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Abstract—Automated inspection has become a vital part 

of quality control during semiconductor wafer production. 

Current processes are focussed on finding defects via 

variation from a ‘golden’ image using pixel to pixel 

comparisons or utilization of opaque neural network-based 

approaches. We present a novel approach, which uses the Bag 

of Visual Words technique to determine local features that 

correspond to specific defects within a wafer image, known as 

a custom vocabulary, as a way to begin creation of a more 

transparent system for automated defect detection and  

classification. We demonstrate that the custom vocabularies, 

combined with machine learning algorithms, result in high 

performance accuracies with efficient computational run-

times. 

Keywords— Defect Detection; Defect Classification; Bag of 

Visual Words; Local Features; Semiconductor wafers; Image 

Processing.  

I.  INTRODUCTION  

Semiconductor wafers are a component used in 
products such as processors and hard drive media. 
Inspection is vital during the manufacturing process in 
order to detect defects and ensure quality control. Several 
methods have been proposed for defect detection on 
semiconductor wafers, however the majority of techniques 
focus on defect detection across the wafer as a whole. 
When defects are detected they are marked on the wafer bin 
map in order to identify the total number found. This is a 
useful approach when looking for systematic defects across 
a product line and removing a defective product earlier in 
the production line. However, it is sometimes desirable to 
detect not only the location of a defect but also the type of 
defect as some of the product may still be commercially 
viable. The goal of this research is to use images of a single 
chip on the wafer, known as die images, to detect and 
classify defects.  An example of a wafer bin map and a die 
image is presented in Figure 1. 

 
Figure 1. (a) Wafer bin map with detected defects 

coloured blue and (b) Single die image 

 

  Production of semiconductor wafers involves multiple 
stages and many different components are used during this 

process. Due to the varying size and criticality of these 
components, many different inspection techniques are used 
throughout manufacturing to ensure quality control. 
Inspection techniques include using electrical input and 
microwave testing along with optical cameras that can 
inspect to pico-meter level. The difference in these types of 
inspection systems has resulted in many interpretations of 
how to best detect and classify defects [10][21]. One 
widely used approach is to observe the overall frequency 
and location of defects using the wafer map in order to 
detect systematic or widespread damage over the complete 
wafer, such as a scratch or tear, as shown in Figure 2. 
Whilst this solution [9][11]has been proven to be useful for 
finding systematic or clustered defects across the whole 
wafer, it does not consider the type of defect, and 
consequently whether the product is still viable. 

 

Figure 2. Example of a Scratch defect using the wafer bin map 

  When considering automated visual inspection of 
semiconductor wafers, die images are used and examples 
of defects upon these die images are given in Figure 3. Most 
previous work is based on the use of global features with 
Tobin’s content-based image retrieval golden image 
comparison method [25] being the most popular. This 
inspection representation is commonly found in most 
Automated Defect Classification (ADC) machines [1][21]. 
However, other methods have been used to detect specific 
types of defects across the industry. Chou [6] uses the 
Hough transformation to detect scratches or gouges on a 
wafer surface while Park [23] detailed an approach using 
the Histogram of Gradient (HOG) operators to great effect. 
However, there has been little work on the use of local 
image features for automated inspection using techniques, 
such as Sobel [14], Scale Invariant Feature Transform 
(SIFT) [8], Oriented FAST and Rotated BREIF (ORB) 
[13], and SURF [2]. In [16], we proposed the use of SIFT 
and SURF local image features for wafer defect detection 
and concluded that whilst both techniques could identify 
wafer defects, the use of SURF resulted in improved 
detection accuracy.  
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Figure 3. Examples of defects present on semiconductor die images: (a) 

Rip, (b) Scratch, (c) Warp, (d) Delamination, (e) Incomplete liftoff, (f) 
Corrosion 

  In addition to detecting defects, defect classification is 
also necessary. In some cases, products that have been 
identified with non-critical defects, which would otherwise 
be removed due to the presence of a defect, can continue 
on the production line. Additionally, identifying the type of 
defect and the stage at which it occurs in the production 
process can help in improving overall quality, yield and 
production processes. The majority of defect classification 
approaches to date focus on the use of neural networks and 
deep learning. For example, Reza [12] used an artificial 
neural network with a back-propagation algorithm to 
observe contamination defects on wafers, a method also 
applied by Chou [6]. The work in [11][19][20][21] uses 
Convolutional neural networks for classification. While 
these deep learning methods return good results, the black 
box nature of neural networks can be a problem in industry, 
such as semiconductor manufacturers, since the designs are 
frequently updated and changed and although the neural 
network could be trained to work well with current designs, 
new designs could cause system failure as we are currently 
seeing in domains such as self-driving cars [26] and image 
recognition [27]. Thus, we have developed a novel 
approach based on transparent local features to create a 
more understandable system.  
  A well-known feature extraction technique is the Bag 
of Visual Words (BoVW) method, which extends the Bag 
of Words (BoW) method from the text retrieval domain to 
the visual classification domain and can be used as an 
alternative to global image features. When using the BoW 
technique on a text document, a normalized histogram of 
word counts is computed as well as a sparse term vector 
where each bin corresponds to a term in the vocabulary. 
The BoVW technique [29] enables the generalisation of 
local image feature descriptors in a similar manner and has 
been used for image classification [3][15][17]. Improving 
further on BoVW, a custom vocabulary [20] or codebook 
is a concept in which specific subsets of visual words are 
selected, which represent the most important features of the 
images, rather than using the complete vocabulary created 
from a set of training images. One example of this approach 
is the dual vocabulary approach [17] where two 
vocabularies are trained on different training set classes 
before being run on its testing data in order to observe, 

which returns the highest accuracy for each testing class 
and therefore which features are most important for 
detection and classification of these classes. Custom 
Vocabularies take this a step further by observing which 
visual words contain the most important information for a 
given task and utilize only these visual words in order to 
increase overall accuracy and also reduce overall 
computation time.  
  It is also possible to combine BoVW with machine 
learning classifiers. For example, Hentschel [4] evaluated 
several different classification methods such as AdaBoost 
[5], Support Vector Machines (SVM) and decision trees on 
an image classification problem utilizing BoVW and found 
several methods that achieve high accuracy when 
combined with local feature methods.  Two popular image 
classification approaches that are widely used across many 
different fields of automated visual inspection are multi-
class SVM [7][24] and Random forest [22]. 
  Building on previous work [16], this paper proposes a 
novel approach to defect detection and classification in 
semiconductor wafers.  We identify specific visual words 
that correspond to a defect descriptor, a custom vocabulary, 
and use these for classifying a defect within an image as 
close to real time speed as possible, whilst still retaining 
high levels of accuracy.  The remainder of this paper is 
organized as follows: Section 2 introduces the current 
industry inspection process used by our industry partner 
and its problems. Section 3 covers the proposed custom 
vocabulary and Section 4 discusses the performance 
evaluation of the approach. Finally, Section 5 details the 
conclusion and further work. 

II. CURRENT INDUSTRY INSPECTION PROCESS 

   There are around 600 stages in the production of a single 

semiconductor wafer. In order for the wafer to fully 

function it needs to be kept free of defects which can be 

caused in many ways, including particle damage, 

atmospheric changes as well as human- and machine-error. 

Thus, a typical semiconductor production line will have 

many in-line inspection tools at various manufacturing 

stages in order to ensure quality control. Due to the size of 

critical parts on the wafer, some as small as 7nm, 

specialised inspection equipment must be used. The 

inspection process can be conducted in various ways, for 

example using electrical fault detection and x-rays, 

however the most time-affordable systems are visual 

inspection systems.  

     Current industry practice for defect detection and 

classification is a global image matching approach where a 

direct pixel-to-pixel comparison is performed using a 

database of control images which are directly compared 

with the current product passing through the inspection 

system. This is commonly known in the industry as a 

‘golden image’ approach. In order to prevent false 

detection of defects, a defect reduction factor is used where 

pixel intensities within a 3x3 pixel neighborhood are 

compared before any area is regarded as a defect.  
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   The Rudolph NSX105 [1] is a commonly used industry 

standard inspection device which uses the golden image 

approach. The NSX105 inspection system uses its initial 

stage camera to strobe over the wafer comparing captured 

images with the corresponding database of golden images. 

The golden images in the database are initially manually 

pre-programmed. Hence, when a product is developed or 

updated, a new set of golden images must be created. If a 

defect is detected, its coordinates are saved into a reference 

file and then additional high-resolution images of the defect 

on the die are captured using a second inspection camera 

for subsequent manual inspection. The number of defects 

for which high resolution images are captured is capped at 

a level according to parameters set manually, typically 80 

images per wafer. A critical problem with the NSX105’s 

inspection detection is that while it can determine a 

problem at a specific location, it cannot determine the type 

of defect that has been found on the die. Hence the severity 

of the defect is unknown, and this may result in more 

serious defect types, such as corrosion damage on critical 

parts, going unnoticed until later in production.  

    We seek to improve on this by developing an automated 

inspection system, which uses the existing inspection 

equipment output, and is focussed specifically on 

classifying high resolution defect images from the die 

rather than the defect identification stage which creates the 

wafer bin map.  

III. CUSTOM VOCABULARY 

In the proposed methodology, the SURF interest point 
detector is used to obtain key-points 𝑘𝑛 and corresponding 
SURF descriptors 𝑑𝑛 where 𝑖 = 1 … 𝑛 such that a keypoint 
is represented as: 

𝑘𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖) (1) 

where 𝑥 and 𝑦 are the coordinates of a point in an image. 
The SURF keypoint descriptors are of 64 dimensions. An 
image feature set 𝑆 can be represented by the set of local 
keypoint descriptors such that  

𝑆𝐼 = {𝑘1, 𝑘2, … , 𝑘𝑛} (2) 

 

where 𝐼 = 1 … 𝑚 and 𝑚 is the number of images in the 
image set. The BoVW algorithm 𝐵 is considered to 
quantize the descriptor 𝑑 ∈ 𝑅𝐼  

 

𝐵: 𝑅𝐼 → [1, 𝐾]𝑑 → 𝐵(𝑑). (3) 
 

The 𝐵 assigns descriptor 𝑑 ∈ 𝑅𝐼  to the appropriate 
cluster 𝐾, where each cluster represents a visual word and 
the set of visual words is the initial defect vocabulary.  
 We can further refine the initial vocabulary to form a 
custom vocabulary through manual inspection of the defect 

images where only visual words that represent wafer defect 
features are retained and that is the approach used here.  

IV. PERFORMANCE EVALUATION 

  There are various defects that can occur in semi-
conductor wafers, such as splatter, warp, scratch, rip, 
delamination and corrosion. To evaluate the proposed 
approach for defect detection, we focus on the warp defect. 
The warp defect occurs for various reasons including 
temperature changes, rise in atmospheric pressure, or 
human and machine error. Its main feature is that parts of 
the golden resist (or paint), also called the gold pad, are 
removed or warped in some way.  Examples of warp die 
images are presented in Figure 4 where Figure 4(a) 
illustrates the gold resist in various stages of damage from 
the warp defect and Figure 4(b) illustrates complete 
removal of the resist. All images are captured by the 
Rudolph NSX105 from one layer of one product, and all 
images are 648x494 pixels. All experiments are run using 
Python OpenCV and Sklearn on an Intel Xeon CPU E5-120 
0@ 3.60 GHZ with 16 GB of RAM. 

  In the initial experiment, we evaluate the proposed 
approach using a vocabulary of 1000 visual words and 
various well-known machine learning algorithms including 
AdaBoost, Random Forest, Support Vector Machines 
(SVM) with a range of kernel functions (Linear, 
Polynomial and Radial).  We use sets of warp images 
(Figure 4) and control images (Figure 5).  Both the warp 
and control classes contain 100 images each (200 in total), 
split 80/20 for training and testing.  The machine learning 
algorithms have been optimised via a grid search and a 
summary of the results is displayed in Table I. Using 1000 
visual words, the results vary across the different machine 
learning approaches with the SVM using a Radial Basis 
Function (RBF) and C=10 providing the highest accuracy. 

 
(a) Gold resist in various stages of damage 

 
(b) Complete removal of the resist 

Figure 4.  Examples of the warp defect 
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Figure 5.  Control image 

  While the accuracy results are promising, the system 
takes significant time to process 1000 visual words, with 
the training alone taking 7 minutes and 37 seconds.  
Additionally, although we can determine from the BoVW 
histogram which visual words occur most often for each 
class, it is not possible to determine what initial local 
features make up each visual word. From the 1000 visual 
words, it was possible to isolate 106 visual words that 
corresponded solely to the warp defect, with no key points 
detected on the image background. The experiments were 
conducted again using this refined set of visual words, a 
custom vocabulary, and the results are presented in the last 
column of Table I.  In this scenario, several machine 
learning approaches, combined with the custom 
vocabulary, provide an accuracy of 97%, hence the use of 
a custom vocabulary is more consistent and less dependent 
on the machine learning algorithm it is combined with, and 
the training time using this vocabulary is also much closer 
to a real time system, taking only 28 seconds, 
approximately 15x faster than using 1000 words. 

TABLE I– EXPERIMENTAL RESULT 

 Accuracy  

1000 visual 
words 

Accuracy  

106 visual 
words (custom 

vocabulary) 

AdaBoost 95% 87% 

Random Forest 79% 75% 

SVM - Linear C=1 51% 51% 

SVM – Linear C=10 53% 75% 

SVM – Linear C=100 90% 97% 

SVM – Poly C=1 51% 50% 

SVM – Poly C=10 51% 80% 

SVM – Poly C=100 56% 97% 

SVM – RBF C=1 56% 65% 

SVM – RBF C=10 100% 97% 

SVM – RBF C=100 97% 97% 

 

  The ability to identify a defect in a die image is 
important in automated inspection, and it is possible to 
further define the warp defect into 3 sub-classes. This has 
important consequences as some sub-classes of warp defect 
have more impact on the wafer production than others. The 
first sub-class denoted as Warp 1 contains erratic shapes 

and sharp-edged resist pieces that appear across the wafer 
image.  The second sub-class, denoted Warp 2, focusses on 
the circles that appear as the resist is wiped away from the 
wafer.  The third sub-class, denoted as Warp 3, has circular 
blobs or scratches through the resist. An example of each 
warp sub-class is illustrated in Figure 6.  
   Using the custom vocabulary of 106 visual words, we 
create a new custom vocabulary for each sub-class where 
Warp 1 requires 63 visual words, Warp 2 requires 48 visual 
words and Warp 3 requires 29 visual words.  The custom 
vocabulary for Warp 1 contains the most unique visual 
words whereas the custom vocabulary for Warp 2 has 
overlap with both Warp 1 and Warp 3. The experiments 
were conducted again using the custom vocabularies.  As 
the results in Table I demonstrated that AdaBoost and 
Random Forest do not perform as well as SVM, we present 
results only for SVM in Table II. 
     As shown in Table II, the linear SVM performs similar 
to the results presented in Table I, and hence it remains the 
worst performing SVM. The polynomial kernel SVM has 
increased accuracy compared with the linear SVM, 
however the RBF kernel SVM retains the highest accuracy 
for all SVMs across the three sub-classes. The key 
significance of the results in Table II is that the 
classification accuracy is high with an improvement in 
computational efficiency due to the reduced feature set, the 
custom vocabulary. 

 

(a) Example of Warp 1 image 

 

(b) Example of Warp 2 image 

 

(c) Example of Warp 3 image 

Figure 6. Examples of warp sub-classes 
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TABLE II - SVM ACCURACY RESULTS  

SVM  

 Warp 1 Warp 2 Warp 3  

SVM Linear C-1 51% 51% 51% 

SVM Linear C-10 92% 85% 68% 

SVM Linear C-100 97% 97% 87% 

SVM Poly C-1 70% 73% 78% 

SVM Poly C-10  85% 95% 87% 

SVM PolyC-100  100% 97% 70% 

SVM RBF C-1 87% 90% 70% 

SVM RBF C-10 97% 100% 92% 

SVM RBF C-100 100% 97% 95% 

 
TABLE III - SPEED TEST RESULTS 

Computational 
speed Test 

Training 
Time 

Prediction 
Time 

Highest 
Classification 

Accuracy 

1000 Words 7m 37s  13s 100% 

106 words 28s 9s 97% 

Subclass 25s 6s 100% 
 

 

Another important consideration is the speed of this 

system, as it is required to operate with in-line inspection 

tools and should therefore be as close to real time as 

possible whilst still retaining a high degree of accuracy. 

Table III shows that the proposed approach, based on the 

custom vocabulary, achieves the fastest run-time compared 

with the use of a larger vocabulary, as well as high 

accuracy.  

V. MVTEC EVALUATION 

The results presentenced in the previous section 

demonstrate that the custom vocabulary that corresponds to 

a specific defect provides high classification accuracies. In 

order to further validate this system, we use the MVTEC 

anomaly detection dataset [28]. From the dataset, we 

selected the Tile Crack image set which contains 20 

images, 10 for training and 10 for testing, along with a 

control class, again using 10 for training and 10 for testing. 

Examples of these images are given in Figure 7 .   

  

 
(a) 

 
(b) 

Figure 7.  Examples of (a) Tile Crack Defect image and (b) Tile Control 

Image 

In line with the previous experiment, as the SVM 

performed best, we use only an SVM with all 1000 visual 

words and the defect only visual words, for which 69 were 

detected for this dataset. 

 

 

 
TABLE IV – TILE CRACK RESULTS 

SVM 

 Full 

1000 

Words 

69 Defect only Words (Custom 

Vocabulary) 

SVM Linear C-1 72% 80% 

SVM Linear C-10 72% 80% 

SVM Linear C-100 72% 80% 

SVM Poly C-1 72% 80% 

SVM Poly C-10  72% 80% 

SVM Poly C-100  72% 97% 

SVM RBF C-1 72% 80% 

SVM RBF C-10 72% 80% 

SVM RBF C-100 82% 97% 

As illustrated in Table IV, a maximum accuracy for this 

dataset, when using 1000 visual words was 82% using an 

SVM, with the RBF kernel and C=100. However, this is 

reproved significantly by using a custom vocabulary that 

corresponds to the defect only features present in the 

images. We can see an increase to 97% using both the 

polynomial and RBF kernels with C=100. This is excellent 

performance accuracy given the small dataset used and 

would be difficult to achieve using deep learning which 

requires a significant volume of data. This demonstrates the 

robustness of the proposed approach across industrial 

datasets.  

VI. CONCLUSION AND FURTHER WORK 

 
  We have presented an approach to semi-conductor 
wafer defect classification by utilizing the bag of visual 
words method with a custom vocabulary formed from a 
reduced set of visual words.  We have demonstrated that 
this novel approach achieves competitive accuracies when 
compared with the use of a larger set of visual words (1000) 
but is much more computationally efficient as 
demonstrated by the presented run-times.   
  As the proposed approach works well, both on our 
industrial dataset and the MVTEC anomaly dataset, future 
work will investigate the design of custom vocabularies for 
other defect types, namely splatter, scratch, rip, 
delamination, and corrosion.  Additionally, we will explore 
the ability to accurately characterise and hence classify the 
warp defect images using only the custom vocabulary 
without additional machine learning.  The motivation for 
this is that, within the production line, if there is a design 
change then a neural network focused automated inspection 
system will require retraining.  However, if we can 
accurately classify defects without the use of deep learning 
and by using the custom vocabulary approach, this will 
enable the system to be readily adaptable to product 
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changes and developments creating a more open and 
understandable system. 
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