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Abstract—Global wheat production suffers annual losses of
~157 million metric tons due to pests, causing food insecurity and
economic damages exceeding $70 billion. Traditional detection
methods, such as manual inspections, are slow, labor-intensive,
and often fail to identify early infestations, forcing farmers to use
excessive pesticides. To address this, an image analysis system
driven by Artificial Intelligence (AI) was developed, trained on pest
imagery, and deployed via an accessible web application, enabling
early detection to prevent crop losses. The IP102 dataset with
wheat pest categories only was used to train the Machine Learning
(ML) models. Two approaches were used to build an ML model
that can detect wheat pests. The first employed transfer learning on
MobileNetV2, and it gave the best validation accuracy of 55.32%.
The second used ConvNeXtLarge to extract robust image features
of 9 categories of wheat pests. Four ML algorithms, K-Nearest
Neighbors (KNN), Random Forest, Multi-Layer Perceptron (MLP),
and XGBoost, were trained and evaluated. The MLP model,
optimized with 30 epochs and a learning rate of 0.001, achieved
the highest validation accuracy of ~79% and test accuracy of ~75%.
The system was integrated into a user-friendly web application,
paired with a low-cost, WiFi-enabled camera device for field
image capture. This system facilitated early-stage pest detection,
enabling farmers to remotely monitor and take preventative
measures promptly. This AI-driven model can contribute to
efficient, sustainable, and precise agricultural practices and bolster
global food security.

Keywords-Wheat pest identification; Deep Learning; Machine
Learning; MobileNetV2; ConvNeXtLarge; Internet of Things.

I. INTRODUCTION

Wheat is the second most produced grain in the world, 785
tons in 2023-24 [1], and the US is the 4th largest producer.
Wheat provides 21% of the global food requirement, but pests
destroy ~157 million tons of grain/yr, causing food insecurity
[1][2]. 20–40% of global crop loss/yr due to pests: $70 billion
loss/yr [3].

The most common wheat pests are Aphids, Green bugs,
Ceredonta Denticonis, Spider mites, Penthaleus Major, Wheat
Blossom midges, and Wheat sawflies. In current pest monitor-
ing methods, farmers rely on reactive and delayed pest detection,
leading to irreversible crop damage and overuse of pesticides.
They rely on visual monitoring, which is time-consuming and
labor-intensive. Some of them use satellite/drone imagery, but it
provides low-resolution images and delayed information, which
can lead to missed detections and hinder early intervention
efforts.

Current pest monitoring challenges include variable life cycle,
nighttime activity, being hidden within plant canopies, and the
need for precise timing to catch peak activity. The overuse of
broad-spectrum pesticides increases pest resistance.

AI-powered agricultural image analysis is crucial in modern
agriculture [4]. The AI-driven image analysis in wheat pest
control can enable continuous monitoring and early detection
of pests to prevent yield loss. The Deep Learning (DL)
based classification and detection techniques could be very
effective in identifying the type of pest from the images.
Specifically, different types of Convolutional Neural Network
(CNN) architectures can identify image features easily and
can be effective in pest classification. This can enable rapid,
scalable, and precise pest identification. Figuring out a way to
put a pest detection model in a device and be able to deploy
it in the field will increase the effectiveness of early detection.

In this study, we used 2 different approaches to build
classifiers to identify wheat pests. In the first approach, we
performed training on transfer learning on MobileNetV2 [5] by
removing the top layer and adding some custom neural network
layers. In the second approach, we used ConvNeXtLarge
[6] model to extract features from the images and used the
features and dataset to build various classifiers using techniques
like KNN, Random Forest, XGBoost, and MLP. The best-
performing model was used with a web app to classify different
types of pests. The web app gets input from a device that
captures images of wheat pests in the field. The detection
information is displayed in a web application with suggestions
for remedy.

The rest of the paper is laid out as follows: Section II
discusses the existing research done in the pest identification
and control domain. Section III elaborates on the steps that
were followed to perform the study and build the required ML
model and device with the web application. Section IV contains
the results from various experiments performed. In Section V,
we present the behavior of the models and the results obtained
from different experiments. Finally, Section VI concludes the
research and mentions future work.

II. RELATED WORK

Multiple studies have been done to identify wheat crop
diseases. The study by Mundada and Gohokar [7] focused
on the detection and classification of pests in greenhouses
using traditional image processing techniques. Images of
infected leaves were captured, and properties like entropy,
mean, standard deviation, contrast, energy, correlation, and
eccentricity were extracted. These features were then used to
train a Support Vector Machine (SVM) for classification. They
developed a software prototype system for early pest detection
in greenhouses, achieving a training accuracy of 100% with the
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SVM classifier. By utilizing featurization techniques, images
from the existing dataset were filtered to form a new dataset,
enhancing the ML model’s effectiveness.

Shi et al. [8] conducted research on pest and disease
detection in winter wheat using spectral indices and kernel
discriminant analysis. Hyperspectral reflectance datasets at
both leaf and canopy levels were utilized, involving fourteen
Spectral Vegetation Indices (SVIs) as input. The approach
showed better performance over conventional linear methods,
achieving classification accuracies between 76% and 95% for
various infestations.

Haider et al. [9] explored a generic approach to wheat disease
classification, incorporating field surveys, expert opinion, and
crowd-sourced data. Using symptoms as predictor variables, a
decision tree model was developed for disease classification,
utilizing a reduced error pruning algorithm (RepTree). This
approach was supplemented by expert opinions to verify data,
achieving a classification accuracy of 97.2% with a CNN
model. Their methodology demonstrates a blend of traditional
approaches with modern data collection methods.

The research by Kasinathan et al. [10] delved into insect
classification and detection using modern ML techniques. They
utilized datasets, such as the Wang dataset and the Xie dataset,
extracting nine insect shape features after preprocessing images
to grayscale. These shape features were classified using various
algorithms, like Artificial Neural Network (ANN), SVM, KNN,
and Naive Bayes (NB). The study demonstrated that CNNs
provided the highest classification accuracy of 91% on certain
insect datasets, showcasing a gradual shift towards more
complex ML methods.

Abbas et al. [11] employed fuzzy logic-based histogram
equalization to enhance image quality for better disease
recognition in wheat leaves. This approach leverages fuzzy logic
to improve image contrast, leading to more accurate disease
recognition. The application of this technique represents an
advancement beyond basic image processing, enhancing the
quality and interpretability of images for subsequent analysis.

In their work, Kang et al. [12] proposed a DL model for
pest detection, introducing an attention mechanism-enhanced
single-stage object detection framework with multiscale feature
fusion. This model focused particularly on identifying small-
scale pests in complex backgrounds. It outperformed models,
such as You Only Look Once (YOLO), EfficientDet, RetinaDet,
and MobileNet, achieving the highest mean Average Precision
(mAP) value of 0.91.

Xu et al.’s research [13] on wheat leaf disease identification
leveraged an integrated DL framework called Recursive Feature
Elimination-Convolutional Neural Network (RFE-CNN), which
incorporates Residual Channel Attention Blocks (RCAB),
Feedback Blocks (FB), and Elliptic Metric Learning (EML). It
begins with using parallel CNNs to extract features from healthy
and diseased leaves, optimizing them with RCABs, training
them with FBs, and concluding with a CNN for classification.
This approach resulted in an overall classification accuracy of
98.83% and a maximum testing accuracy of 99.95%.

Liu et al. [14] introduced PestNet, a DL model for multi-class

pest detection and classification. PestNet blends a Channel-
Spatial Attention (CSA) mechanism with a CNN backbone,
utilizing a Region Proposal Network (RPN) and a Position-
Sensitive Score Map (PSSM). This integration of attention
mechanisms and advanced network architectures produced
an mAP of 75.46%, outperforming other methods, indicating
complexity in both design and application.

Chamara et al.’s [15] project is an effort toward real-time
crop monitoring utilizing edge devices. They deployed a stack
of Deep Convolutional Neural Networks (DCNN) models:
CropClassiNet for crop type classification, CanopySegNet
for canopy cover quantification, PlantCountNet for plant and
weed counting, and InsectNet for insect identification. With
CropClassiNet achieving 94.5% accuracy and CanopySegNet
92.83% accuracy, the project illustrated an implementation of
DCNNs for integrated crop management solutions.

There are multiple dimensions explored in the earlier re-
search; however, no ready-to-use practical solution is currently
available to be used in the field. Some of them built edge
devices, but they are not power-efficient and can not run for
long in the field. The solutions also lack real-time monitoring
capabilities. In our study, we used the IP102 dataset [16]
with DL to create a real-time system for identifying pests in
wheat crops. Our method improves upon past approaches by
combining ConvNeXtLarge for feature extraction and MLP
for classification, making it both accurate and efficient. Unlike
earlier studies that relied on manual inspections or limited
models, our solution includes a solar-powered device and a
web app for easy, continuous monitoring. This makes pest
detection faster, cheaper, and more practical for farmers, helping
reduce crop losses early on. Table I compares the results and
techniques of existing literature with this research.

III. MATERIALS AND METHODS

A. Dataset

A database of images of pests was downloaded [16], and
the images of wheat crop pests were extracted (9 categories).
The distribution of images in each class is presented in Figure
1. The wheat crop pests database was split into training (2048),
validation (340), and testing (1030) sets.

Figure 1. Distribution of images of wheat crop pests in the dataset.

B. Deep Learning models

1) MobileNetV2: A lightweight CNN model with 3.5M
parameters and the ability to run on resource-constrained mobile
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TABLE I. SUMMARY OF DATASETS, TECHNIQUES, AND RESULTS FROM DIFFERENT STUDIES.

Ref Dataset Type ML/DL Technique Results
[7] Camera captured whiteflies &

aphids images
SVM Training to the SVM is done

with 100% accuracy
[8] Leaf (314) and canopy (187) level

hyperspectral reflectance datasets
Spectral Vegetation Indices-based Ker-
nel Discriminant Approach (SVIKDA)

At leaf level: 89.2%
At canopy level: 87%

[9] 2324 symptoms samples from our
symptom-based text dataset

Decision Tree, Error Pruning Tree (Rep-
Tree), CNN

97.20%

[10] Wang dataset (225 images) with
nine insect classes and Xie dataset
with 24 classes

ANN, SVM, KNN, and NB classifier 91%

[12] Rice pest images with complex
backgrounds and small-sized pests

Attention Mechanism, Multi-Scale Fea-
ture Fusion, Single-Stage Object De-
tection Model, YOLO, EfficientDet,
RetinaDet, and MobileNet

91% mAP

[13] CGIAR, Plant Diseases, LWDCD
2020

RCAB, FB, EML, and CNN 98.83%

[14] Multi-class Pest Dataset 2018
(MPD2018) with over 80,000 im-
ages and 580,000 labeled pests
across 16 classes

CNN with CSA, RPN, and PSSM 75.46% mAP

[15] 43,000 field crop images collected
offline

Stack of four DCNN models: Crop-
ClassiNet, CanopySegNet, PlantCount-
Net, and InsectNet

94.5% accuracy

This
research

IP102 dataset with wheat pest cate-
gories

MobileNetV2 (transfer learning), Con-
vNeXtLarge (featurization), KNN, Ran-
dom Forest, MLP, and XGBoost

Validation accuracy: 78.72%
Test accuracy: 74.51%

devices. This model introduces the concept of inverted residuals
with linear bottlenecks. This approach preserves the input and
output dimensions while performing the intermediate layers in
a lower-dimensional space, reducing the computational cost.

2) ConvNeXtLarge: A CNN model with 197.7M parameters,
with weights trained on the ImageNet dataset. ConvNeXt is a
type of neural network that is built based on another design
called Vision Transformers (ViTs). It uses a technique called
depth-wise convolution. It is a special way of processing
images where the network looks at different parts of the
image separately. This technique helps to reduce the amount
of calculations needed while still maintaining accuracy. We
have used this model to featurize the images.

C. Machine Learning

The development of the ML model follows two main
approaches. The first approach uses transfer learning on
MobileNetV2, and the second approach uses feature extraction
using ConvNeXtLarge and the application of classical ML
techniques on the output features. Transfer learning with
MobileNetV2 is similar to featurizing using MobileNetV2
and building a classifier using MLP. The dataset was featurized
using ConvNeXtLarge and those features were used to create
different ML models. The performance of these models was
compared with the performance of the models created using
MobileNetV2.

1) Transfer Learning on MobileNetV2: Considering the size
of our dataset, it will not be an appropriate approach to train
an architecture from scratch. This is where transfer learning
works better, where we have the possibility of building high-
performing models even with smaller datasets. This is the
reason we decided to take this approach.

As mentioned in the left part of the flowchart in Figure 2,
the final layer of a pre-trained MobileNetV2 model is removed
to perform transfer learning. GlobalAveragePooling2D was
applied to the output from the second-to-last layer to reduce
the spatial dimensions of the input tensors. Next, a neural
network layer with 100 neurons and a Rectified Linear Unit
(ReLU) activation function was added. Finally, another neural
network layer with 9 neurons and a softmax activation function
was added to give the classification probabilities.

The model is then trained using the training dataset and
then validated on the validation dataset. While training, the
hyperparameters, such as learning rate (between 0.0001 and
0.01) and the number of epochs (between 10 and 50), are tuned
to find the best-performing model. The ranges of learning rates
and epochs are arbitrarily selected, and the plan was to extend
them if the model converges in the right direction. The best
model is then tested on the test dataset, and the performance
is recorded in a Google sheet.

2) ConvNeXtLarge and Classical ML: As shown in the right
part of the flowchart in Figure 2, ConvNeXtLarge without the
last layer was used as a feature extractor to convert the images
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into a set of features, and the extracted features are saved
into a CSV file. Generally, a CNN architecture is designed
to extract various features, such as edges, shapes, etc., and
the extracted features are nothing but a set of numbers. Those
numbers stored in tabular data can be used with classical ML
techniques to build various classifiers. Using ConvNeXtLarge,
we have converted each image into a vector of size 2048. We
have used various classical ML techniques, including KNN,
Random Forest, XGBoost, and MLP, to train a model. The
KNN technique was selected due to its simplicity and ability to
work with fewer resources. During training, the K-values were
varied from 2 to 14, and performance was recorded for the
validation dataset. Similarly, the Random Forest technique is
an ensemble of various decision trees, which are again faster to
run and consume less computational resources. During training,
the number of trees was varied from 10 to 100, and the depth
from 1 to 7, to find the best-performing model on the validation
dataset. The same settings were used for the XGBoost (which
is an improvement on the Random Forest model by adding
gradient boosting to it), and the performance on the validation
dataset was recorded. The MLP technique is one of the simplest
DL techniques and works well with datasets with fewer features.
While training, the number of epochs varied from 10 to 100,
and the learning rate varied from 0.00001 to 0.05; the validation
results were recorded in a Google sheet. The best-performing
model is then tested on the test dataset.

Figure 2. Machine Learning pipeline: steps followed for building ML models.

D. Device Development and Model Deployment

As depicted in the hardware architecture diagram in Figure
3, for the device, the controller is a Seeed Studio XIAO
ESP32S3 Sense, optimized for ML and suitable for real-time
image recognition tasks. The controller has a dual-core 32-bit

processor with a 240 MHz Frequency and 512 KB of SRAM.
The module also has 8 MB of PSRAM that allows it to process
images faster and run them through the neural network model.
The controller is WiFi-enabled, which ensures it can be made
part of the internet, and the captured data can be sent to an
app via the cloud. It includes a built-in camera sensor with a
maximum resolution of 1600 x 1200 pixels, with a Camera
Serial Interface (CSI) connecting the camera to the controller.
The system uses a solar-powered power bank for energy supply
to ensure nonstop working even in a remote setup. As shown
in the firmware flowchart in Figure 4, once the controller
and camera are initialized, an image is captured and saved.
The image is then serialized and sent to the web app for pest
detection, where the type of pest is identified. After each image
capture, the device waits five minutes before capturing the next
image to ensure continuous monitoring. For demonstration
purposes, pest predictions in the app are user-initiated.

Figure 3. Hardware architecture diagram.

Figure 4. Firmware flowchart: logic implemented in the device.

E. Web App

The web app is developed using the Streamlit Python
library and then deployed in the Streamlit cloud. The required
featurizer and model are deployed as part of the app itself.

As shown in the application flowchart presented in Figure
5, when an image is received from the device in the web app,
it is resized to 224 x 224 pixels and then featurized using
ConvNeXtLarge. The image is processed, and the features are
passed through the MLP classifier. The image and prediction
of the model are then displayed to the user. Users can also see
the time of detection and targeted pest removal suggestions.
Each pest prediction is saved in the app for future reference.
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The code for the web application and notebooks used for
featurization and training the models can be found in [17].

Figure 5. Application flowchart.

IV. RESULTS

We have experimented with various ML techniques using
2 approaches. In the first, we performed transfer learning on
MobileNetV2, and in the second, we used the ConvNeXtLarge
model to featurize the images and then used features with ML
techniques, such as KNN, Random Forest, XGBoost, and MLP,
to build various models.

A. MobileNetV2

A total of 25 experiments were performed by varying the
learning rates from 0.0001 to 0.01 and the epochs from 10
to 50. The best validation accuracy of 55.32% was achieved
at a learning rate of 0.0005 with 40 epochs. The variation in
validation accuracies with epochs for different learning rates
is presented in Figure 6.

B. KNN

A total of 13 experiments were performed by varying the K
values from 2 to 14. The best validation accuracy of 66.81%
was achieved at a K value of 8. The variation in validation
accuracies with the K values can be found in Figure 7.

C. Random Forest

A total of 70 experiments were performed by varying the
depth from 1 to 7 and the number of trees from 10 to 100. The
best validation accuracy of 62.98% was achieved at a depth of

Figure 6. MobileNetV2: Validation accuracy vs. epochs for different learning rates.

Figure 7. KNN: Validation accuracy vs. K values.

7 with 70 trees. The variation in validation accuracies with the
number of trees for different depths is presented in Figure 8.

Figure 8. Random Forest: Validation accuracy vs. number of trees for different depths.

D. XGBoost

A total of 70 experiments were performed by varying the
depth from 1 to 7 and the number of trees from 10 to 100. The
best validation accuracy of 71.91% was achieved at a depth of
4 with 50 trees. The variation in validation accuracies with the
number of trees for different depths is presented in Figure 9.
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Figure 9. XGBoost: Validation accuracy vs. number of trees for different depths.

E. MLP

A total of 50 experiments were performed by varying the
learning rates between 0.0001 and 0.01, and epochs between 10
and 50. The best validation accuracy of 78.72% was achieved
at a learning rate of 0.001 with 30 epochs. The variation in
validation accuracies with epochs for different learning rates
is presented in Figure 10.

Figure 10. MLP: Validation accuracy vs. epochs for different learning rates.

F. Results summary

TABLE II. VALIDATION ACCURACIES FOR THE BEST MODELS.

ML Model Validation Accuracy Precision Recall F1 Score
MobileNetV2 55.32% 46% 47% 46%

KNN 66.81% 72% 67% 67%
Random Forest 62.98% 64% 63% 62%

XGBoost 71.91% 74% 73% 73%
MLP 78.72% 77% 77% 77%

Out of all the ML techniques, MLP gave the best validation
accuracy of 78.72%. The final model was then tested with the
test dataset and achieved an accuracy of 74.51%.

As per the confusion matrix in Figure 11, the model has
performed well for most of the categories except "Wheat
sawfly" and "English grain aphid". To make it perform well
for those 2 categories as well, we might need to add more
dataset and clear images for those categories.

G. Real-world test results

The model was deployed with a web application in Streamlit
Community Cloud. The device was connected to the application
using a port forwarder. Once the application is ready, it takes
~6 seconds to perform inference.

Figure 11. MLP: Confusion matrix of test results.

V. DISCUSSION

For MobileNetV2, at a learning rate of 0.01, the accuracy
varied with no consistent improvement as epochs increased,
indicating possible instability, likely due to the higher learning
rate causing weight oscillations. Conversely, at a lower learning
rate of 0.0005, a more stable accuracy was achieved, peaking at
0.5531 with 40 epochs, suggesting better gradual convergence
despite minor fluctuations at 30 epochs. The learning rate
of 0.001 emerged as particularly effective, demonstrating a
continual improvement across epochs, achieving a maximum
accuracy of 0.5362 at 40 epochs.

For KNN experiments, as the K value increased beyond 10,
a decrease in precision was observed, with K = 11, 12, 13, and
14 producing lower precision, reaching a minimum of 0.6255
at K = 14. This trend suggests that larger K values might
oversmooth the decision boundary, leading to underfitting.

Regarding Random Forest, increasing both the number of
trees and the depth contributes to improved accuracy, but with
varying degrees of effectiveness. At a depth of 1, performance
is limited in all tree counts, with the highest accuracy reaching
only 36.17% at 80 and 90 trees. This underperformance
is expected due to the insufficient depth to make complex
decisions. The results suggest that deeper trees offer better
performance, provided that there is a sufficiently large number
of trees to offset the variance associated with deeper models.
However, increasing the number of trees beyond 70 generally
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yields diminishing returns with high-depth models, likely due
to saturation in ensemble benefits.

Regarding XGBoost, the influence of depth is prominent
at levels 4 and 5, where accuracies consistently approach or
exceed 71.91% beyond 50 trees, indicating that deeper trees can
effectively tackle complexity and provide robust performance
as the ensemble size grows. However, with depths 6 and 7, the
incremental gain in accuracy decreases, suggesting a potential
overfitting tendency or saturation, where additional depth does
not necessarily translate to substantial improvements.

Regarding MLP, at a higher learning rate of 0.05, perfor-
mance was moderate with fluctuating accuracies across epochs,
peaking at 70.64% at both 30 and 70 epochs. This suggests
that while a higher learning rate allows for rapid convergence
early on, it may cause instability, leading to non-consistent
improvements. As the learning rate decreases to 0.001, we
observe some of the highest performance metrics, achieving
a maximum accuracy of 78.72% at 30 epochs. This learning
rate allows the model to explore the solution space, leading to
consistent performance and better generalization. Lowering the
learning rate further to 0.0001, the model maintained stability,
with accuracies consistently high, peaking at 77.02% at both
80 and 90 epochs. This stability reflects the advantage of
smaller learning rates, although it requires more epochs to
reach effective solutions.

Overall, the best accuracy achieved out of all the experiments
was from the MLP technique, suggesting the effectiveness
of DL techniques with complex image datasets. However,
the performance can improve with architectural changes or
experimenting with other CNN models for featurization.

VI. CONCLUSION AND FUTURE WORK

A DL model is developed for wheat pest detection, as well as
a web application for real-time pest identification and targeted
pest-removal suggestions. The best model achieved the best
test accuracy of ~75%, and once deployed with a device, it can
help mitigate crop loss in the early stages of pest infestation.
The device offers low-cost, easy-to-use, efficient, convenient,
and remote monitoring capabilities, eliminating the need for
manual pest monitoring. The device and web app can lead to
better pest control, leading to less economic loss and improved
food security. However, there are limitations and areas for
future study. The current image resolution is not ideal, and
better images could improve model accuracy. Additionally,
multiple devices (cameras) are needed to cover a large wheat
field; future studies may explore the use of drone cameras with
higher resolution. Notification features can also be added to
the app so that the user can be notified when a pest is detected,
as well as building a mobile app to enhance functionality.
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