It
uses commonly conventional activation functions such as the
Sigmoid function or the Tanh function, however, any non-
linear and continuous function, such as Rectified Linear Units
(ReLU), is suitable for use in an MLP [11].

The major highlights of this model are as follows [12]:

o The neural network contains one or more intermediate
layers between the input and the output nodes, which are
hidden from both input and output nodes.

o Each neuron in the network includes a non-linear activa-
tion function that is differentiable.

o The neurons in each layer are connected with some or
all the neurons in the previous layer.

Then, the objective of this paper is to train neural networks
to predict interactions between wireless beams and objects
in a three-dimensional environment. This approach involves
simulating ray-surface interactions to estimate transmission-
reception paths, considering characteristics such as time of
flight and gain. The proposed neural network learns how
surfaces impact wireless ray propagation, predicting factors
such as attenuation and direction of the outgoing ray based on
attributes of the incident ray. This approach offers the advan-
tage of applying to new scenarios, improving its versatility to
adapt to different situations.

Compared to existing neural ray tracing methods in the
literature, the proposed work excels in scalability and flexi-
bility, accommodating diverse levels of geometric complexity
while maintaining high-quality channel prediction. This neural
ray tracing framework is validated across indoor and outdoor
scenes and shows potential for real-time or large-scale de-
ployment, particularly in the context of next generation 6G
communication systems and digital twin technologies.

The remainder of this paper is organized as follows: Section
IT gives a short overview of the work related to the idea to
be put forward. Section III details how datasets are generated
using the Sionna ray tracing engine in both indoor and outdoor
3D scenes. Section IV introduces the architecture of the pro-
posed model. Section V explains the model training process.
Section VI presents three metrics: Overall Error, Geometry
Error, and Average Delay Mean Absolute Error (MAE), to
assess how accurately the model predicts the physical behavior
of wireless paths compared to ground-truth data. Section VII
presents the results of the proposed neural ray tracing model
in various scenarios and evaluates its performance using the
defined metrics. Finally, Section VIII summarizes the main
contributions of the paper and outlines potential directions for
future research.

II. RELATED WORK

Physically based simulation guided by neural networks is
gaining popularity across various scientific domains. In the
field of applied and computational electromagnetics, several
approaches leveraging neural networks have been proposed
to accelerate or approximate ray-based simulations [13]-[15].
For instance, Jin et al. [15] redefine ray trajectory generation
as a sequential decision making problem, introducing the
SANDWICH framework, a fully differentiable, scene aware
neural architecture that jointly learns optical, physical, and
signal properties of the environment.

On the other hand, other approaches from the domain of
neural rendering and computer graphics also employ neural
networks to model ray tracing and light transport. Knodt et al.
[16] explicitly model light transport between scene surfaces
using disentangled neural representations of geometry and
reflectance, allowing for efficient inverse rendering. Zeng et
al. [17] propose MirrorNeRF, a neural rendering framework
capable of learning accurate geometry and mirror reflection,
supporting scene manipulations such as adding new objects or
modifying reflective surfaces and synthesizing corresponding
reflections.

Many of these neural surrogates aim to learn the scattering
process involving obstacles in free space.

A recent work addressing this task is WiNeRT [2]. In
the authors’ approach, a neural surrogate to model wireless
electromagnetic propagation effects in indoor environments
is implemented. Such neural surrogates provide a fast, dif-
ferentiable, and continuous representation of the environment
and enable end-to-end optimization for downstream tasks.
Specifically, they render the wireless signal (e.g., time of flight,
power of each path) in an environment as a function of the
sensor’s spatial configuration (e.g., placement of transmit and
receive antennas). That is to say, their approach inscribes
within the ray tracing channel modeling paradigm, where
wireless propagation is precisely modeled by tracing wireless
rays.

Another work in this area is RayProNet [7]. The authors
introduce a novel machine learning-empowered methodology
for wireless channel modeling. The key ingredients include a
point-cloud-based neural network and a Spherical Harmonics
encoder with light probes. Their approach offers the flexibility
to adjust antenna radiation patterns and transmitter/receiver
locations, the capability to predict radio path loss maps, and
the scalability of large-scale wireless scenes. This work is
validated in various outdoor and indoor radio environments.

Additionally, widely adopted datasets such as DeepMIMO
[18] support the training and benchmarking of data-driven
channel models in ray-traced environments, and are instrumen-
tal in standardizing the evaluation of neural surrogates. More
recently, physics-informed learning techniques have been pro-
posed to embed propagation physics into deep models, im-
proving generalizability and interpretability in scenario aware
channel modeling [19].
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III. DATA COLLECTION

The datasets in this project are generated using an open-
source ray tracing simulator: Sionna [20]. Sionna Ray Tracing
(RT) is a ray tracing extension for radio propagation modeling
that is built on top of Mitsuba 3 [21] and TensorFlow [22].
Sionna RT relies on Mitsuba 3 for the rendering and scene han-
dling, e.g., its XML-file format, as well as the computation of
ray intersections with scene primitives, i.e., triangles forming
a mesh modeling a surface [23]. Scene files for Mitsuba 3
may be created, edited, and exported using the popular open-
source 3D content creation suite Blender [24] and the Mitsuba-
Blender add-on. The dataset is generated in various scenes
such as a cube (small indoor room scene) (Figure 2), and
Munich (large urban city scene) (Figure 3).

Figure 2. Cube: small indoor room scene which contains marble material.

Figure 3. Munich: large urban city scene with a rich material composition,
including both marble and metal.

The first scene contains marble material consistent with its
simple indoor layout. In contrast, the second scene features a
richer material composition, including both marble and metal,
to better reflect the diversity of an urban landscape [25].
Table I shows the properties of these materials, as relative
permittivity (¢,-) and conductivity (o).

TABLE I. CONSTITUENT MATERIAL PROPERTIES (RELATIVE
PERMITTIVITY €, AND CONDUCTIVITY o)

Material name e o [S/m]
Marble 7.074 0.018
Metal 1 107

As described in Table II, datasets comprise 20 transmitter
locations with Third Generation Partnership Project (3GPP)
TR 38.901 pattern [26] and 40 sampled receiver locations with
short dipole pattern with linear polarization pattern for each
scene. To position the transmitters and receivers in the scene, a
random uniform sampling strategy was adopted. Specifically,
antenna positions were sampled uniformly in the plane within
the bounding box of the scene, centered around the scene’s
geometric center. A fixed random seed was used to ensure re-
producibility. This uniform spatial sampling avoids positional
bias and ensures that the antennas are evenly distributed across
the area of interest (671 m? for small indoor room scene and
4,082,653 m? for large urban city). The operating frequency
is 3.5 GHz. Reflection is activated whereas diffraction and
scattering are not activated.

TABLE II. DATA COLLECTION: CONFIGURATION DETAILS OF DATASETS

Dataset

Cube

Munich

Scale

Covered area (m?)
Transmitters
Receivers
Antenna pattern

Small indoor room
scene

671

20

40

Transmitter: 3GPP
TR 38.901[26]
Receiver: short
dipole pattern with
linear polarization

Large urban city

4,082,653

20

40

Transmitter: 3GPP
TR 38.901[26]
Receiver: short
dipole pattern with
linear polarization

Frequency (GHz) 35 35
Number of | 3 3
bounces

Number of rays to | 108 106
trace

Reflected paths are | True True
computed

Diffracted  paths | False False

are computed
Scattered paths are
computed

False False

IV. NEURAL MODEL

The general goal of the project is to contribute to the
advancement of next generation networks by designing, de-
veloping, and testing an innovative neural network based ray
tracer. The model takes three configuration parameters as
input: a 3D representation of the environment and the spatial
coordinates of the transmitter and receiver devices. The model
predicts the wireless scene where the output is a variably-
sized set of K paths. A path consists of a sequence of ray
segments (r, r+1 ...) connecting a transmitter to a receiver.
Each path encodes three channel attributes: gain (ay), time-
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of-flight (1) and angles (®). This approach allows for the
effective encoding of interacting objects, with a particular
emphasis on learning geometric features. Therefore, the final
state is modeled as an evaluation of the interactions the ray
experiences with its environment which is represented as a 3D
mesh composed of F faces and V vertices, where each face
corresponds to some surface on a wall.

An MLP model is built to predict the transformation to the
incident ray (the new direction (d](f“)) and gain (affﬂ))).
The network predicts an attenuation factor s and a rotation
matrix A (4-dim Euler-Rodrigues parameterization), which is
then used to determine the updated gain and direction.

Specifically, this neural model consists of two MLP net-
works, an MLP spatial network with 2 hidden layers, each with
64 hidden units and ReLLU activation to encode EM properties
specific to a spatial region, but independent of the incidence
direction and an MLP directional network with 1 hidden layer
with 64 hidden units and ReLU activation which predicts the
rotation a ray incident taking into account the direction.

The first network takes as inputs: f;, a one-hot encoded
identifier of the face where the relay point xffﬂ) lies; n;, the
surface normal vector at that face, representing the geometric
orientation of the surface; and, b;, a 3D conditioning vector
based on signed distances (sdf). These signed distance func-
tions measure how far a given coordinate (e.g., the transmitter,
receiver, or relay point) is from the face f;, taking into account
whether the point is inside or outside the face. This helps the
network contextualize the interaction based on geometry.

The second network takes as input the spacial encoding v;
(output of the first network) and incorporates the direction of
incidence d§:) (the direction of the incoming ray) to model
how the ray interacts with the surface, including how much of
it is reflected or transmitted, and how its direction changes.

The final output is scaling and additive coefficients s for the
gain magnitude (agﬂ) = slag)+52) and 4-dim parameters for
rotation (based on Euler-Rodrigues formulation). The rotation
parameters p; are mapped to a 3x3 rotation matrix A to
transform the incident to outgoing ray dg“) = Adg').

The new angles and time-of-flight have been calculated from
the new direction. The new angle <I>,(:+1) describes the hori-
zontal direction in which the ray travels after the interaction,
measured in the XY plane, then it has been calculated using the
arctangent function which gives the angle between the Y and
X components of the direction vector. The new time-of-flight
T}ET+1) represents the time it takes for the ray to travel from the
current point of interaction to the next point where it hits an
object or reaches the receiver. It is a measure of propagation
delay. To calculate it, the path of the ray is simulated using
the Mitsuba renderer. For each predicted outgoing direction: a
new ray is created starting from the interaction point; this ray
is traced through the 3D scene using Mitsuba’s ray_intersect
method; if the ray intersects with an object, the distance along
the ray to that point is recorded; and, this distance is then
divided by the speed of light (3x10® m/s) to convert it into
time. Only rays that intersect with valid surfaces are used; rays

that go off to infinity are ignored.

V. TRAINING

In this section, the implementation details are introduced in
the training settings of this project.

In these experiments, K rays are initially launched om-
nidirectionally from the transmitter location, agnostic to the
environment and location of the receiver location. For each
ray, its interaction with the environment is evaluated. These
data are separated into training and validation sets. Among
them, about 85% are used for training, with the remaining
15% reserved for validation.

The MLP architecture models were coded in Python 3
(v3.10.6), using the PyTorch framework (v2.7.0), while Mit-
suba 3 (v3.5.2) was employed for physically based rendering
and ray intersection computations. Supporting tools include
NumPy (v1.23.5) and SciPy (v1.15.2) (Rotation module) for
quaternion operations.

The models were trained and tested on a laptop computer
with a GPU environment NVIDIA GeForce RTX 2070 and 8
GB of RAM. Each of these models is trained in a supervised
setting for 100 epochs with a learning rate of 0.001 and
batch size of 1. Adam optimizer and the Mean Square Error
(MSE) loss function for scalar-valued attributes and cosine
distances loss function between angular attributes are utilized
for received path loss optimization in this project. Set based
Channel Loss compares two sets of multi-path channels:
the predicted set and the ground-truth set. This comparison
provides feedback to improve model training. To compare two
paths the difference between each pair is measured. For scalar
attributes, the differences directly are calculated whereas for
angular attributes, the angular difference by treating the angles
as unit vectors in Cartesian coordinates is measured and using
a cosine-based distance.

This approach ensures that the loss considers both the
matching of paths and the accuracy of their attributes, leading
to meaningful guidance for training the model.

Training time for the model was approximately 4.70 seconds
per epoch for indoor scenes and 0.03 seconds per epoch
for outdoor scenes on an NVIDIA RTX 2070 GPU. The
computational complexity scales linearly with the number
of rays and interactions due to the feedforward architecture
of the MLP. This efficiency enables the training of larger
models or generalization to new environments using standard
computational resources.

The inputs include normalized geometric features such as
surface normals and signed distance functions, while face iden-
tifiers are one-hot encoded. The model architecture, described
in Section IV, comprises two MLPs with ReLU activations,
trained jointly to predict path direction and gain.

VI. EVALUATION METRIC

The evaluation metric serves as a quantitative measure
to assess the performance of the proposed method in the
prediction. In this work, absolute error metrics are used rather
than relative errors, because some channel parameters, such
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as gain and delay, can be close to zero, which would make
relative errors unstable or less meaningful. Therefore, absolute
errors provide a more reliable and interpretable assessment of
the accuracy of the prediction. Three evaluation metrics are
considered to evaluate this approach:

o Opverall prediction error ("Overall’): This metric measures
how well the entire set of predicted paths matches the set
of ground-truth paths. To compare the two sets of paths
(predicted vs. ground truth), correspondences between
them are established using a linear sum assignment
problem (also known as the Hungarian algorithm). This
algorithm finds the best one-to-one matching between
predicted and ground-truth paths that minimizes the total
error. The final error considers all relevant path attributes,
including gain, angles and time-of-flight. A lower value
indicates better overall alignment between predicted and
true multipath components.

N

1 R R .
NZ (|ak —ag| + | — 7| + | P — ‘I)k|)
k=1

Ertoveran =

where:

— N is the total number of predicted paths.

— ag and ay, are the true and predicted gain of path k,
respectively.

— T, and T are the true and predicted time-of-flight of
path k.

— @, and ¥y, are the true and predicted angles of path
k.

o Geometry prediction error ("Geometry’): This is a more
focused version of the overall error. It still uses the match-
ing mechanism from metric, but instead of evaluating
all attributes, it specifically looks at two that describe
the geometry of the path: angles and time-of-flight. This
metric evaluates whether the predicted rays follow the
same geometric routes as the ground truth, meaning
they bounce off the same surfaces and follow similar
trajectories between the transmitter and receiver. As with
the overall error, lower values indicate better geometric
consistency.

1 ) )
Errgeometry = N Z (‘Tk - Tk| + |(I)k - (I)k:|)
k=1

where:

— N is the total number of predicted paths.

— T3, and 73 are the true and predicted time-of-flight of
path k.

— &, and &, are the true and predicted angles of path
k.

o Average Delay Time - MAE ("AvgDelay’): This metric
summarizes the average time delay (7) of all the predicted
paths in a channel and compares it to the average delay of
the ground-truth paths. For each path, its average time-of-
flight is calculated and weighted by the linear power of
the path. Then, the Mean Absolute Error (MAE) between

the predicted average delay and the true average delay is
computed. Lower values here indicate that the temporal
structure of the predicted channel closely matches the true
one.

Yoho1 Ok Tk Sy k- F

N N -
D k=1 Ok D p—1 G

Erravgfdelay =

where:

— N is the total number of predicted paths.

— ag and ay, are the true and predicted linear gains of
path k.

— 71, and 7y are the true and predicted time-of-flight of
path k.

VII. EXPERIMENTAL RESULTS

This section presents the performance evaluation of the
proposed neural network based ray tracing model through
experiments conducted in both indoor and outdoor environ-
ments. The model’s ability is evaluated to predict key wireless
propagation characteristics, including path gain, direction or
time-of-flight, using the datasets generated with the Sionna
ray tracing simulator. Performance metrics, as described in
previous section, are used to evaluate the model’s accuracy,
generalization, and ability to learn complex interactions in
realistic 3D scenarios.

Table III presents the quantitative evaluation of the model’s
performance in two distinct scenarios: a small indoor room
and a large urban city environment. The results are reported
across three metrics: Overall, Geometry and AvgDelay.

TABLE III. QUANTITATIVE RESULTS. COMPARING ERRORS OF THIS
APPROACH IN TWO DIFFERENT SCENARIOS

Metrics | Small indoor room scene | Large urban city
Overall 2.374163 2.313505
Geometry 2.372437 2.312989
AvgDelay 0.001727 0.000516

The Overall error reflects the model’s ability to predict
complete ray paths accurately. The values are quite similar
across both scenes (2.37 for the indoor scene vs. 2.31 for the
city), indicating consistent overall performance regardless of
scene complexity.

The Geometry error focuses specifically on the accuracy of
the predicted ray geometry. Again, the model shows similar
performance in both environments (2.37 vs. 2.31), suggesting
that it effectively captures the geometric characteristics of the
propagation paths.

The AvgDelay error, measured as MAE, shows a greater
difference between scenes. The model achieves better delay
prediction in the large urban city (0.000516) compared to the
indoor room (0.001727). This may be attributed to the richer
variety of multipath effects in urban settings, which enhance
the model’s ability to learn delay patterns effectively.

When compared to WiNeRT [2], the proposed model
demonstrates competitive performance. Although WiNeRT
achieves a superior geometry error of 0.084 in controlled
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indoor settings, the AvgDelay error of this model (0.0005
in urban environments) is significantly lower than WiNeRT’s
best-case error of 0.828. These results underscore the model’s
strong predictive accuracy, particularly in complex outdoor
scenarios with greater environmental variability.

A time performance evaluation is also proposed comparing
this model to traditional ray tracing (Table IV).

TABLE IV. RUNTIME COMPARISON BETWEEN THE PROPOSED MODEL
AND SIONNA RAY TRACING SIMULATOR

Dataset Small indoor | Large urban
room scene city

Runtime (neural | 470.07 s 297 s

model)

Runtime (Sionna ray | 1.07 s 14.39 s

tracing)

The runtime comparison between the proposed neural model
and the traditional Sionna ray tracing simulator reveals inter-
esting behavior across different environments. As shown in
Table IV, the neural model achieves significantly faster infer-
ence in the large urban city scenario (2.97 seconds vs. 14.39
seconds for Sionna), demonstrating its potential for efficient
large-scale deployment. However, in the small indoor room,
the neural model exhibits a notably higher runtime (470.07
seconds compared to 1.07 seconds with Sionna). This disparity
is likely due to the higher density of multipath reflections in
indoor environments, increasing the computational load for the
neural network.

When compared to RayProNet [7], which leverages con-
tinuous neural point-field representations for efficient runtime
performance, the proposed model exhibits a more scene de-
pendent behavior. RayProNet achieves inference times under
100s for complex indoor and outdoor environments, while
the proposed model excels in outdoor scenarios with sparse
geometries.

Overall, the proposed neural network based model demon-
strates robust generalization across diverse environments, with
notable strengths in predicting propagation delays and efficient
runtime performance in large-scale urban settings. These find-
ings suggest that the model is well-suited for applications re-
quiring high accuracy and scalability in wireless environments.

VIII. CONCLUSION AND FUTURE WORK

In this work, a neural network based surrogate model for
ray tracing in wireless communication environments has been
presented. By learning how electromagnetic rays interact with
3D surfaces, this proposed model effectively predicts critical
channel attributes such as gain, angle of departure/arrival,
and time-of-flight. This approach has been validated using
the Sionna ray tracing simulator in both indoor and outdoor
settings, demonstrating consistent performance across different
levels of scene complexity. Notably, this model shows strong
generalization capabilities and achieves low error in average
delay prediction, especially in urban environments where
multipath effects are more diverse.

These findings suggest that neural ray tracing offers a
scalable and efficient alternative to traditional physics-based
simulators, with the potential for real-time or large-scale
deployment in the context of 6G and digital twin technologies.

Despite the promising results, this study has several lim-
itations that should be addressed in future work: simplified
material properties, the materials used in the dataset have
fixed relative permittivity and conductivity values. While this
ensures consistency, it does not capture the variability found in
real-world materials; limited scene diversity, only two scenes
were considered for dataset generation. These environments,
while representative of some scenarios, do not encompass
the full range of conditions encountered in practical wireless
communication system; exclusion of diffraction and scattering,
the dataset was generated without accounting for diffraction
and scattering effects. These phenomena, however, can sig-
nificantly influence propagation characteristics, particularly in
environments with sharp edges or complex surfaces; and,
fixed frequency, all experiments were conducted at a single
operating frequency of 3.5 GHz.

Future work could explore the scalability to larger and more
diverse scenes, extend to additional propagation phenomena,
and use different frequency ranges to further enhance the
robustness and applicability of the model. In particular, future
extensions of this work could target environments such as
multi-floor indoor settings and dense urban areas with complex
obstructions. The inclusion of additional physical effects like
diffraction and scattering would improve modeling in scenar-
ios with sharp edges and rough surfaces. Evaluating the model
at other frequency bands, especially sub-THz ranges relevant
to 6G, would further validate its generalizability. Moreover, in-
tegrating neural surrogates with physics-based modules could
help balance efficiency with physical interpretability. Finally,
online learning or reinforcement learning approaches could
enable the model to adapt in real time within digital twin
applications.
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