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Abstract— Edge computing has become a prominent 
computing strategy when mobile devices and Internet of 
Things (IoT) became popular in the last decade and cloud 
computing could not meet the computational requirements of 
some of these devices/applications. What edge computing can 
provide differently from cloud computing is low latency in 
communication, high quality of service, and support for high 
mobility. Connected and autonomous vehicles scenarios can be 
considered as an important application field for edge 
computing as these are the key requirements to implement a 
vehicular network. In this study, we aim to present a solution 
to one of the high level problems in vehicular networks: 
efficient Road Side Unit (RSU) placement by addressing 
network coverage and computational demand. We propose an 
RSU placement framework for generating RSU placement 
models based on traffic characteristics of a target area. 
Moreover, our work includes extending capabilities of a 
simulation framework designed for edge computing scenarios. 
Therefore, we can evaluate the performance of the generated 
models and validate their functionality by running simulations 
on this environment. 

Keywords-edge computing; V2I; connected vehicles; roadside 
units. 

I.  INTRODUCTION 
With increasing popularity of mobile devices and Internet 

of Things (IoT) in the last decade, cloud computing had been 
leveraged to solve the problem of making complex 
computations with limited device resources by provisioning 
remote computing and storage resources. Edge computing, 
on the other hand, was suggested as a new computing 
paradigm when the limitations of the centralized data centers 
started to emerge. Satyanarayanan et al. [1] describe these 
limitations as long Wide Area Network (WAN) latencies and 
bandwidth-induced delays. Because of these limitations, 
cloud computing is not a suitable computing strategy for 
scenarios which require real-time data processing and relies 
on fast feedback.  

Edge computing is a good candidate to solve these 
problems by bringing computing resources to the edge of the 
network, usually one hop away from the user. The features 
of low latency in communication, high quality of service and 
support for high mobility makes edge computing an optimal 
solution for the computational requirements of a wide range 
of applications in different domains. Connected and 

autonomous vehicles scenarios are considered as a good 
application field for edge computing [2]. 

The components of the Vehicle-to-Infrastructure (V2I) 
scenarios can be mapped to edge computing elements as 
follows: 

• Road Side Units (RSU) are the edge computing 
units in vehicular networks because of their proximity to the 
vehicles, providing computational, storage resources and 
high bandwidth link, and transfer data with minimum 
latency. 

• Vehicles are the resource poor clients as they have 
limited computation and storage resources due to the 
requirements of small-size and low-cost hardware systems 
[3]. 

• Vehicular applications are edge applications as they 
demand complex computation and large storage. 

Applications deployed into RSUs receive data from 
vehicular applications such as trajectory, speed, destination 
coordinates, etc. in short intervals, aggregate and process 
them in real time and send response back to senders or to the 
relevant vehicles within the network range. Here again, low 
latency and high quality of service are the key factors to 
build this ecosystem. 

Deploying a limited number of RSUs into a smart city is 
a challenging work since satisfying two requirements at the 
same time brings us to a trade-off problem. RSUs should be 
placed in an area in a way that satisfies both network 
coverage for vehicles and computational demand for the 
edge applications at maximum level considering the traffic 
density on the road network. 

The objective of this study is to implement an RSU 
placement framework for generating RSU placement models 
based on traffic characteristics of an area. We aim to provide 
a flexible tool that can be configured for designing a 
placement model in favour of network coverage or 
computational demand. Additionally, our work includes 
extending capabilities of an open source simulation 
framework, EdgeCloudSim, proposed by Sonmez et al. [4]. 
By adding new modules to support simulations for V2I 
scenarios and designing realistic traffic scenarios for a target 
area in London city centre, we validate the functionality of 
the proposed RSU placement framework and evaluate the 
performances of the generated RSU placement models 

The rest of the paper is organised as follows: Section II 
reviews the related work. Section III introduces the 
simulation environment, V2ISIM. In Section IV, the 
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reference scenario is described, and Section V explains RSU 
placement models. In Section VI, we address the RSU 
placement results, in Section VII, we analyse the simulation 
results, and finally, Section VIII outlines the concluding 
remarks. 

II. RELATED WORK 
Previous research addressing edge computing in 

vehicular networks mostly suggest new frameworks and 
architectures in which cloud and edge processing units, and 
mobile devices/vehicles are integrated into a new ecosystem. 
Their main focus is to provide solutions for computational 
challenges, such as resource allocation and Virtual Machine 
(VM) migration [3] [5] [6]. Our work can be considered as a 
complementary study which is built on top of an existing 
architecture addressed by these studies.  

On the other hand, RSU placement problem has been 
addressed by several studies in both highway and smart city 
scenarios. Highway scenarios have different traffic 
characteristics than smart cities (e.g. fast moving vehicles, 
sparse traffic, etc.), therefore, the communication 
infrastructure should be designed considering these 
requirements. Studies focusing on RSU deployment to the 
highways [7] [8] [9] differ from our study from this aspect. 

There are also studies addressing RSU placement in 
smart cities. These studies mostly approach the problem 
from network coverage aspect without taking computational 
demand into account. As a result, the placement models 
presented in these works do not guarantee fulfilling 
computational requirements of the edge applications 
deployed to the RSUs. In their study, Liang et al. [10] 
formulate optimal RSU deployment problem as an integer 
linear program (ILP). In their model, V2I communication is 
extended with multi-hop Vehicle-to-Vehicle (V2V) 
communication. Also, RSUs in their model can have 
different configuration settings. In our scenario, we don’t 
consider multi-hop communication in order to minimize the 
latency in V2I communication, and all the RSUs have same 
capabilities. Chi et al. [11] propose an RSU allocation 
algorithm with a concept of intersection priority. They aim to 
maximize the intersection coverage by deploying RSUs to 
the important intersections. Similarly, Gomi et al. [12] 
propose an RSU placement method by calculating placement 
priority for each intersection. In their work, they also 
consider road elements that affect radio wave spreading such 
as buildings and aim for a better communication 
performance. These methods consider the intersections as 
deployment points of RSUs, whereas in our model, we 
divide the target area into cells and build our deployment 
logic on top of these cells. Trullols et al. [13] propose a 
maximum coverage approach for modelling the problem of 
RSU deployment. Their model is based on deploying RSUs 
as Dissemination Points (DPs) and maximizing the number 
of vehicles that contact the DPs. In the study of Balouchzahi 
et al. [14] the problem of RSU placement formulated to 
binary integer programming. Unlike from the other studies, 
their work address highway and urban scenarios at the same 

time. Similarly, Premsankar et al., [15] use mixed linear 
integer programming formulation for the problem, but their 
formulation focuses on minimizing the deployment cost of 
edge computing devices by jointly satisfying a target level of 
network coverage and computational demand. 

III. V2ISIM 
We needed a simulation environment for our study in 

order to validate the functionality of the proposed RSU 
placement framework and compare the performances of the 
generated RSU placement models. For this purpose, we used 
EdgeCloudSim, which is an open source tool designed for 
simulating edge computing scenarios where it is possible to 
conduct experiments that consider both computational and 
networking resources [4]. We extended the capabilities of the 
framework by defining components and modules specific to 
V2I scenarios and referred to this extended simulation 
environment as V2ISim. 

EdgeCloudSim is also extended from another simulation 
environment, CloudSim, which allows modelling of cloud 
computing infrastructures and application services [16]. 
While EdgeCloudSim implemented edge processing units 
and modelled edge computing network, we introduced RSUs 
as computing units for V2I scenarios and extended the 
network model for vehicular network. We also implemented 
a mobility module to integrate traffic scenarios into the 
environment. 

The key components we implemented in V2ISim are as 
follows: 

• RSUManager: This component is responsible for 
creating RSU instances in the system based on the 
configuration provided. The configuration should include 
RSU resource definition as well as Global Positioning 
System (GPS) coordinates in decimal degrees. 

• TrafficLoadGenerator: A traffic input file, which 
includes vehicle trajectory data, should also be provided to 
the simulation environment. TrafficLoadGenerator is 
responsible for creating tasks using task characteristics 
received from task configuration file. When the simulation 
starts running, these tasks are scheduled for processing in 
due course. 

• TrafficTaskBroker: This component is 
responsible for managing the lifecycle of a task. After the 
task is created, there are 3 stages it has to follow until it is 
completed: vehicular application submits task to the RSU, 
task is processed in the RSU and finally, the response is sent 
back to the vehicle. When the task reaches to one stage, it is 
rescheduled by TrafficTaskBroker for the next one.  

• RSUOrchestrator: Its responsibility is to find the 
RSU that the task will be submitted. To achieve this, first, 
nearest RSU to the vehicle is detected. Then, if the vehicle is 
within the range of the RSU, task is submitted to it by 
TrafficTaskBroker. 

To find the nearest RSU for a given vehicle position 
efficiently, all RSU coordinates are saved in a K-D tree (K-
Dimensional Tree) when the application starts. A K-D Tree 
is a data structure for efficient search and nearest-
neighbour(s) computation of points in K-dimensional space. 
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We used an open source K-D tree implementation in our 
application [17]. 

• RSUMM1Queue: We use M/M/1 queue model to 
simulate the network delay. This component is responsible 
for calculating task upload and download delays.  

• SimLogger: Lastly, all the important task data, 
RSU data and as well as calculated system metrics are 
logged by SimLogger in different logging levels. 

At the end of the simulation, 3 output files are generated 
for each traffic input file provided: 

• Generic logs: this file includes most important 
simulation results such as number of successfully processed 
tasks, number of failed tasks, average service time, average 
network delay and average RSU utilization rate. The values 
logged in this file are used as metrics while comparing 
system performances for different RSU placement models. 

• RSU utilization logs: this file keeps the utilization 
rates for each RSU logged for each simulation second. These 
values are used as metrics while comparing system 
performances from utilization aspect for different RSU 
placement models.  

• Task assignment logs: It keeps the logs of number 
of assigned and failed tasks for each RSU.  

IV. REFERENCE SCENARIO 
This section outlines the reference scenario that we 

considered for V2I communication and the target area we 
used for the case study, and explains our approach on 
generating traffic dataset to run our experiments. 

A. Scenario and Parameters 
In our reference scenario, we consider a smart city 

equipped with V2I communication infrastructure. All 
vehicles are smart or connected with the ability of running 
vehicular applications. Vehicular applications send one task 
to the nearest RSU per second in case the vehicle is in the 
network coverage of any RSU and the data is processed by 
edge applications deployed to the RSUs. When the task is 
successfully processed, RSU sends a response back to the 
vehicle. There are 4 cases a task can fail: 

• Coverage: Vehicle is not in range of any RSU’s 
network  

TABLE I.  RSU AND TASK PARAMETERS AND VALUES 

Parameter Value 

RSU Network Range 250m 

RSU Bandwidth 1 Mbps 

CPU 600 Mhz 

Memory 500 MB 

Average Task Payload Size  1024 byte 

Average Task Length 300 MI 

Task arrival rate 1 Hz 

• Capacity: RSU is out of capacity and cannot 
process incoming task 

• Bandwidth: Task cannot be sent through network 
due to congestion 

• Mobility: Vehicle leaves the RSU network coverage 
after sending the task 

We assume all RSUs have same hardware capacity and 
the tasks sent by the applications are identical. In our 
scenario, each RSU has 1 Mbps bandwidth. Average task 
payload size is 1024 bytes for both upload and download 
operations. We also assume that each RSU has an equipped 
server with 600Mhz Central Processing Unit (CPU) and 
500MB Random Access Memory (RAM), and average task 
length is 300 Machine Instructions (MI). Table I shows the 
parameters for RSU and task configurations. All the 
simulations run as part of this study are based on these 
values. 

B. Target Area 
We chose an area of 3 x 3 kilometres in London city 

centre as the target area for deploying RSUs. To be able to 
run traffic simulations and calculate RSU locations, we 
needed to extract the road network of the target area. To 
obtain the road network, we outlined the target area on 
OpenStreetMap [18], which is a free collaborative map 
application, then we exported it in xml format. Since the map 
data includes a variety of information such as buildings, 
parks, restaurants, etc. we processed the file to only include 
road network elements such as motorways, intersections, and 
traffic lights. 

C. Traffic Dataset 
Due to the lack of publicly available vehicle trajectory 

dataset for the target area, we used Simulation of Urban 
Mobility (SUMO) framework to generate realistic traffic 
dataset. SUMO is an open source, microscopic and 
continuous road traffic simulation framework designed to 
handle large road networks [19]. Apart from its simulation 
capabilities, SUMO includes several scripts for traffic and 
road network operations. We used randomTrips script in 
SUMO library to generate random vehicle routes on the road 
network. The output route file, along with the network file 
should be provided to SUMO to run a traffic simulation.  

In our study, traffic density plays an important role on 
RSU placement process as the computational demand 
depends on number of vehicles in the system. Thus, to cover 
scenarios with different traffic volumes, we generated 8 
trajectory files for 500, 1000, 1500, 2000, 2500, 3000, 3500, 
and 4000 vehicles in the target area. Each file contains 
trajectory data logged for each simulation second, such as 
vehicle id, type, coordinates, speed, angle, lane, etc. As a 
result, more than 8 million logs were produced in total for 
the traffic dataset. Figure 1 shows heat maps of the generated 
vehicle trajectories for number of vehicles 500 and 4000. 
Traffic congestions can be observed in the centre of the map 
when higher number of vehicles used in the scenario.  
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Figure 1.  Heat maps of generated vehicle trajectories for the target area  for number of vehicles (a) 500 and (b) 4000

V. RSU PLACEMENT MODELS 
We generated 2 RSU distribution models addressing RSU 

placement problem in a smart city: Uniform RSU 
distribution and Weighted RSU distribution. This section 
outlines the algorithms we used for each distribution 
models.  
A. Uniform RSU Distribution 

Uniform RSU distribution serves for two purposes in our 
study: First, we used it as the base model which we made 
optimizations on the RSU locations in the next steps. 
Second, we used performance results of this model to 
compare with the results of generated placement models. The 
algorithm of this model is quite basic; after calculating the 
optimal distance between two RSUs, the number of RSUs 
required for full network coverage on the target area is 
calculated. Then, target area is divided into cells and RSUs 
are placed into these cells equidistant from each other. We 
referred to these cells as territories. Therefore, full network 
coverage is enabled in the target area, whereas computational 
demand is ignored.  

B. Weighted RSU Distribution 
Weighted RSU distribution model redistributes some 

RSUs in uniform distribution model by taking computational 
demand into account. In the uniform distribution model, 
despite of full network coverage, high task failure rates 
might be observed since RSUs might not meet high 
computational demand using their limited resources. It is 
especially expected to experience this problem in the 
territories with higher volumes of vehicle traffic, i.e., traffic 
congestions. An external parameter, θ, is the relocation 
factor, and it determines the number of the RSUs to be 
relocated. Relocation step addresses selecting θ% least 
utilized RSUs and move them to the territories where more 
computational resources are needed. 

Therefore, we aim to decrease capacity related task 
failures by bringing additional computational resources to 
meet the higher demand. On the other hand, relocated RSUs 

will result in network related task failures as no RSUs will 
serve to vehicles at these territories. Value of θ should be 
assigned considering the difference of traffic volumes in 
different territories as this trade-off is only reasonable if total 
number of task failures decreases after the relocation.  

The algorithm for this placement model consists of 4 
steps: 

• RSU Selection: This step addresses finding the 
RSUs placed at the territories with lower traffic 
volume, thus have low utilization rates. To detect 
these RSUs, we calculate task assignment rates for 
each RSUs in the uniform distribution. RSUs with 
less task assignment rates are marked to be moved in  

• the territories with higher resource demand. We 
select θ% of least utilized RSUs in this step. 

• Territory Selection: To detect territories that need 
additional resources to meet high computational 
demand, we analyse the performance of the RSUs in 
uniform distribution model under a heavy load. The 
territories containing the RSUs with higher capacity 
related task failure rates are the candidates to support 
with additional RSUs.  

• RSU Distribution: In this step, we first calculate a 
weight factor using task failure rates for each 
candidate territory. Then using the weight factor, we 
calculate number of RSUs to be assigned into each 
territory. Finally, we distribute the selected RSUs 
into these territories. 
RSU Placement: This step addresses placing 
selected RSUs into the candidate territories. The first 
RSU is placed in the middle of territory centre and 
neighbour territory centre with the highest 
computational demand among all neighbours. The 
second RSU is placed between the territory centre 
and neighbour territory centre with the second 
highest computational demand, and so on. 

VI. PLACEMENT RESULTS 
We developed a Java application as the implementation of 

the suggested placement algorithms and referred to it as RSU 
Distributor.  
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A. Uniform RSU Distribution 
Network range of RSUs can reach up to 1000 meters if 

there are no obstructions, and 250-350 meters in cluttered 
urban areas [20]. In our scenario, we assumed that each RSU 
works best with a coverage of 150 meters due to the 
shadowing effect of the buildings and we decided to place 
RSUs 300 meters far from each other. Therefore, to cover an 
area of 9 km² with RSUs working in their best performances, 
we needed to have 100 RSUs in total.  

After assessing the number of RSUs to place, we 
processed the area map by dividing it into territories each 
with the size of 300 by 300 meters, and we assigned each 
territory an id sequentially. Then, we placed one RSU into 
the centre of each territory, therefore 100 RSUs were evenly 
distributed on the area.  Figure 2 shows distribution of the 
RSUs into the territories based on the uniform distribution 
model. 

B. Weighted RSU Distribution 
To calculate the RSU coordinates for weighted RSU 

distribution model, we started by running V2ISIM for 
uniform distribution model, therefore, we generated the 
inputs required for weighted distribution algorithm: task 
assignment rates and task failure rates for each RSU. The 
simulation tool requires two input files: vehicle trajectory 
data and RSU coordinates. As traffic input data, we provided 
the traffic dataset we generated using SUMO and configured 
RSU and task characteristics by providing parameters listed 
in Table I. Some important simulation properties can be seen 
in Table II.  
 

 
Figure 2.  RSU Locations on Uniform Distribution Model 

TABLE II.  SIMULATION PROPERTIES 

Parameter Value 

Total number of traffic logs 8 147 468 

Total number of RSUs 100 

RSU placement model Uniform 

Simulation time 1 hour 

 

TABLE III.  RSU IDS SELECTED FOR RELOCATION 

θ RSU ids  

10 3, 11, 39, 4, 9, 49, 5, 90, 88, 2 

20 3, 11, 39, 4, 9, 49, 5, 90, 88, 2, 74, 89, 79, 69, 1, 91, 
6, 70, 93, 12 

30 
3, 11, 39, 4, 9, 49, 5, 90, 88, 2, 74, 89, 79, 69, 1, 91, 
6, 70, 93, 12, 84, 98, 92, 87, 8, 99, 14, 59, 80, 19 
 

TABLE IV.  TERRITORY IDS AND NUMBER OF RSUS TO ASSIGN 

θ RSU ids  

10 55(2), 54(1), 45(1), 35(1), 48(1), 33(1), 34(1), 65(1), 
53(1) 

20 
55(3), 54(2), 45(2), 35(2), 48(2), 33(1), 34(1), 65(1), 
53(1), 58(1), 47(1), 46(1), 75(1), 36(1) 
 

30 

55(4), 54(3), 45(3), 35(3), 48(3), 33(2), 34(1), 65(1), 
53(1), 58(1), 47(1), 46(1), 75(1), 36(1), 25(1), 71(1), 
38(1), 63(1) 
 

 
In RSU Distributor, simulation logs were aggregated and 
processed to calculate the values of task assignment rates and 
task failure rates of the RSUs. By assigning 10, 20, and 30 to 
θ, we run the application and generated 3 different RSU 
placement models. For each value of the θ, Table III shows 
the selected RSUs for relocation and Table IV shows the 
number of RSUs to be assigned to each territory.  

After running RSU distributor with these inputs, 3 
different distribution models were produced based on 
weighted distribution model algorithm. Figure 3 shows RSU 
placements for θ=10, 20, and 30 respectively. 

VII. SIMULATION RESULTS 
For generated RSU placement models, we run a set of 

simulations on V2ISim using a laptop with Intel Core i7-
8850H CPU and 16GB RAM. Table V shows the time spent 
to run each simulation.  

We classify traffic densities of the traffic input files we 
used for the simulations into 3 categories:  

• Number of vehicles below 1500 as low traffic 
volume 

• Number of vehicles between 1500 and 3000 as 
medium traffic volume 

• Number of vehicles more than 3000 as high traffic 
volume 

The graph in Figure 4 shows comparison of task failure 
rates for uniform distribution and weighted distribution for 
θ=10, 20, and 30.  

TABLE V.  SIMULATION PROPERTIES 

Simulation Duration 

Uniform RSU Distribution 6 hours 10 minutes 

Weighted RSU Distribution θ=10 9 hours 6 minutes 

Weighted RSU Distribution θ=20 6 hours 36 minutes 

Weighted RSU Distribution θ=30 6 hours 19 minutes 
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Figure 3.  RSU Locations on Weighted Distribution Model for (a) θ=10, (b) θ=20, (c) θ=30 

 

 
Figure 4.  Task Failure Rates 

Task failure rates can be considered as our most 
important metric while evaluating system performance. A 
system with low task failure rates is more reliable and 
functions better. 

We can observe that the system functions best for 
weighted distribution model for θ=10 under any traffic 
volumes. The graph also shows that when the number of 
vehicles in the system increases, task failure rates also 
increase for all RSU distribution models. Considering the 
sharp increase between 3500 and 4000 vehicles for all 
models, we can claim that if the traffic density is over a 
threshold, RSUs will not handle the load and the system will 
crash. Below 1000 vehicles, there is no significant gap 
between weighted distribution model for θ=10 and uniform 
distribution model, however, after this point, we can observe 
an increase on this gap. 

On the other hand, while uniform distribution model 
performs better than the weighted distribution models for 
θ=20 and 30 under low traffic volume, weighted distribution 
model for θ=20 outperforms it for medium traffic volume 
and weighted distribution model for θ=30 outperforms it for 
high traffic volume. This is because while network coverage 
is a more important factor for the low traffic volume, 
resource capacity becomes more critical than the other 
factors when traffic density increases.  

Lastly, the graph shows that relocating less utilized RSUs 
to the territories with higher load improves the system to a 
certain point. Weighted distribution model for θ=10 
outperforms uniform model for low, medium and high traffic 
volumes and it is the most optimal relocation factor among 
all the others. However, for θ=20, weighted model only 
performs better for medium and high traffic volumes, and for 
θ=30, it only functions better for high traffic volume. The 
reason for this is the trade-off between network coverage and 
resource capacity. When a less demanded RSU is relocated 
into a position to share the load in a busy area, capacity 
originated failure rates will decrease for the RSUs in the 
target territory, however coverage originated failure rates 
will increase for the original source territory. 

As a result, by evaluating the results of Task Failure Rate 
graph, we can conclude that: 

• θ=10 outperforms all others under any traffic load.  
• uniform distribution model can be used for low 

traffic volume 
• weighted model for θ=20 can be used for medium 

and high traffic volumes 
• weighted model for θ=30 does not perform well 

under any traffic load 
Figure 5 shows the comparison of average service time of 

the RSUs in the unit of seconds. The service time is the sum 
of download and upload delays and task processing time. As 
can be seen on the graph, increasing load had a similar 
impact on RSU service times for all distribution models, and 
all weighted distribution models performed better than the 
uniform model for all traffic volumes. The reason is, both 
download and upload delays and processing time depend on 
the RSU demand in that particular time. When an RSU needs 
to serve to higher number vehicles, they experience more 
delays on network and processing time. And as a result of 
sharing the high load with relocated RSUs, all weighted 
models provide better results in terms of service time. 

While measuring system performance, another important 
metric is average utilizations of the RSUs. A system in 
which RSUs run with a low capacity is less efficient than 
another system with higher RSU utilization. On the other 
hand, a system with RSUs running in full capacity for a 
certain level of computational demand is not able to sustain 
higher loads. Since the simulations we run with low and 
medium traffic volumes do not create significant load on  
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Figure 5.  Average Service Time 

majority of the RSUs, we compared utilization of RSUs 
using only the results of the simulations run with 3500 
vehicles. 3500 is the number which creates the highest traffic 
volume without breaking the system. 

Figure 6 shows histogram of average RSU utilization for 
uniform distribution model and weighted distribution models 
for θ=10. The histogram shows a significant improvement 
for weighted model in terms of RSU utilization because of 
two reasons: first, number of RSUs running in the lowest 
capacity (<10%) is lower than the uniform model, therefore 
RSU resources were used more efficiently. Second, number 
of RSUs running in high capacity (>%80) is also lower, 
therefore the load is distributed more evenly among the 
RSUs. This shows that relocating a less utilized RSU to 
share the high load in a territory provides good results in 
terms of utilization and can serve as a good optimization 
technique. 

Figure 7(a) and 7(b) shows task failure reasons and 
breakdowns for uniform distribution model and weighted 
distribution model for θ=10 respectively. In uniform 
distribution, no task failure due to network coverage can be 
observed since it was specifically designed by addressing full 
network coverage. When the traffic volume is low, vehicle 
mobility is the reason for the majority of the task failures. 

 

 
Figure 6.  Average Utilization Histogram (3500 vehicles) 

However, when traffic density increases, mobility failure 
rate decreases and RSU capacity failure becomes the main 
reason of the task failures. Also a high number of task 
failures can be observed due to exceeding bandwidth 
capacity when the number of vehicles is 4000 in the 
simulation.   

On the other hand, when vehicle number is 500, network 
coverage is the main reason of the task failures for weighted 
distribution model for θ=10 since the vehicles within the 
range of relocated RSUs cannot connect to any RSU to 
assign their tasks. When traffic density increases, coverage 
and mobility failure rates decrease and RSU capacity failure 
becomes the main reason of the task failures.  

VIII. CONCLUSIONS AND FUTURE WORK 
In this study, we proposed an RSU placement framework 

to be used for generating optimal RSU placement models 
based on traffic characteristics of a target area. Our solution 
addresses satisfying two criteria for RSU placement 
problem: network coverage and resource demand. Our work 
also includes extending capabilities of EdgeCloudSim, a 
simulation framework designed for edge scenarios, by 
introducing V2I components and modules. We referred to 
this extended simulation environment as V2I framework. 

 In order to validate the functionality of the proposed RSU 
placement framework, we generated a set of RSU 
distributions for a target area in London city centre based on 
uniform and weighted RSU distribution models. Then, we 
conducted experiments using V2I framework to compare 
their performances under different traffic loads. The 
experiments showed that weighted distribution model with 
replacement factor (θ) 10 performs best under any traffic 
load. Also we observed that weighted distribution models 
provided better results in terms of service time and resource 
utilization.  

As future work, we plan further optimisations on weighted 
distribution model by eliminating input θ from the system 
and calculate optimal number of RSUs only based on given 
traffic input data. Also, in this study, we had our main focus 
on the communication between vehicle and RSU, however 
inter-RSU communication is an accepted form of 
communication in Vehicular ad-hoc network (VANET) in 
which RSUs can exchange data with each other [21]. By 
implementing this in V2ISim, task transfers between RSUs 
will be possible and task failures due to vehicle mobility will 
be prevented. Moreover, some technical factors that can 
impact the communication between vehicles and RSUs 
should be studied and findings should be reflected to the 
study. These can be determining the noise level for the RSUs 
in close proximity and shadowing effect of the buildings. 
Finally, in the next phases of the study, we might still have 
the requirement of working with simulation based traffic 
datasets as finding real traffic datasets is not always possible. 
In that case, in order to validate the results and prove the 
consistency, we will have an approach to generate multiple 
datasets using different traffic simulation environments. 
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Figure 7.   Task Failure Breakdown (a) Uniform Distribution Model (b) Weighted Distribution Model (θ=10)     
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