
An RSU Placement Framework for V2I Scenarios

Baris Kara
Department of Computer Engineering

Galatasaray University
Istanbul, Turkey

e-mail: bariskara35@gmail.com

B. Atay Ozgovde
Department of Computer Engineering

Galatasaray University
Istanbul, Turkey

e-mail: aozgovde@gsu.edu.tr

Abstract— Edge computing has become a prominent
computing strategy when mobile devices and Internet of
Things (IoT) became popular in the last decade and cloud
computing could not meet the computational requirements of
some of these devices/applications. What edge computing can
provide differently from cloud computing is low latency in
communication, high quality of service, and support for high
mobility. Connected and autonomous vehicles scenarios can be
considered as an important application field for edge
computing as these are the key requirements to implement a
vehicular network. In this study, we aim to present a solution
to one of the high level problems in vehicular networks:
efficient Road Side Unit (RSU) placement by addressing
network coverage and computational demand. We propose an
RSU placement framework for generating RSU placement
models based on traffic characteristics of a target area.
Moreover, our work includes extending capabilities of a
simulation framework designed for edge computing scenarios.
Therefore, we can evaluate the performance of the generated
models and validate their functionality by running simulations
on this environment.

Keywords-edge computing; V2I; connected vehicles; roadside
units.

I. INTRODUCTION
With increasing popularity of mobile devices and Internet

of Things (IoT) in the last decade, cloud computing had been
leveraged to solve the problem of making complex
computations with limited device resources by provisioning
remote computing and storage resources. Edge computing,
on the other hand, was suggested as a new computing
paradigm when the limitations of the centralized data centers
started to emerge. Satyanarayanan et al. [1] describe these
limitations as long Wide Area Network (WAN) latencies and
bandwidth-induced delays. Because of these limitations,
cloud computing is not a suitable computing strategy for
scenarios which require real-time data processing and relies
on fast feedback.

Edge computing is a good candidate to solve these
problems by bringing computing resources to the edge of the
network, usually one hop away from the user. The features
of low latency in communication, high quality of service and
support for high mobility makes edge computing an optimal
solution for the computational requirements of a wide range
of applications in different domains. Connected and

autonomous vehicles scenarios are considered as a good
application field for edge computing [2].

The components of the Vehicle-to-Infrastructure (V2I)
scenarios can be mapped to edge computing elements as
follows:

• Road Side Units (RSU) are the edge computing
units in vehicular networks because of their proximity to the
vehicles, providing computational, storage resources and
high bandwidth link, and transfer data with minimum
latency.

• Vehicles are the resource poor clients as they have
limited computation and storage resources due to the
requirements of small-size and low-cost hardware systems
[3].

• Vehicular applications are edge applications as they
demand complex computation and large storage.

Applications deployed into RSUs receive data from
vehicular applications such as trajectory, speed, destination
coordinates, etc. in short intervals, aggregate and process
them in real time and send response back to senders or to the
relevant vehicles within the network range. Here again, low
latency and high quality of service are the key factors to
build this ecosystem.

Deploying a limited number of RSUs into a smart city is
a challenging work since satisfying two requirements at the
same time brings us to a trade-off problem. RSUs should be
placed in an area in a way that satisfies both network
coverage for vehicles and computational demand for the
edge applications at maximum level considering the traffic
density on the road network.

The objective of this study is to implement an RSU
placement framework for generating RSU placement models
based on traffic characteristics of an area. We aim to provide
a flexible tool that can be configured for designing a
placement model in favour of network coverage or
computational demand. Additionally, our work includes
extending capabilities of an open source simulation
framework, EdgeCloudSim, proposed by Sonmez et al. [4].
By adding new modules to support simulations for V2I
scenarios and designing realistic traffic scenarios for a target
area in London city centre, we validate the functionality of
the proposed RSU placement framework and evaluate the
performances of the generated RSU placement models

The rest of the paper is organised as follows: Section II
reviews the related work. Section III introduces the
simulation environment, V2ISIM. In Section IV, the

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

reference scenario is described, and Section V explains RSU
placement models. In Section VI, we address the RSU
placement results, in Section VII, we analyse the simulation
results, and finally, Section VIII outlines the concluding
remarks.

II. RELATED WORK
Previous research addressing edge computing in

vehicular networks mostly suggest new frameworks and
architectures in which cloud and edge processing units, and
mobile devices/vehicles are integrated into a new ecosystem.
Their main focus is to provide solutions for computational
challenges, such as resource allocation and Virtual Machine
(VM) migration [3] [5] [6]. Our work can be considered as a
complementary study which is built on top of an existing
architecture addressed by these studies.

On the other hand, RSU placement problem has been
addressed by several studies in both highway and smart city
scenarios. Highway scenarios have different traffic
characteristics than smart cities (e.g. fast moving vehicles,
sparse traffic, etc.), therefore, the communication
infrastructure should be designed considering these
requirements. Studies focusing on RSU deployment to the
highways [7] [8] [9] differ from our study from this aspect.

There are also studies addressing RSU placement in
smart cities. These studies mostly approach the problem
from network coverage aspect without taking computational
demand into account. As a result, the placement models
presented in these works do not guarantee fulfilling
computational requirements of the edge applications
deployed to the RSUs. In their study, Liang et al. [10]
formulate optimal RSU deployment problem as an integer
linear program (ILP). In their model, V2I communication is
extended with multi-hop Vehicle-to-Vehicle (V2V)
communication. Also, RSUs in their model can have
different configuration settings. In our scenario, we don’t
consider multi-hop communication in order to minimize the
latency in V2I communication, and all the RSUs have same
capabilities. Chi et al. [11] propose an RSU allocation
algorithm with a concept of intersection priority. They aim to
maximize the intersection coverage by deploying RSUs to
the important intersections. Similarly, Gomi et al. [12]
propose an RSU placement method by calculating placement
priority for each intersection. In their work, they also
consider road elements that affect radio wave spreading such
as buildings and aim for a better communication
performance. These methods consider the intersections as
deployment points of RSUs, whereas in our model, we
divide the target area into cells and build our deployment
logic on top of these cells. Trullols et al. [13] propose a
maximum coverage approach for modelling the problem of
RSU deployment. Their model is based on deploying RSUs
as Dissemination Points (DPs) and maximizing the number
of vehicles that contact the DPs. In the study of Balouchzahi
et al. [14] the problem of RSU placement formulated to
binary integer programming. Unlike from the other studies,
their work address highway and urban scenarios at the same

time. Similarly, Premsankar et al., [15] use mixed linear
integer programming formulation for the problem, but their
formulation focuses on minimizing the deployment cost of
edge computing devices by jointly satisfying a target level of
network coverage and computational demand.

III. V2ISIM
We needed a simulation environment for our study in

order to validate the functionality of the proposed RSU
placement framework and compare the performances of the
generated RSU placement models. For this purpose, we used
EdgeCloudSim, which is an open source tool designed for
simulating edge computing scenarios where it is possible to
conduct experiments that consider both computational and
networking resources [4]. We extended the capabilities of the
framework by defining components and modules specific to
V2I scenarios and referred to this extended simulation
environment as V2ISim.

EdgeCloudSim is also extended from another simulation
environment, CloudSim, which allows modelling of cloud
computing infrastructures and application services [16].
While EdgeCloudSim implemented edge processing units
and modelled edge computing network, we introduced RSUs
as computing units for V2I scenarios and extended the
network model for vehicular network. We also implemented
a mobility module to integrate traffic scenarios into the
environment.

The key components we implemented in V2ISim are as
follows:

• RSUManager: This component is responsible for
creating RSU instances in the system based on the
configuration provided. The configuration should include
RSU resource definition as well as Global Positioning
System (GPS) coordinates in decimal degrees.

• TrafficLoadGenerator: A traffic input file, which
includes vehicle trajectory data, should also be provided to
the simulation environment. TrafficLoadGenerator is
responsible for creating tasks using task characteristics
received from task configuration file. When the simulation
starts running, these tasks are scheduled for processing in
due course.

• TrafficTaskBroker: This component is
responsible for managing the lifecycle of a task. After the
task is created, there are 3 stages it has to follow until it is
completed: vehicular application submits task to the RSU,
task is processed in the RSU and finally, the response is sent
back to the vehicle. When the task reaches to one stage, it is
rescheduled by TrafficTaskBroker for the next one.

• RSUOrchestrator: Its responsibility is to find the
RSU that the task will be submitted. To achieve this, first,
nearest RSU to the vehicle is detected. Then, if the vehicle is
within the range of the RSU, task is submitted to it by
TrafficTaskBroker.

To find the nearest RSU for a given vehicle position
efficiently, all RSU coordinates are saved in a K-D tree (K-
Dimensional Tree) when the application starts. A K-D Tree
is a data structure for efficient search and nearest-
neighbour(s) computation of points in K-dimensional space.

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

We used an open source K-D tree implementation in our
application [17].

• RSUMM1Queue: We use M/M/1 queue model to
simulate the network delay. This component is responsible
for calculating task upload and download delays.

• SimLogger: Lastly, all the important task data,
RSU data and as well as calculated system metrics are
logged by SimLogger in different logging levels.

At the end of the simulation, 3 output files are generated
for each traffic input file provided:

• Generic logs: this file includes most important
simulation results such as number of successfully processed
tasks, number of failed tasks, average service time, average
network delay and average RSU utilization rate. The values
logged in this file are used as metrics while comparing
system performances for different RSU placement models.

• RSU utilization logs: this file keeps the utilization
rates for each RSU logged for each simulation second. These
values are used as metrics while comparing system
performances from utilization aspect for different RSU
placement models.

• Task assignment logs: It keeps the logs of number
of assigned and failed tasks for each RSU.

IV. REFERENCE SCENARIO
This section outlines the reference scenario that we

considered for V2I communication and the target area we
used for the case study, and explains our approach on
generating traffic dataset to run our experiments.

A. Scenario and Parameters
In our reference scenario, we consider a smart city

equipped with V2I communication infrastructure. All
vehicles are smart or connected with the ability of running
vehicular applications. Vehicular applications send one task
to the nearest RSU per second in case the vehicle is in the
network coverage of any RSU and the data is processed by
edge applications deployed to the RSUs. When the task is
successfully processed, RSU sends a response back to the
vehicle. There are 4 cases a task can fail:

• Coverage: Vehicle is not in range of any RSU’s
network

TABLE I. RSU AND TASK PARAMETERS AND VALUES

Parameter Value

RSU Network Range 250m

RSU Bandwidth 1 Mbps

CPU 600 Mhz

Memory 500 MB

Average Task Payload Size 1024 byte

Average Task Length 300 MI

Task arrival rate 1 Hz

• Capacity: RSU is out of capacity and cannot
process incoming task

• Bandwidth: Task cannot be sent through network
due to congestion

• Mobility: Vehicle leaves the RSU network coverage
after sending the task

We assume all RSUs have same hardware capacity and
the tasks sent by the applications are identical. In our
scenario, each RSU has 1 Mbps bandwidth. Average task
payload size is 1024 bytes for both upload and download
operations. We also assume that each RSU has an equipped
server with 600Mhz Central Processing Unit (CPU) and
500MB Random Access Memory (RAM), and average task
length is 300 Machine Instructions (MI). Table I shows the
parameters for RSU and task configurations. All the
simulations run as part of this study are based on these
values.

B. Target Area
We chose an area of 3 x 3 kilometres in London city

centre as the target area for deploying RSUs. To be able to
run traffic simulations and calculate RSU locations, we
needed to extract the road network of the target area. To
obtain the road network, we outlined the target area on
OpenStreetMap [18], which is a free collaborative map
application, then we exported it in xml format. Since the map
data includes a variety of information such as buildings,
parks, restaurants, etc. we processed the file to only include
road network elements such as motorways, intersections, and
traffic lights.

C. Traffic Dataset
Due to the lack of publicly available vehicle trajectory

dataset for the target area, we used Simulation of Urban
Mobility (SUMO) framework to generate realistic traffic
dataset. SUMO is an open source, microscopic and
continuous road traffic simulation framework designed to
handle large road networks [19]. Apart from its simulation
capabilities, SUMO includes several scripts for traffic and
road network operations. We used randomTrips script in
SUMO library to generate random vehicle routes on the road
network. The output route file, along with the network file
should be provided to SUMO to run a traffic simulation.

In our study, traffic density plays an important role on
RSU placement process as the computational demand
depends on number of vehicles in the system. Thus, to cover
scenarios with different traffic volumes, we generated 8
trajectory files for 500, 1000, 1500, 2000, 2500, 3000, 3500,
and 4000 vehicles in the target area. Each file contains
trajectory data logged for each simulation second, such as
vehicle id, type, coordinates, speed, angle, lane, etc. As a
result, more than 8 million logs were produced in total for
the traffic dataset. Figure 1 shows heat maps of the generated
vehicle trajectories for number of vehicles 500 and 4000.
Traffic congestions can be observed in the centre of the map
when higher number of vehicles used in the scenario.

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

Figure 1. Heat maps of generated vehicle trajectories for the target area for number of vehicles (a) 500 and (b) 4000

V. RSU PLACEMENT MODELS
We generated 2 RSU distribution models addressing RSU

placement problem in a smart city: Uniform RSU
distribution and Weighted RSU distribution. This section
outlines the algorithms we used for each distribution
models.
A. Uniform RSU Distribution

Uniform RSU distribution serves for two purposes in our
study: First, we used it as the base model which we made
optimizations on the RSU locations in the next steps.
Second, we used performance results of this model to
compare with the results of generated placement models. The
algorithm of this model is quite basic; after calculating the
optimal distance between two RSUs, the number of RSUs
required for full network coverage on the target area is
calculated. Then, target area is divided into cells and RSUs
are placed into these cells equidistant from each other. We
referred to these cells as territories. Therefore, full network
coverage is enabled in the target area, whereas computational
demand is ignored.

B. Weighted RSU Distribution
Weighted RSU distribution model redistributes some

RSUs in uniform distribution model by taking computational
demand into account. In the uniform distribution model,
despite of full network coverage, high task failure rates
might be observed since RSUs might not meet high
computational demand using their limited resources. It is
especially expected to experience this problem in the
territories with higher volumes of vehicle traffic, i.e., traffic
congestions. An external parameter, θ, is the relocation
factor, and it determines the number of the RSUs to be
relocated. Relocation step addresses selecting θ% least
utilized RSUs and move them to the territories where more
computational resources are needed.

Therefore, we aim to decrease capacity related task
failures by bringing additional computational resources to
meet the higher demand. On the other hand, relocated RSUs

will result in network related task failures as no RSUs will
serve to vehicles at these territories. Value of θ should be
assigned considering the difference of traffic volumes in
different territories as this trade-off is only reasonable if total
number of task failures decreases after the relocation.

The algorithm for this placement model consists of 4
steps:

• RSU Selection: This step addresses finding the
RSUs placed at the territories with lower traffic
volume, thus have low utilization rates. To detect
these RSUs, we calculate task assignment rates for
each RSUs in the uniform distribution. RSUs with
less task assignment rates are marked to be moved in

• the territories with higher resource demand. We
select θ% of least utilized RSUs in this step.

• Territory Selection: To detect territories that need
additional resources to meet high computational
demand, we analyse the performance of the RSUs in
uniform distribution model under a heavy load. The
territories containing the RSUs with higher capacity
related task failure rates are the candidates to support
with additional RSUs.

• RSU Distribution: In this step, we first calculate a
weight factor using task failure rates for each
candidate territory. Then using the weight factor, we
calculate number of RSUs to be assigned into each
territory. Finally, we distribute the selected RSUs
into these territories.
RSU Placement: This step addresses placing
selected RSUs into the candidate territories. The first
RSU is placed in the middle of territory centre and
neighbour territory centre with the highest
computational demand among all neighbours. The
second RSU is placed between the territory centre
and neighbour territory centre with the second
highest computational demand, and so on.

VI. PLACEMENT RESULTS
We developed a Java application as the implementation of

the suggested placement algorithms and referred to it as RSU
Distributor.

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

A. Uniform RSU Distribution
Network range of RSUs can reach up to 1000 meters if

there are no obstructions, and 250-350 meters in cluttered
urban areas [20]. In our scenario, we assumed that each RSU
works best with a coverage of 150 meters due to the
shadowing effect of the buildings and we decided to place
RSUs 300 meters far from each other. Therefore, to cover an
area of 9 km² with RSUs working in their best performances,
we needed to have 100 RSUs in total.

After assessing the number of RSUs to place, we
processed the area map by dividing it into territories each
with the size of 300 by 300 meters, and we assigned each
territory an id sequentially. Then, we placed one RSU into
the centre of each territory, therefore 100 RSUs were evenly
distributed on the area. Figure 2 shows distribution of the
RSUs into the territories based on the uniform distribution
model.

B. Weighted RSU Distribution
To calculate the RSU coordinates for weighted RSU

distribution model, we started by running V2ISIM for
uniform distribution model, therefore, we generated the
inputs required for weighted distribution algorithm: task
assignment rates and task failure rates for each RSU. The
simulation tool requires two input files: vehicle trajectory
data and RSU coordinates. As traffic input data, we provided
the traffic dataset we generated using SUMO and configured
RSU and task characteristics by providing parameters listed
in Table I. Some important simulation properties can be seen
in Table II.

Figure 2. RSU Locations on Uniform Distribution Model

TABLE II. SIMULATION PROPERTIES

Parameter Value

Total number of traffic logs 8 147 468

Total number of RSUs 100

RSU placement model Uniform

Simulation time 1 hour

TABLE III. RSU IDS SELECTED FOR RELOCATION

θ RSU ids

10 3, 11, 39, 4, 9, 49, 5, 90, 88, 2

20 3, 11, 39, 4, 9, 49, 5, 90, 88, 2, 74, 89, 79, 69, 1, 91,
6, 70, 93, 12

30
3, 11, 39, 4, 9, 49, 5, 90, 88, 2, 74, 89, 79, 69, 1, 91,
6, 70, 93, 12, 84, 98, 92, 87, 8, 99, 14, 59, 80, 19

TABLE IV. TERRITORY IDS AND NUMBER OF RSUS TO ASSIGN

θ RSU ids

10 55(2), 54(1), 45(1), 35(1), 48(1), 33(1), 34(1), 65(1),
53(1)

20
55(3), 54(2), 45(2), 35(2), 48(2), 33(1), 34(1), 65(1),
53(1), 58(1), 47(1), 46(1), 75(1), 36(1)

30

55(4), 54(3), 45(3), 35(3), 48(3), 33(2), 34(1), 65(1),
53(1), 58(1), 47(1), 46(1), 75(1), 36(1), 25(1), 71(1),
38(1), 63(1)

In RSU Distributor, simulation logs were aggregated and
processed to calculate the values of task assignment rates and
task failure rates of the RSUs. By assigning 10, 20, and 30 to
θ, we run the application and generated 3 different RSU
placement models. For each value of the θ, Table III shows
the selected RSUs for relocation and Table IV shows the
number of RSUs to be assigned to each territory.

After running RSU distributor with these inputs, 3
different distribution models were produced based on
weighted distribution model algorithm. Figure 3 shows RSU
placements for θ=10, 20, and 30 respectively.

VII. SIMULATION RESULTS
For generated RSU placement models, we run a set of

simulations on V2ISim using a laptop with Intel Core i7-
8850H CPU and 16GB RAM. Table V shows the time spent
to run each simulation.

We classify traffic densities of the traffic input files we
used for the simulations into 3 categories:

• Number of vehicles below 1500 as low traffic
volume

• Number of vehicles between 1500 and 3000 as
medium traffic volume

• Number of vehicles more than 3000 as high traffic
volume

The graph in Figure 4 shows comparison of task failure
rates for uniform distribution and weighted distribution for
θ=10, 20, and 30.

TABLE V. SIMULATION PROPERTIES

Simulation Duration

Uniform RSU Distribution 6 hours 10 minutes

Weighted RSU Distribution θ=10 9 hours 6 minutes

Weighted RSU Distribution θ=20 6 hours 36 minutes

Weighted RSU Distribution θ=30 6 hours 19 minutes

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

Figure 3. RSU Locations on Weighted Distribution Model for (a) θ=10, (b) θ=20, (c) θ=30

Figure 4. Task Failure Rates

Task failure rates can be considered as our most
important metric while evaluating system performance. A
system with low task failure rates is more reliable and
functions better.

We can observe that the system functions best for
weighted distribution model for θ=10 under any traffic
volumes. The graph also shows that when the number of
vehicles in the system increases, task failure rates also
increase for all RSU distribution models. Considering the
sharp increase between 3500 and 4000 vehicles for all
models, we can claim that if the traffic density is over a
threshold, RSUs will not handle the load and the system will
crash. Below 1000 vehicles, there is no significant gap
between weighted distribution model for θ=10 and uniform
distribution model, however, after this point, we can observe
an increase on this gap.

On the other hand, while uniform distribution model
performs better than the weighted distribution models for
θ=20 and 30 under low traffic volume, weighted distribution
model for θ=20 outperforms it for medium traffic volume
and weighted distribution model for θ=30 outperforms it for
high traffic volume. This is because while network coverage
is a more important factor for the low traffic volume,
resource capacity becomes more critical than the other
factors when traffic density increases.

Lastly, the graph shows that relocating less utilized RSUs
to the territories with higher load improves the system to a
certain point. Weighted distribution model for θ=10
outperforms uniform model for low, medium and high traffic
volumes and it is the most optimal relocation factor among
all the others. However, for θ=20, weighted model only
performs better for medium and high traffic volumes, and for
θ=30, it only functions better for high traffic volume. The
reason for this is the trade-off between network coverage and
resource capacity. When a less demanded RSU is relocated
into a position to share the load in a busy area, capacity
originated failure rates will decrease for the RSUs in the
target territory, however coverage originated failure rates
will increase for the original source territory.

As a result, by evaluating the results of Task Failure Rate
graph, we can conclude that:

• θ=10 outperforms all others under any traffic load.
• uniform distribution model can be used for low

traffic volume
• weighted model for θ=20 can be used for medium

and high traffic volumes
• weighted model for θ=30 does not perform well

under any traffic load
Figure 5 shows the comparison of average service time of

the RSUs in the unit of seconds. The service time is the sum
of download and upload delays and task processing time. As
can be seen on the graph, increasing load had a similar
impact on RSU service times for all distribution models, and
all weighted distribution models performed better than the
uniform model for all traffic volumes. The reason is, both
download and upload delays and processing time depend on
the RSU demand in that particular time. When an RSU needs
to serve to higher number vehicles, they experience more
delays on network and processing time. And as a result of
sharing the high load with relocated RSUs, all weighted
models provide better results in terms of service time.

While measuring system performance, another important
metric is average utilizations of the RSUs. A system in
which RSUs run with a low capacity is less efficient than
another system with higher RSU utilization. On the other
hand, a system with RSUs running in full capacity for a
certain level of computational demand is not able to sustain
higher loads. Since the simulations we run with low and
medium traffic volumes do not create significant load on

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

Figure 5. Average Service Time

majority of the RSUs, we compared utilization of RSUs
using only the results of the simulations run with 3500
vehicles. 3500 is the number which creates the highest traffic
volume without breaking the system.

Figure 6 shows histogram of average RSU utilization for
uniform distribution model and weighted distribution models
for θ=10. The histogram shows a significant improvement
for weighted model in terms of RSU utilization because of
two reasons: first, number of RSUs running in the lowest
capacity (<10%) is lower than the uniform model, therefore
RSU resources were used more efficiently. Second, number
of RSUs running in high capacity (>%80) is also lower,
therefore the load is distributed more evenly among the
RSUs. This shows that relocating a less utilized RSU to
share the high load in a territory provides good results in
terms of utilization and can serve as a good optimization
technique.

Figure 7(a) and 7(b) shows task failure reasons and
breakdowns for uniform distribution model and weighted
distribution model for θ=10 respectively. In uniform
distribution, no task failure due to network coverage can be
observed since it was specifically designed by addressing full
network coverage. When the traffic volume is low, vehicle
mobility is the reason for the majority of the task failures.

Figure 6. Average Utilization Histogram (3500 vehicles)

However, when traffic density increases, mobility failure
rate decreases and RSU capacity failure becomes the main
reason of the task failures. Also a high number of task
failures can be observed due to exceeding bandwidth
capacity when the number of vehicles is 4000 in the
simulation.

On the other hand, when vehicle number is 500, network
coverage is the main reason of the task failures for weighted
distribution model for θ=10 since the vehicles within the
range of relocated RSUs cannot connect to any RSU to
assign their tasks. When traffic density increases, coverage
and mobility failure rates decrease and RSU capacity failure
becomes the main reason of the task failures.

VIII. CONCLUSIONS AND FUTURE WORK
In this study, we proposed an RSU placement framework

to be used for generating optimal RSU placement models
based on traffic characteristics of a target area. Our solution
addresses satisfying two criteria for RSU placement
problem: network coverage and resource demand. Our work
also includes extending capabilities of EdgeCloudSim, a
simulation framework designed for edge scenarios, by
introducing V2I components and modules. We referred to
this extended simulation environment as V2I framework.

 In order to validate the functionality of the proposed RSU
placement framework, we generated a set of RSU
distributions for a target area in London city centre based on
uniform and weighted RSU distribution models. Then, we
conducted experiments using V2I framework to compare
their performances under different traffic loads. The
experiments showed that weighted distribution model with
replacement factor (θ) 10 performs best under any traffic
load. Also we observed that weighted distribution models
provided better results in terms of service time and resource
utilization.

As future work, we plan further optimisations on weighted
distribution model by eliminating input θ from the system
and calculate optimal number of RSUs only based on given
traffic input data. Also, in this study, we had our main focus
on the communication between vehicle and RSU, however
inter-RSU communication is an accepted form of
communication in Vehicular ad-hoc network (VANET) in
which RSUs can exchange data with each other [21]. By
implementing this in V2ISim, task transfers between RSUs
will be possible and task failures due to vehicle mobility will
be prevented. Moreover, some technical factors that can
impact the communication between vehicles and RSUs
should be studied and findings should be reflected to the
study. These can be determining the noise level for the RSUs
in close proximity and shadowing effect of the buildings.
Finally, in the next phases of the study, we might still have
the requirement of working with simulation based traffic
datasets as finding real traffic datasets is not always possible.
In that case, in order to validate the results and prove the
consistency, we will have an approach to generate multiple
datasets using different traffic simulation environments.

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

Figure 7. Task Failure Breakdown (a) Uniform Distribution Model (b) Weighted Distribution Model (θ=10)

ACKNOWLEDGEMENT
This work is supported by the Galatasaray University

Research Foundation under the Grant No. 18.401.003.

REFERENCES
[1] M. Satyanarayanan, P. Bahl, R Caceres, and N. Davies, “The

case for vm-based cloudlets in mobile computing,” IEEE
Pervasive Computing, vol. 8, no.4, pp. 14-23, Oct-Dec 2009.

[2] P. Corcoran and S. K. Datta, “Mobile-Edge Computing and
the Internet of Things for Consumers: Extending cloud
computing and services to the edge of the network,” IEEE
Consumer Electronics Magazine, vol. 5, no.4, pp. 73-74, Oct
2016.

[3] R. Yu, Y. Zhang, S. Gjessing, W. Xia, and K. Yang, “Toward
cloud-based vehicular networks with efficient resource
management,” IEEE Network, vol. 27, no.5, pp. 48-55, Oct
2013.

[4] C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An
Environment for Performance Evaluation of Edge Computing
Systems,” International Conference on Fog and Mobile Edge
Computing (FMEC), pp. 39-44, May 2017.

[5] S. K. Datta, R. D. F. Da Costa, J. Härri, and C. Bonnet,
“Integrating connected vehicles in Internet of Things
ecosystems: Challenges and solutions,” IEEE 17th
International Symposium on A World of Wireless, Mobile
and Multimedia Networks (WoWMoM), pp. 1-6, Jul 2016.

[6] M. A. Salahuddin, A. Al-Fuqaha, M. Guizani, and S.
Cherkaoui, “RSU cloud and its resource management in
support of enhanced vehicular applications,” IEEE Globecom
Workshops (GC Wkshps), pp. 127-132, Dec 2014.

[7] T. J. Wu, W. Liao, and C. Chang, “A Cost-Effective Strategy
for Road-Side Unit Placement in Vehicular Networks,” IEEE
Transactions on Communications, vol. 60, no.8, pp. 2295 –
2303, Jul 2012.

[8] X. Liya, H. Chuanhe, L. Peng, and Z. Junyu, “A randomized
algorithm for roadside units placement in vehicular ad hoc
network,” IEEE 9th International Conference on Mobile Ad-
hoc and Sensor Networks, pp. 193–197, Dec 2013.

[9] A. O’Driscoll and D. Pesch, “Hybrid geo-routing in urban
vehicular networks,” IEEE Vehicular Networking Confer-
ence, pp. 63–70, Dec 2013. 

[10] Y. Liang, H. Liu, and D. Rajan, “Optimal placement and
configuration of roadside units in vehicular networks,” IEEE
75th Vehicular Technology Conference, pp. 1-6, May 2012.

[11] J. Chi, Y. Jo, H. Park, T. Hwang, and S. Park, “An Effective
RSU Allocation Strategy for Maximizing Vehicular Network
Connectivity,” International Journal of Control and
Automation, vol. 6, no. 4, pp. 259-270, Aug 2013.

[12] K. Gomi, Y. Okabe, and H. Shigeno, “RSU Placement
Method Considering Road Elements for Information
Dissemination,” The Sixth International Conference on
Advances in Vehicular Systems, Technologies and
Applications, pp. 68-73, Jul 2017.

[13] O. Trullols, M. Fiore, C. Casetti, C. F. Chiasserini, and J. M.
Barcelo Ordinas, “Planning roadside infrastructure for
information dissemination in intelligent transportation
systems,” Computer Communications, vol. 33, no. 4, pp. 432–
442, Dec 2010.

[14] N. M. Balouchzahi, M. Fathy, and A. Akbari, “Optimal road
side units placement model based on binary integer
programming for efficient traffic information advertisement
and discovery in vehicular environment,” IET Intelligent
Transport Systems, vol. 9, no.9, pp. 851-861, Nov 2015.

[15] G. Premsankar, B. Ghaddar, M. Di Francesco, and R.
Verago, “Efficient Placement of Edge Computing Devices for
Vehicular Applications in Smart Cities,” IEEE/IFIP Network
Operations and Management Symposium, pp. 1-9, Apr 2018.

[16] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,
and R. Buyya, “Cloudsim: A toolkit for modeling and
simulation of cloud computing environments and evaluation
of resource provisioning algorithms,” Software Practice and
Experience, vol. 41, no.1, pp. 23-50, Jan 2011.

[17] S. D. Levy, “KD-Tree Implementation in Java and C#,”
https://simondlevy.academic.wlu.edu/software/kd, retrieved
Aug 11, 2019

[18] https://www.openstreetmap.org, retrieved Aug 11, 2019
[19] P. A. Lopez et al., “Microscopic Traffic Simulation using

SUMO,” 21st International Conference on Intelligent
Transportation Systems (ITSC), pp. 2575-2582, Nov 2018.

[20] A. K. Ligo, J. M. Peha, P. Ferreira, and J. Barros,
“Comparison between Benefits and Costs of Offload of
Mobile Internet Traffic Via Vehicular Networks,” 43rd
Research Conference on Communications, Information and
Internet Policy, pp. 1-39, Nov 2015.

[21] R. Barskar and M. Chawla, “Vehicular Ad hoc Networks and
its Applications in Diversified Fields,” International Journal
of Computer Applications, vol. 123, no.10, pp. 7-11, Aug
2015.

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

