
Latency Optimization in IoT Networks Using SD-WAN Edge Computing

 Rashmi S. Vaidya

Department of Electrical Engineering

San Jose State University in California

San Jose, CA, 95195, U.S.A

email: rashmi.s.vaidya@sjsu.edu

Nader F. Mir

Department of Electrical Engineering

San Jose State University in California

San Jose, CA, 95195, U.S.A

email: nader.mir@sjsu.edu

Abstract — This paper aims to reduce latency in Internet of

Things (IoT) sensor networks using Software-Defined Wide Area

Network (SD-WAN) edge computing. The motivation comes from

the strong necessity of rapid decision-making in the emerging

IoT applications such as smart cities and autonomous vehicles. In

the real communications world, the processing speed of devices

and sensor nodes in an IoT network is slow as nodes and devices

have limited power and processing resources, while cloud-based

methods are time-consuming to access distant servers. This paper

uses a custom SD-WAN controller to coordinate the task

allocation to nearby edge servers to lower the response time as

well as data processing delays. Algorithms such as the ones for

traffic prioritization based on QoS requirements, edge computing

resource allocation, and edge caching techniques are also

deployed to achieve the goal. Software implementation and

simulations are used to quantify the latency reduction achieved.

Through SD-WAN and edge computing, the paper focuses on

techniques for reducing the IoT network latency to improve IoT

operations’ safety and efficiency.

Keywords—IoT Networks; Sensors; Latency Optimization;

Software-Defined Wide Area Networking (SD-WAN); Traffic

Prioritization; Quality of Service (QoS); Cloud Computing; Edge

Computing; Edge Caching; Smart Cities; Autonomous Vehicles.

I. INTRODUCTION

 Internet of Things (IoT) networks consist of interconnected
sensor nodes that collect and transmit data over the Internet
[1]. These networks are key to the ecosystem, enabling
various industry applications such as smart homes, healthcare,
industrial automation, and agriculture by integrating data
collection, transmission, processing, storage, and user
interaction.

Latency, defined as the round-trip delay in data
transmission, is a critical factor in IoT networks where real-
time responses are essential. IoT applications engage large
amounts of data transfers requiring response rates and
efficiency. For instance, autonomous cars need instant
decisions for safety, and any data delay could cause accidents.
Similarly, quick responses are crucial for smart city
applications like traffic management and emergency response
at the time of a natural disaster. Latency may occur due to
various factors like propagation times, transmission delays,
processing delays, and queuing delays [2]. Factors like
distance, network congestion, transmission medium, and
hardware efficiency may also affect latency.

Reducing latency in IoT networks is crucial, however, IoT
devices often use small, low-cost sensors with limited memory
and power, and poor network connectivity. Computing tasks
can be slow or impossible on IoT devices. Cloud computing

on the other hand can help, but the fact that servers might be
in distant locations may add wait time, which can be hectic for
IoT applications needing low delays [3].

Software-Defined Wide-Area Network (SD-WAN) is a
technology that uses defined software to optimize wide area
network connections resulting in more flexibility and control
over traditional WAN architectures. With SD-WAN, certain
network management features allow organizations to
efficiently connect users across multiple locations. Similar to
the software-defined networking in data centers, as long as
configuration messages are supported by all the network
hardware device makers, SD-WAN decouples the networking
hardware from its control system and creates a central control
plane in the WAN. This concept is like how software-defined
networking [2] implements virtualization technology resulting
in significant simplification in managing a network. The most
promising feature of SD-WAN is its ability to construct
higher-performance software-defined based networks. SD-
WAN creates an environment through which a wide area
network uses software-defined networking control for
communicating over the Internet using overlay tunnels which
are encrypted when destined for internal organization
locations.

The current trend of designing IoT networks is
traditionally concentrated on connecting IoT devices to wide
area networks [4]. We try in this paper to explore certain
strategies including the deployment of SD-WAN to allow
centralized control of the network, enabling dynamic
adjustments to traffic flow. This deployment provides easy
programmability for efficient network management and
automates network behavior through software applications.
We also demonstrate the deployment of QoS-based traffic
prioritization by prioritizing critical IoT data over less time-
sensitive information, where the Quality of Service (QoS)
[5][6] ensures that high-priority tasks, like emergency alerts
are transmitted with minimal delay. Additionally, we apply
edge computing [7] in our study where processing data is
placed closer to the sensors, at the edge of the network, to
minimize the need to send data to distant cloud servers. This
reduces the round-trip time and enables quicker decision-
making for time-sensitive applications. Finally, we run our
study in this paper with the use of edge caching [8][9] through
which frequently accessed data at the edge helps reduce
latency by minimizing the need to retrieve data from the
cloud, speeding up access times for repeated requests.

The rest of this paper is organized as follows. In Section

II, we present the details of a proposed architecture for IoT

networks that optimizes the latency. In Section III, we present

1Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

mailto:nader.mir@sjsu.edu

detailed results of our analysis, and in Section IV, a conclusive

statement is presented.

II. PROPOSED ARCHITECTURE

The proposed architecture uses SD-WAN to enhance the
latency performance of IoT sensor networks. This can be done
by implementing a network topology with a central SD-WAN
controller, OpenFlow SD-WAN switches, QoS based traffic
prioritization, edge servers and edge cache, as shown in Figure
1. The key components of the architecture are SD-WAN
controller to manage the traffic flow and implement adaptive
strategies, and SD-WAN switches that perform switching and
forwarding in layers 2 and 3. The SD-WAN controller
optionally uses Ryu software [10]. Ryu is an open, software-
defined networking controller, written in Python and is
supported and used in cloud data centers. In this networking
set-up, IoT sensor devices send data of varying rates and sizes
while edge servers and caches preprocess data and store
frequently accessed information.

Data path

Control path
Edge

Cache

SD-WAN

Controller

Edge

Servers

SD-WAN

Switch

Cloud Computing Facility

Edge

Servers
IoT Device

IoT Network

Figure 1. The setup for the IoT network with SD-WAN features.

For implementing effective traffic management, we utilize
the Type of Service (ToS) byte existing in the IP packet
header, as shown in Figure 2. The ToS field is used for
enforcing Quality of Service (QoS) and prioritizing packets.
The field uses its first 6-bits as Differentiated Services Code
Point (DSCP) to classify traffic based on better QoS. The
remaining two bits of ToS is called Explicit Congestion
Notification (ECN) which is used for signaling a network for
congestion. Based on this available feature, we classify
packets from IoT devices into three types; each assigned a
specific DSCP value to facilitate QoS prioritization. The SD-
WAN controller uses DSCP values to prioritize certain traffic
based on its importance, ensuring that real-time data receives
preferential treatment over less critical traffic. Also, to

implement QoS-based prioritization, each SD-WAN-enabled
switch or router maintains three separate queues.

Byte: 1121124440 22

S
o
u
rc

e
IP

A
d
d
re

ss

D
es

ti
n
at

io
n
 I

P

A
d
d
re

ss

Options

V
er

si
o
n

F
la

g

P
ad

d
in

g

F
ra

g
.
O

ff
se

t

T
y
p
e

o
f

S
er

v
ic

e

T
o
ta

l
L

en
g
th

Id
en

ti
fi

ca
ti

o
n

T
im

e
to

 L
iv

e

P
ro

to
co

l

H
ea

d
er

 C
h
ec

k
su

m

H
L

 DSCP (6 bits) + ECN (2 bits)

Figure 2. DSCP fields in IP header for QoS enforcement.

The following DSCP values and queue types are used in
this paper to differentiate between three types of traffic: EF
46: high-priority time-sensitive traffic, such as real-time
sensor data. The traffic is marked as Expedited Forwarding
(EF) with a DSCP value of 46 (binary 101110), guaranteeing
it is processed ahead of other traffic. The High-Priority Queue
is used for this real-time traffic ensuring minimal latency.
AF31 26: medium-priority routine sensor data, such as
periodic status updates. The traffic is marked as Assured
Forwarding (AF) with a DSCP value of 26 (binary 011010),
providing medium-level priority. This queue is processed only
when the high-priority queue is empty. CS1-8: low-priority
non-urgent data, such as software updates or system logs,
which do not require immediate processing and can tolerate
longer delays. The traffic is assigned a low priority DSCP
value, typically CS1 with a value of 8 (binary 001000),
processed only after higher-priority traffic. For this traffic
(CS1-8 or unmarked), a low priority queue is used and is
processed only when the high and medium-priority queues are
empty, ensuring real-time traffic is not delayed.

For the analysis of our network set-up, we utilized several
software tools and platforms such as Virtual Machine,
Mininet, Ryu controller, Python test scripts, Wireshark, iperf,
and ping tools. The virtual machine setup includes VMware
Fusion running Ubuntu OS Desktop 22.04 LTS “Jammy
Jellyfish” Daily Build for Arm64 architecture on macOS
(Apple ATM M2 silicon), with 4 GB of RAM and 2 CPU
cores. The VM uses the same network adapter as the host OS.
Mininet serves as the primary tool for network emulation,
capable of creating both traditional non-SD-WAN- and SD-
WAN-enabled IoT networks with edge computing
capabilities. Although Mininet provides its own controller by
default, this project uses the Ryu SD-WAN controller. The
SD-WAN controller using the Ryu controller has been
installed within the Ubuntu VM and serves as the central
control unit for the SD-WAN-enabled network. It enables
dynamic network management and policy implementation.
Different network topologies are defined using Python scripts
that run Mininet and instantiate hosts, switches, and routers.
Various tests, such as the QoS test, Edge Server offloading
test, and Edge Cache test, were also implemented using
Python scripts. The QoS test requires C code to generate
traffic of different sizes and QoS values. These test scripts
save latency values into CSV files, which are later imported

2Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

by another set of Python scripts to generate graphs from the
results.

The network simulation also uses Wireshark to capture and
analyze network traffic within the Mininet environment. It is
used for verifying QoS policies, monitoring data flow, and
measuring latency improvements. Ping and iperf command-
line tools are used for network performance analysis. Ping
measures Round-Trip Time (RTT) between hosts, providing
information on minimum, average, and maximum latency,
while iperf measures maximum achievable bandwidth on IP
networks.

The SD-WAN topology is set up using Mininet emulator
with the inclusion of an external Ryu controller. Initial packet
captures show the exchange of OpenFlow messages between
the SD-WAN controller and SD-WAN switches, establishing
the SD-WAN control plane and subsequent network
operations.

Upon initializing the topology, OpenFlow Hello messages
are exchanged between the SD-WAN controller and each
switch to negotiate the OpenFlow version. Following this,
Feature Request and Feature Reply messages are exchanged,
with the controller sending a Feature Request to each switch
and the switches responding with Feature Reply messages
containing their capabilities and available ports. Packet-In
messages are sent from switches to the controller when
packets without matching flow entries are encountered, and
the controller responds with Flow-Mod messages instructing
the switches on packet handling. The flow tables can be
examined to verify the appropriate flow entries installed by
the SD-WAN controller. The following SD-WAN request
response pairs are used to make QoS settings on the SD-WAN
switches. The request response pairs show how the queues are
set along with DSCP flow rules [10]. For example, note the
queue type in response to the request 46 which is a high
priority traffic, as explained earlier.

Request:

{"port_name":"s1-eth1","type":"linux-

htb","max_rate":"1000000","queues":[{"min

_rate":"800000"},{"min_rate":"500000"},{"

max_rate":"500000"}]}

Response:

[{"switch_id":"0000000000000001","command

_result":{"result":"success","details":{"

0":{"config":{"min-

rate":"800000"}},"1":{"config":{"min-

rate":"500000"}},"2":{"config":{"max-

rate":"500000"}}}}}]

Request:

{"match":{"ip_dscp":"46"},"actions":{"que

ue":"1"}}

Response:

[{"switch_id":"0000000000000001","command

_result":[{"result":"success","details":"

QoS added. : qos_id=1"}]}]

 III. ANALYSIS AND RESULTS

A. Effect of QoS Marking on Latency

 To capture the effect of QoS marking on the network
latency, a test was set up that sends three types of messages
continuously on the network link and shows how the network
performs with and without QoS settings. The test creates three
concurrent threads, each simulating a different traffic type:
real-time sensor readings, periodic status messages, and
system logs. Each thread runs for 30 seconds, both with and
without QoS settings to obtain latency values. The results
included in Table I show a comparison of latencies from three
readings: high priority real-time readings, medium status
readings, and low priority periodic readings. QoS effectively
manages network congestion and prioritizes traffic. Without
QoS, latency rapidly increases for all traffic types, reaching
several seconds by the end of the test. In contrast, the QoS-
enabled scenario shows consistent, low latencies for all traffic
types, with a preference for higher-priority traffic.

TABLE I. COMPARISON OF LATENCIES FROM THREE READINGS:
HIGH PRIORITY REAL-TIME SENSORS, MEDIUM STATUS

MESSAGES, AND LOW PRIORORITY PERIODIC MESSAGES.

Sim.

Run

Time

(sec)

High Priority real-

time sensor readings

(100-byte messages)

Medium Priority

real-time sensor

readings (250-byte

messages)

Low Priority real-

time sensor readings

(2000-byte messages)

Latency

(ms)

Without

QoS

Latency

(ms)

With QoS

(DSCP

value EF

46)

Latency

(ms)

Without

QoS

Latency

(ms)

With QoS

(DSCP

value

AF31 26)

Latency

(ms)

Without

QoS

Latency

(ms)

With

QoS

(DSCP

value

CS1-8)

0 18.4 15.8 17.8 16.7 26.7 33.9

5 1261 80.8 1485 81.2 1538 95.4

10 2782 82.9 3081 72.4 3083 93.9

15 4345 80.2 4508 90.8 4659 92.8

20 5054 87.3 5096 84.3 5100 97.7

25 5349 74.6 5448 95.1 5446 90.2

30 8244 80.5 7906 87.6 8172 85.4

B. Effect of Edge Server Offloading on Latency

 The next test measures the latency of the SD-WAN
topology when an edge server offloads part of the workload of
the main cloud server. This task implements offloading
percentages ranging from 10% to 90% and measures the
latency for each scenario. The results presented in Figure 3
show a trend across different distances between the edge and
cloud servers (1,600 km to 8,000 km). As the offloading rate
increases due to more tasks processed in the edge server,
latency decreases, particularly for greater distances. At lower
rates offloading near 10% (mostly cloud computing), the

3Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

latency ranges from about 7.5ms (1,600 km) to about 30.5ms
(8,000 km). At higher rates offloading near 90% (mostly edge
processing), latency ranges from about 0.5ms (1,600 km) to
5.0ms (8,000 km). Figure 3 also expresses that edge
computing significantly reduces latency, especially with
higher offloading percentages. The impact is more pronounced
as the distance to the cloud server increases. Even a small
percentage of edge offloading can provide noticeable latency
improvements, particularly for longer distances. It is
noticeable that implementing 90% offloading reduces latency
significantly.

0

5

10

15

20

25

30

35

10% 20% 30% 40% 50% 60% 70% 80% 90%

La
te

nc
y

(m
s)

Rate of Offloading

8,000 km 6,400 km 4,800 km

3,200 km 1,600 km

Figure 3. Latency reduction with edge server offloading.

C. Effect of Edge Cache Size on Latency

This study evaluates the impact of different edge cache
sizes and request frequencies on latency in the SD-WAN
topology. It checks how the latency is impacted by increasing
request frequencies (10, 100, 500 and 1000 requests/sec) on
increasing Edge Cache sizes (50, 100, 150 and 200 KB).
Random requests are generated to derive different hit ratios
based on the cache size and the Round-Trip Time (RTT) is
measured for requests to both a cloud server and an edge
server. Cache eviction policy is Least Recently Used (LRU).
The code reads the Minimum; Average and Maximum
Latency obtained from the test and plots the maximum latency
values on the graph.

The results in Figure 4 show that increasing the edge cache
size improves performance, with lower latencies and higher
hit rates. However, the improvement is not linear and gives
diminishing returns as cache size grows. Higher request
frequencies lead to slightly increased latencies due to
increased system load and cache contention, however, this is
not consistently seen across all cache sizes. In general, it can
be concluded that a four times bigger cache gives about 20%
lower latency values.

D. Future Trends Based on the Use of AI

The future research and development efforts of this project
can focus on various aspects such as security enhancement,
and the deployment of Artificial Intelligence (AI). Security

measures such as blockchain and encryption techniques could
be incorporated to protect against cyberattacks. AI integration
could particularly enable predictive traffic management, and
resource allocation resulted in enhancing network
performance of the IoT networks.

0
5

10
15
20
25
30
35
40

100 150 200 250 300

La
te

nc
y

(m
s)

Edge Cache (KB)

1000 Req/s 500 Req/s 100 Req/s 10 Req/s

Figure 4. Latency reduction with edge cache sizes.

IV. CONCLUSIONS AND FUTURE WORK

This paper addressed the improvement of latency in IoT
networks by using the combination of Software-Defined
Wide-Area Network (SD-WAN), traffic prioritization, and
edge computing. IoT applications, such as smart cities and
autonomous vehicles, require rapid data processing. We
discussed in this paper how IoT device processing and power
limitations and the use of cloud computing introduce
noticeable delays. The framework we suggested required SD-
WAN's centralized control and edge computing's localized
processing to create a low-latency IoT infrastructure. We
created SD-WAN, QoS prioritization, and edge computing,
and demonstrated substantial latency reductions. In the QoS
network setup with the help of DSCP field of IP packet
headers, high-priority traffic experienced a dramatic decrease
in latency compared to the network setup without QoS. This
highlighted the effectiveness of SD-WAN's centralized control
in managing network congestion and prioritizing critical data.
The edge server offloading test revealed noticeable reduction
in latency when high-rate tasks were offloaded to nearby edge
servers, particularly in scenarios involving greater distances
between edge and cloud servers. Edge caching study
confirmed its role in minimizing data retrieval delays. By
increasing the size of cache, the traffic latency was reduced.
The future work must mainly concentrate on the inclusion of
Artificial Intelligence (AI) in the structure of SD-WAN to
enable predictive traffic management, resource allocation, and
anomaly detection.

REFERENCES

[1] H. Xu, W. Liu, L. Li, and Q. Zhou, “An IoT-based low-cost
architecture for smart libraries using SDN,” Scientific Reports,
2024.

[2] J. Kurose and K. W. Ross, “Computer Networks, A Top-Down
Approach,” Pearson, 2017.

[3] K. Liu, Y. Meng, and G. Sun, “An Overview on Edge
Computing Research,” IEEE Access. pp. 1-1, 2020, [Online].
Available from:

4Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

https://www.researchgate.net/publication/341096184_An_Overv
iew_on_Edge_Computing_Research [Accessed Apr. 9, 2024].

[4] W. Stallings, “Foundations of Modern Networking SDN, NFV,
QoE, IoT, and Cloud,” Pearson Education, Inc, 2016.

[5] M. Beshley, N. Kryvinska, H. Beshley, O. Panchenko, and M.
Medvetskyi, “Traffic Engineering and QoS/QoE Supporting
Techniques for Emerging Service-Oriented Software-Defined
Network”, Journal of Communications and Networks, vol. 26,
no. 1, Feb. 2024.

[6] Hillstone Networks, “Introduction to QoS.” [Online]. Available
from:
https://www.hillstonenet.com/support/4.5/en/preface.html#confi
g_qos_intro.html, [Accessed Sept. 11, 2024].

[7] S. Douch, M. R. Abid, K. Zine-Dine, D. Bouzidi and D.
Benhaddou, “Edge Computing Technology Enablers: A
Systematic Lecture Study,” IEEE Access, vol. 10, pp. 69264-
69302, 2022. [Online]. Available from:

https://ieeexplore.ieee.org/document/9797685 [Accessed Apr. 9,
2024].

[8] A. Jebamani and G. Winster, “A Survey of Edge Computing in
IOT devices,” Proceedings of the International Conference on
Innovative Computing & Communication (ICICC) 2022.
[Online]. Available from: https://ssrn.com/abstract=4023176
[Accessed Apr. 9, 2024].

[9] H. Li, M. Sun, F. Xia, X. Xu, and M. Bilal. “A Survey of Edge
Caching: Key Issues and Challenges”, Tsinghua Science and
Technology, ISSN 1007-0214 14/20 pp. 818−842 DOI:
10.26599/TST.2023.9010051, vol. 29, no. 3, June 2024.

[10] RYU Project Team, “RYU SDN Framework: Using OpenFlow
1.3”, 2014. [Online]. Available from:
https://osrg.github.io/Ryu-book/en/Ryubook.pdf, [Accessed
Nov. 30, 2024].

5Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

