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Abstract — This paper aims to reduce latency in Internet of 

Things (IoT) sensor networks using Software-Defined Wide Area 

Network (SD-WAN) edge computing. The motivation comes from 

the strong necessity of rapid decision-making in the emerging 

IoT applications such as smart cities and autonomous vehicles. In 

the real communications world, the processing speed of devices 

and sensor nodes in an IoT network is slow as nodes and devices 

have limited power and processing resources, while cloud-based 

methods are time-consuming to access distant servers. This paper 

uses a custom SD-WAN controller to coordinate the task 

allocation to nearby edge servers to lower the response time as 

well as data processing delays. Algorithms such as the ones for 

traffic prioritization based on QoS requirements, edge computing 

resource allocation, and edge caching techniques are also 

deployed to achieve the goal. Software implementation and 

simulations are used to quantify the latency reduction achieved. 

Through SD-WAN and edge computing, the paper focuses on 

techniques for reducing the IoT network latency to improve IoT 

operations’ safety and efficiency. 
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Software-Defined Wide Area Networking (SD-WAN); Traffic 
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I. INTRODUCTION  
 

     Internet of Things (IoT) networks consist of interconnected 
sensor nodes that collect and transmit data over the Internet 
[1]. These networks are key to the ecosystem, enabling 
various industry applications such as smart homes, healthcare, 
industrial automation, and agriculture by integrating data 
collection, transmission, processing, storage, and user 
interaction. 

Latency, defined as the round-trip delay in data 
transmission, is a critical factor in IoT networks where real-
time responses are essential. IoT applications engage large 
amounts of data transfers requiring response rates and 
efficiency. For instance, autonomous cars need instant 
decisions for safety, and any data delay could cause accidents. 
Similarly, quick responses are crucial for smart city 
applications like traffic management and emergency response 
at the time of a natural disaster. Latency may occur due to 
various factors like propagation times, transmission delays, 
processing delays, and queuing delays [2]. Factors like 
distance, network congestion, transmission medium, and 
hardware efficiency may also affect latency. 

Reducing latency in IoT networks is crucial, however, IoT 
devices often use small, low-cost sensors with limited memory 
and power, and poor network connectivity. Computing tasks 
can be slow or impossible on IoT devices. Cloud computing 

on the other hand can help, but the fact that servers might be 
in distant locations may add wait time, which can be hectic for 
IoT applications needing low delays [3].  

Software-Defined Wide-Area Network (SD-WAN) is a 
technology that uses defined software to optimize wide area 
network connections resulting in more flexibility and control 
over traditional WAN architectures. With SD-WAN, certain 
network management features allow organizations to 
efficiently connect users across multiple locations. Similar to 
the software-defined networking in data centers, as long as 
configuration messages are supported by all the network 
hardware device makers, SD-WAN decouples the networking 
hardware from its control system and creates a central control 
plane in the WAN. This concept is like how software-defined 
networking [2] implements virtualization technology resulting 
in significant simplification in managing a network. The most 
promising feature of SD-WAN is its ability to construct 
higher-performance software-defined based networks. SD-
WAN creates an environment through which a wide area 
network uses software-defined networking control for 
communicating over the Internet using overlay tunnels which 
are encrypted when destined for internal organization 
locations.  

The current trend of designing IoT networks is 
traditionally concentrated on connecting IoT devices to wide 
area networks [4]. We try in this paper to explore certain 
strategies including the deployment of SD-WAN to allow 
centralized control of the network, enabling dynamic 
adjustments to traffic flow. This deployment provides easy 
programmability for efficient network management and 
automates network behavior through software applications. 
We also demonstrate the deployment of QoS-based traffic 
prioritization by prioritizing critical IoT data over less time-
sensitive information, where the Quality of Service (QoS) 
[5][6] ensures that high-priority tasks, like emergency alerts 
are transmitted with minimal delay. Additionally, we apply 
edge computing [7] in our study where processing data is 
placed closer to the sensors, at the edge of the network, to 
minimize the need to send data to distant cloud servers. This 
reduces the round-trip time and enables quicker decision-
making for time-sensitive applications. Finally, we run our 
study in this paper with the use of edge caching [8][9] through 
which frequently accessed data at the edge helps reduce 
latency by minimizing the need to retrieve data from the 
cloud, speeding up access times for repeated requests. 

The rest of this paper is organized as follows.  In Section 

II, we present the details of a proposed architecture for IoT 

networks that optimizes the latency.  In Section III, we present 
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detailed results of our analysis, and in Section IV, a conclusive 

statement is presented. 

II.     PROPOSED ARCHITECTURE 

The proposed architecture uses SD-WAN to enhance the 
latency performance of IoT sensor networks. This can be done 
by implementing a network topology with a central SD-WAN 
controller, OpenFlow SD-WAN switches, QoS based traffic 
prioritization, edge servers and edge cache, as shown in Figure 
1. The key components of the architecture are SD-WAN 
controller to manage the traffic flow and implement adaptive 
strategies, and SD-WAN switches that perform switching and 
forwarding in layers 2 and 3. The SD-WAN controller 
optionally uses Ryu software [10]. Ryu is an open, software-
defined networking controller, written in Python and is 
supported and used in cloud data centers. In this networking 
set-up, IoT sensor devices send data of varying rates and sizes 
while edge servers and caches preprocess data and store 
frequently accessed information.  
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Figure 1. The setup for the IoT network with SD-WAN features. 

For implementing effective traffic management, we utilize 
the Type of Service (ToS) byte existing in the IP packet 
header, as shown in Figure 2. The ToS field is used for 
enforcing Quality of Service (QoS) and prioritizing packets. 
The field uses its first 6-bits as Differentiated Services Code 
Point (DSCP) to classify traffic based on better QoS. The 
remaining two bits of ToS is called Explicit Congestion 
Notification (ECN) which is used for signaling a network for 
congestion. Based on this available feature, we classify 
packets from IoT devices into three types; each assigned a 
specific DSCP value to facilitate QoS prioritization. The SD-
WAN controller uses DSCP values to prioritize certain traffic 
based on its importance, ensuring that real-time data receives 
preferential treatment over less critical traffic. Also, to 

implement QoS-based prioritization, each SD-WAN-enabled 
switch or router maintains three separate queues.  
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Figure 2. DSCP fields in IP header for QoS enforcement. 

The following DSCP values and queue types are used in 
this paper to differentiate between three types of traffic: EF 
46: high-priority time-sensitive traffic, such as real-time 
sensor data. The traffic is marked as Expedited Forwarding 
(EF) with a DSCP value of 46 (binary 101110), guaranteeing 
it is processed ahead of other traffic. The High-Priority Queue 
is used for this real-time traffic ensuring minimal latency. 
AF31 26: medium-priority routine sensor data, such as 
periodic status updates. The traffic is marked as Assured 
Forwarding (AF) with a DSCP value of 26 (binary 011010), 
providing medium-level priority. This queue is processed only 
when the high-priority queue is empty. CS1-8: low-priority 
non-urgent data, such as software updates or system logs, 
which do not require immediate processing and can tolerate 
longer delays. The traffic is assigned a low priority DSCP 
value, typically CS1 with a value of 8 (binary 001000), 
processed only after higher-priority traffic. For this traffic 
(CS1-8 or unmarked), a low priority queue is used and is 
processed only when the high and medium-priority queues are 
empty, ensuring real-time traffic is not delayed. 

For the analysis of our network set-up, we utilized several 
software tools and platforms such as Virtual Machine, 
Mininet, Ryu controller, Python test scripts, Wireshark, iperf, 
and ping tools. The virtual machine setup includes VMware 
Fusion running Ubuntu OS Desktop 22.04 LTS “Jammy 
Jellyfish” Daily Build for Arm64 architecture on macOS 
(Apple ATM M2 silicon), with 4 GB of RAM and 2 CPU 
cores. The VM uses the same network adapter as the host OS. 
Mininet serves as the primary tool for network emulation, 
capable of creating both traditional non-SD-WAN- and SD-
WAN-enabled IoT networks with edge computing 
capabilities. Although Mininet provides its own controller by 
default, this project uses the Ryu SD-WAN controller. The 
SD-WAN controller using the Ryu controller has been 
installed within the Ubuntu VM and serves as the central 
control unit for the SD-WAN-enabled network. It enables 
dynamic network management and policy implementation. 
Different network topologies are defined using Python scripts 
that run Mininet and instantiate hosts, switches, and routers. 
Various tests, such as the QoS test, Edge Server offloading 
test, and Edge Cache test, were also implemented using 
Python scripts. The QoS test requires C code to generate 
traffic of different sizes and QoS values. These test scripts 
save latency values into CSV files, which are later imported 
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by another set of Python scripts to generate graphs from the 
results.  

The network simulation also uses Wireshark to capture and 
analyze network traffic within the Mininet environment. It is 
used for verifying QoS policies, monitoring data flow, and 
measuring latency improvements. Ping and iperf command-
line tools are used for network performance analysis. Ping 
measures Round-Trip Time (RTT) between hosts, providing 
information on minimum, average, and maximum latency, 
while iperf measures maximum achievable bandwidth on IP 
networks. 

The SD-WAN topology is set up using Mininet emulator 
with the inclusion of an external Ryu controller. Initial packet 
captures show the exchange of OpenFlow messages between 
the SD-WAN controller and SD-WAN switches, establishing 
the SD-WAN control plane and subsequent network 
operations.  

Upon initializing the topology, OpenFlow Hello messages 
are exchanged between the SD-WAN controller and each 
switch to negotiate the OpenFlow version. Following this, 
Feature Request and Feature Reply messages are exchanged, 
with the controller sending a Feature Request to each switch 
and the switches responding with Feature Reply messages 
containing their capabilities and available ports. Packet-In 
messages are sent from switches to the controller when 
packets without matching flow entries are encountered, and 
the controller responds with Flow-Mod messages instructing 
the switches on packet handling. The flow tables can be 
examined to verify the appropriate flow entries installed by 
the SD-WAN controller. The following SD-WAN request 
response pairs are used to make QoS settings on the SD-WAN 
switches. The request response pairs show how the queues are 
set along with DSCP flow rules [10]. For example, note the 
queue type in response to the request 46 which is a high 
priority traffic, as explained earlier. 
 

Request: 

{"port_name":"s1-eth1","type":"linux-

htb","max_rate":"1000000","queues":[{"min

_rate":"800000"},{"min_rate":"500000"},{"

max_rate":"500000"}]} 

 

Response: 

[{"switch_id":"0000000000000001","command

_result":{"result":"success","details":{"

0":{"config":{"min-

rate":"800000"}},"1":{"config":{"min-

rate":"500000"}},"2":{"config":{"max-

rate":"500000"}}}}}] 

 

Request: 

{"match":{"ip_dscp":"46"},"actions":{"que

ue":"1"}} 

 

Response: 

[{"switch_id":"0000000000000001","command

_result":[{"result":"success","details":"

QoS added. : qos_id=1"}]}] 

 

                            III.    ANALYSIS AND RESULTS 

A. Effect of QoS Marking on Latency 

       To capture the effect of QoS marking on the network 
latency, a test was set up that sends three types of messages 
continuously on the network link and shows how the network 
performs with and without QoS settings. The test creates three 
concurrent threads, each simulating a different traffic type: 
real-time sensor readings, periodic status messages, and 
system logs. Each thread runs for 30 seconds, both with and 
without QoS settings to obtain latency values. The results 
included in Table I show a comparison of latencies from three 
readings: high priority real-time readings, medium status 
readings, and low priority periodic readings. QoS effectively 
manages network congestion and prioritizes traffic. Without 
QoS, latency rapidly increases for all traffic types, reaching 
several seconds by the end of the test. In contrast, the QoS-
enabled scenario shows consistent, low latencies for all traffic 
types, with a preference for higher-priority traffic.  

TABLE I. COMPARISON OF LATENCIES FROM THREE READINGS: 
HIGH PRIORITY REAL-TIME SENSORS, MEDIUM STATUS 

MESSAGES, AND LOW PRIORORITY PERIODIC MESSAGES. 

Sim. 

Run 

Time 

(sec) 

High Priority real-

time sensor readings 

(100-byte messages) 

Medium Priority 

real-time sensor 

readings (250-byte 

messages) 

Low Priority real-

time sensor readings 

(2000-byte messages) 

Latency 

(ms) 

Without 

QoS 

Latency 

(ms) 

With QoS 

(DSCP 

value EF 

46) 

Latency 

(ms) 

Without 

QoS 

Latency 

(ms) 

With QoS 

(DSCP 

value 

AF31 26) 

Latency 

(ms) 

Without 

QoS 

Latency 

(ms) 

With 

QoS 

(DSCP 

value 

CS1-8) 

0 18.4 15.8 17.8 16.7 26.7 33.9 

5 1261 80.8 1485 81.2 1538 95.4 

10 2782 82.9 3081 72.4 3083 93.9 

15 4345 80.2 4508 90.8 4659 92.8 

20 5054 87.3 5096 84.3 5100 97.7 

25 5349 74.6 5448 95.1 5446 90.2 

30 8244 80.5 7906 87.6 8172 85.4 

 

B. Effect of Edge Server Offloading on Latency 

     The next test measures the latency of the SD-WAN 
topology when an edge server offloads part of the workload of 
the main cloud server. This task implements offloading 
percentages ranging from 10% to 90% and measures the 
latency for each scenario. The results presented in Figure 3 
show a trend across different distances between the edge and 
cloud servers (1,600 km to 8,000 km). As the offloading rate 
increases due to more tasks processed in the edge server, 
latency decreases, particularly for greater distances. At lower 
rates offloading near 10% (mostly cloud computing), the 
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latency ranges from about 7.5ms (1,600 km) to about 30.5ms 
(8,000 km). At higher rates offloading near 90% (mostly edge 
processing), latency ranges from about 0.5ms (1,600 km) to 
5.0ms (8,000 km). Figure 3 also expresses that edge 
computing significantly reduces latency, especially with 
higher offloading percentages. The impact is more pronounced 
as the distance to the cloud server increases. Even a small 
percentage of edge offloading can provide noticeable latency 
improvements, particularly for longer distances. It is 
noticeable that implementing 90% offloading reduces latency 
significantly. 
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Figure 3. Latency reduction with edge server offloading. 

C. Effect of Edge Cache Size on Latency 

This study evaluates the impact of different edge cache 
sizes and request frequencies on latency in the SD-WAN 
topology. It checks how the latency is impacted by increasing 
request frequencies (10, 100, 500 and 1000 requests/sec) on 
increasing Edge Cache sizes (50, 100, 150 and 200 KB). 
Random requests are generated to derive different hit ratios 
based on the cache size and the Round-Trip Time (RTT) is 
measured for requests to both a cloud server and an edge 
server. Cache eviction policy is Least Recently Used (LRU). 
The code reads the Minimum; Average and Maximum 
Latency obtained from the test and plots the maximum latency 
values on the graph. 

The results in Figure 4 show that increasing the edge cache 
size improves performance, with lower latencies and higher 
hit rates. However, the improvement is not linear and gives 
diminishing returns as cache size grows. Higher request 
frequencies lead to slightly increased latencies due to 
increased system load and cache contention, however, this is 
not consistently seen across all cache sizes. In general, it can 
be concluded that a four times bigger cache gives about 20% 
lower latency values. 

D. Future Trends Based on the Use of AI 

The future research and development efforts of this project 
can focus on various aspects such as security enhancement, 
and the deployment of Artificial Intelligence (AI). Security 

measures such as blockchain and encryption techniques could 
be incorporated to protect against cyberattacks. AI integration 
could particularly enable predictive traffic management, and 
resource allocation resulted in enhancing network 
performance of the IoT networks.  
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Figure 4. Latency reduction with edge cache sizes. 

 

IV. CONCLUSIONS AND FUTURE WORK 

This paper addressed the improvement of latency in IoT 
networks by using the combination of Software-Defined 
Wide-Area Network (SD-WAN), traffic prioritization, and 
edge computing. IoT applications, such as smart cities and 
autonomous vehicles, require rapid data processing. We 
discussed in this paper how IoT device processing and power 
limitations and the use of cloud computing introduce 
noticeable delays. The framework we suggested required SD-
WAN's centralized control and edge computing's localized 
processing to create a low-latency IoT infrastructure. We 
created SD-WAN, QoS prioritization, and edge computing, 
and demonstrated substantial latency reductions. In the QoS 
network setup with the help of DSCP field of IP packet 
headers, high-priority traffic experienced a dramatic decrease 
in latency compared to the network setup without QoS. This 
highlighted the effectiveness of SD-WAN's centralized control 
in managing network congestion and prioritizing critical data. 
The edge server offloading test revealed noticeable reduction 
in latency when high-rate tasks were offloaded to nearby edge 
servers, particularly in scenarios involving greater distances 
between edge and cloud servers. Edge caching study 
confirmed its role in minimizing data retrieval delays. By 
increasing the size of cache, the traffic latency was reduced. 
The future work must mainly concentrate on the inclusion of 
Artificial Intelligence (AI) in the structure of SD-WAN to 
enable predictive traffic management, resource allocation, and 
anomaly detection. 
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