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Abstract—Probabilistic flooding search is a fundamental tech-
nique for a wide range of complex systems. However, search
over these systems is quite challenging due to their dynamic
and complex nature, which results from the interactions between
participants. Here, we propose A2PF, an adaptive probabilistic
search scheme, which is capable of adjusting its operation in
dynamic network environments. It works in a distributed manner
and each participating node exploits past query messages to reveal
hidden attributes of the network topology (e.g., other nodes’
degrees). Based on such estimates, and with a partial knowledge
about the topology of its neighborhood, a node decides how to
efficiently forward incoming query messages to other nodes. In
order to quantitatively evaluate and confirm the performance
of A2PF, we conduct detailed experiments in various network
topologies.

Keywords–Complex networks; dynamic networks; probabilistic
flooding; search.

I. INTRODUCTION
Search is a common and well known operation in numerous

domains, including physical, biological, economic, commu-
nication social and peer-to-peer (p2p) systems [1]–[4]. The
process of search unfolds when a node generates a question
(or a query message); the message is transmitted, traversing the
network until it gets answered or some termination condition is
met. The query is about locating resources (e.g., data, services,
information or other types of computational resources [5]) or
target nodes.

The development of search strategies has a rich history [6].
It has become the subject of a substantial amount of research
and as a result, quite a few schemes have been proposed.
Flooding and its variants are traditionally used for search in
real-world networks as information regarding target nodes or
resource placement is inherently limited. Because flooding can
indeed flood the network with messages, its extent is usually
limited by a Time-To-Live (TTL) parameter. TTL is actually
the maximum number of hops a query message is allowed to
travel. One of the major drawbacks of flooding is the large
number of produced messages which overload the network
quickly [7].

Probabilistic search, which is the subject of this paper, is
a class of dynamic search strategies which try to alleviate
the deficiencies of flooding. In this type of search, each node
propagates the query message with a given probability, termed
forwarding probability. One of the major goals of probabilistic
flooding strategies is to determine the forwarding probabilities
so as to make the decision whether to further propagate a
message or not, as efficient as possible. This decision may
encode a property of the network or an estimation of some

of the system characteristics, e.g., approximate knowledge of
node distances or resource popularity.

Actual networks are usually formed by nodes and links
between them that change over time [8]. The problem of
performing search efficiently in such settings is vastly more
difficult than in static networks. The search procedure now
faces new restrictions and challenges as it has to deal with
temporal links and churn. Churn [9] refers to the continuous
process of node arrival and departure in/from the system.

In this paper, we propose a new search method which is
applicable to dynamic networks. It is rooted in a previous pro-
posal [10] but exploits local information about the generalized
neighborhood of a node, which is collected from past queries
that have been submitted by other nodes in the system. The
main contributions of this work are the following:
• We propose Adaptive Advanced Probabilistic Search

(A2PF), a novel adaptive search scheme which is ca-
pable of adjusting its operation parameters in dynamic
networks.

• We implement a local mechanism that “learns” topo-
logical properties of the network from passing mes-
sages.

• We provide experimental evidence on dynamic net-
works, which show that A2PF is able of achieving
superior performance in comparison to other proba-
bilistic flooding protocols.

The rest of this paper is organized as follows. After
discussing related works, Section II gives the system model
and introduces our heuristic for unveiling characteristics of
the network topology. The proposed A2PF strategy is then
presented in Section III. Section IV presents experimental
results and, finally, Section V concludes this work.

A. Related Work
Typically, researchers study the problem of search in

networks which are modeled as static (non-evolving) graphs.
Plain flooding propagates the query messages with forwarding
probability equal to 1 and makes no use of knowledge about
the structure of the network or any other of its properties.
In modified BFS (mBFS) [11], a node propagates the query
message only to a subset of its neighbors with a fixed forward-
ing probability. Adaptive Resource-based Probabilistic Search
(ARPS) [12] varies the forwarding probabilities according to
resource popularity and node degree distribution. Advanced
Probabilistic Flooding (APF) [10] adjusts the forwarding prob-
ability according to the distance from the query initiator and
the popularity of the requested resource.
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However, the above approaches are not designed for many
real-world cases, where the state of nodes and links change
over time. Studies on structured and unstructured peer-to-
peer (p2p) systems [9] [13] [14] try to understand the user
behavior and examine the impact of churn on the network
and its processes. Other works [15]–[17] study the limitations
of distributed computations, such as counting, aggregation,
summing or averaging in dynamic networks, using random
walkers, gossip protocols or other probabilistic forwarding
techniques.

Using simulation, Furness and Kolberg [18] investigate
the impact of churn on the success rate of “blind” search
techniques in structured p2p systems. Augustine et al [19],
assuming limited churn and efficient storage, propose random-
ized distributed algorithms that guarantee the data retrieval
with high probability even under high adversarial churn.

Finally, the works in [20]–[23] examine the completion
time of the flooding mechanism on dynamic graphs, which
are modeled as a fixed set of nodes with links whose birth and
death is modeled after a Markovian process. These approaches
do not capture other important network events, such as node
arrivals and/or departures.

II. SYSTEM MODEL AND METHODOLOGY
Let Gτ = (Vτ , Eτ ) be a graph that is defined by its node set

Vτ = {v1, ..., vN} and edge set Eτ = {(vi, vj)|vi, vj ∈ Vτ},
representing our dynamic network at time τ . Here, we focus
on the classical Erdős-Rényi (ER) network and on scale-free
networks. The ER network is formed on N nodes and each pair
of nodes is connected by an edge with some given probability
p. In scale-free networks, the node degrees follow a power-law
distribution.

Each node u in the network has a certain lifetime that is
defined at node creation time. At a particular time τ , this node
is active if it participates or inactive if it has left the system.
Similarly, each neighbor v of an active node u can be either
active or inactive. The state of each neighbor is modeled as an
on/off process Yv(τ) [24], where

Yv(τ) =

{
1 neighbor v is active at time τ ,
0 otherwise

(1)

At time τ , the degree of node u, can be calculated as

d(τ) =
∑

v∈N (u)

Yv(τ)

where N (u) is the immediate neighborhood of u (i.e., the set
of all nodes that have a connection with u).

Flooding search starts at a randomly picked node u. The
node sends the query message to all its neighbors, and then the
neighbors which do not know about the asked resource forward
the message to their own neighbors, repeating the process until
the whole network or a certain part of it has been reached.
Intuitively, the flooding search process discovers new nodes
in rounds. In step/round 1, it reaches the neighbors of u, in
step 2 it reaches the neighbors of its neighbors, and so on.
Each query message embeds a step (or hop) counter, which
is incremented by 1 when the message gets forwarded to the
next node, so that the process can be limited to some maximum
allowed distance (TTL).

Figure 1. The flooding shape as it is viewed by node u. It is the result of
information collected from incoming query messages qm.

A. Average Degree at Distance t
As we discussed above, a node u with degree d(τ) knows

that there exist
∑
v∈N (u) Yv(τ) nodes at distance 1. Suppose

that the average number of nodes in distance t from a node u is
nt. During the flooding process, these nodes will be receiving
the query message at exactly the t-th step. If we symbolize
the set of these nodes by Nt(u), then the average degree of
nodes at distance t from a node u is given by:

dt(τ) =
∑

v∈Nt(u)

Yv(τ)

We are interested in determining nt and dt(τ). However, in
complex networks with arbitrary degree distributions, deriving
analytically these quantities for distance t > 1 is not always
precise or indeed possible [2] [25] [26]. In addition, such
approaches are based on the assumption that the network
is static. To overcome this problem, we propose a heuristic
technique.

Consider an active node u which, during its lifetime, poses
and receives query messages. Every node in the network is
assumed to never re-forward any message that it forwarded in
the past. In effect, each node implements a local log/monitor at
each connection in order to limit retransmissions of the same
message on that edge. Due to the nature of flooding-based
schemes and the utilization of local monitor mechanisms, first-
time message receptions occur through shortest paths. Thus, a
node can learn its distance from the querying node simply by
checking the hop counter in the message. Consider node u as
illustrated in Figure 1. From incoming query messages, node
u can learn the distances to other nodes in the network. This
leads us to the following idea: it may be possible to discover
additional network parameters through the information stored
in query messages. For example, if querying nodes include
their degree within the message, node u could also estimate the
average degree of nodes at any distance t, simply by averaging
up all the incoming degree information from messages with
hop counter equal to t. This key insight allows node u to
uncover structural information about the network topology.

Consequently, we enforce the following rules for all the
nodes in the network:
• Every querying node u includes its degree into the

query messages (qm) it poses in network.
• Every node v which receives a query message qm for

the first time, at step t of the search process, stores
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the embedded degree information in order to estimate
the average degree of nodes at distance t.

B. Estimating the Average Degree at Distance t
Each node exploits observations from incoming query

messages coming from a certain distance t, in order to estimate
the average degree of nodes at this distance. This estimation
can be simply the arithmetic mean of the k most recent
observations (node degrees). Such an estimate assumes that all
values are equally important. However, the degrees of nodes
change over time due to the dynamic evolution of the network;
in addition some of those k values may not be relevant any
more because the corresponding nodes departed and are no
longer active.

To obtain a better estimate, we resort to a weighted mean
where we give more emphasis to recent values and progres-
sively forget the past ones. For a participating node, let d̂t
represent the estimate of the average node degree at distance
t. For each subsequent received value, the new estimation is
calculated as a linear combination of the current one and the
new incoming value, as follows:

d̂t(new) = (1− w)× d̂t(current) + w × value

where value is the newly received information about node
degree at distance t, and w is the weight factor, 0 ≤ w ≤ 1.
Initially, when the first messages from distance t arrives, we
set d̂t = value. The weight factor is a design parameter and
determines how quickly the past values are forgotten. Its value
should be tuned according to the characteristics of the network
and the generated queries; for example, under a high churn rate
and relatively infrequent queries, a value of w > 0.5 might
be more appropriate so as to quickly “learn” the new node
degrees.

III. ADVANCED ADAPTIVE PROBABILISTIC SEARCH
(A2PF)

Suppose that a node u poses a query message to the
network using a flooding-based strategy. We can visualize the
search space as extending in concentric circles, with node u at
the center and the nodes on the circle of radius t being nodes
lying t hops away from u. For example, the nodes in the first
cycle (t = 1) are u’s immediate neighbors; the second circle
(t = 2) contains the immediate neighbors of u’s neighbors,
etc. When a node receives a query, it does not know if the
query has been answered on another search path. Here, we
exploit the main idea behind the original APF strategy [10],
which chooses to propagate a query message only if the query
has not been answered yet (with high probability). To do this,
we need to know the number of nodes that have received the
query up to that point, so as to estimate if the query is already
answered or not.

Let nt be the number of nodes that have received the query
exactly at step t, and let Nt be the number of all visited nodes
up to and including step t; clearly Nt =

∑t
i=0 nt. According

to APF, which assumes static networks, the number of nodes
that have received the query at step t+1 can be calculated as
follows:

nt+1 = (dt − 1)nt

(
1− Nt

N

)
(2)

where dt is the average node degree in distance t from u.
A node that receives the query at step t, may then decide

to forward it with probability (1− (Nt/N))
qN , where q is a

measure of the popularity of the required resource.
Notice, however, that it was implied that dt is either known

or can be (imprecisely) substituted by the average degree
of the whole network. While the actual details are given in
Section IV, Figure 2 can serve as an early illustration of
how the average node degree varies according to the distance,
as viewed by a node. In networks with power-law degree
distributions, the average degree decreases abruptly after the
first few hops. This means that the average node degree may
be quite large during the first steps of the search process,
converging to the network average degree in the following
steps. Clearly, we need the knowledge of the average degree at
distance t from a node so as to obtain an accurate estimation
of the network coverage and guide the search process.

In dynamic networks, the number of nodes varies over
time according to the churn characteristics while links between
nodes may come and go. Let N(τ) be the number of nodes of
network at time τ . Based on (2) we can express the number of
nodes that have received the query at step t+ 1 in a dynamic
network as follows:

nt+1 = (dt(τ)− 1)nt

(
1− Nt

N(τ)

)
.

Similarly to the static case, the term dt(τ) is crucial for
the successful calculation of nt+1, especially for particular
families of networks, such as scale-free ones. In the proposed
A2PF strategy we use the estimator presented in Section II-B
to approximate dt(τ):

nt+1 = (d̂t(τ)− 1)nt

(
1− Nt

N(τ)

)
. (3)

The forwarding probability is then given by

pf (t) =

(
1− Nt

N(τ)

)qN(τ)

.

IV. SIMULATION
We use the Armonia simulation framework [27] to evaluate

and compare our approach with other flooding-based strategies.
Armonia offers a multitude of parametrized topologies, while
also allowing the generation of additional ones. Armonia
offers complete control over resource allocation and placement.
Finally, it implements a large number of search protocols but
also provides facilities for user-defined ones.

For our purposes here, we conduct our study on synthetic
networks, focusing on classical Erdős-Rényi (ER) random
graphs and Barabási (BA) power-law graphs. The networks
can be static or dynamic. Initially, the network has N nodes;
this number can vary in dynamic networks during simulation
time. The nodes provide resources (with each resource having
a number of replicas), which are uniformly distributed over
the network. In dynamic networks, a node participates in the
system for a certain time period, called the node lifetime, which
is the elapsed time from its first appearance in the system until
its departure. The lifetime of each node is defined at creation
time by a Weibull distribution [13] with parameters a and b.
New nodes join the network according to a Poisson distribution
with arrival rate λ. A total of 1,000 queries are submitted to the
system; we collect the measurements and average the results.

Before proceeding with the comparative study, we first
present the average degree as a function of distance t in real-
world datasets, obtained from the Stanford Network Analysis
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the actually measured ones in a dynamic ER network of 1,000 nodes.

Platform [28]. Figure 2 shows the overall average degree per
hop distance for the following traces: two gnutella network
snapshots with 26,518 nodes and 36,682 nodes, captured at
2002, a trace of the email-Enron network with 36,518 nodes
and a trace from the Brightkite social network with 58,228
nodes. We observe that the average degree 1 hop away is
quite larger than the average network degree. This proves that
knowledge of the average node degree in the network cannot
serve as a good approximation of the node degree at arbitrary
hop distances.

Next, we apply our heuristic estimator in a dynamic ER
network with 1,000 nodes. The node lifetime is determined
by a Weibull distribution with parameters a = 7, 200 sec and
b = 4 and the arrival rate is λ = 2. Nodes submit queries
and collect statistics about other nodes’ degrees. The estimator
weight factor was empirically set to w = 0.1 to favor past
estimations. Figure 3 shows the arithmetic mean of averages,
over all nodes as estimated by our heuristic (“estimated” curve)
while the other curve (“measured”) shows the actual averages
as a function of distance t for the same network. While the
two curves do not coincide, the estimator proves to follow

effectively the measured curve, even if the weight factor was
not fine-tuned.

For our comparative study, we consider four flooding-based
search policies, namely plain flooding (flood), mBFS [11],
ARPS [12] and our proposed A2PF. All strategies are con-
strained by a TTL hop limit. Also, they are assumed to
maintain a local monitor mechanism in order to avoid the re-
forwarding of an already sent message. For the mBFS and
ARPS strategies, the forwarding probabilities (pf ) follow the
corresponding authors’ guidelines. In particular, in mBFS the
query is forwarded to 50% of a node’s neighbors (pf = 0.5),
while in ARPS the value of pf depends on resource popularity.
For plain flooding pf = 1. The forwarding probabilities of
A2PF involve a different calculation in each node, using the
estimations in Section III. We assume that the basic structural
properties of the network do not change drastically over time,
so that N(τ) ' N , approximately balancing arrivals and
departures.

The comparison is based on the performance of these
search strategies on different networks. We assess the perfor-
mance based on three metrics:
• The probability of success, which measures the prob-

ability that a query can locate the desired resource,
given the TTL hop limit. A query is considered
successful if it discovers at least one replica of the
resource in question.

• The total number of messages that are transmitted,
before the resource is located.

• The number of duplicate messages. A message is
considered duplicate, or redundant, if it is received
by the same node more than once (and thus does not
contribute to the success of the search). It serves as
a measure of the how efficiently a policy utilizes the
network resources.

We present three different experiments. The corresponding
simulation parameters are summarized in Table I.

The first ER model is generated with 30,000 nodes and high
churn (45%). Resource popularity is the same for all resources
and equal to q = 0.0006. Figure 4 shows the results (success
rate on the left and number of duplicate messages on the right)
obtained by simulating the four search strategies. While all
strategies manage to locate at least one resource in the first
few hops, only A2PF produces negligible duplicate messages.
One of the key benefits of A2PF is its adaptive behavior on
network changes.

Next, we use the model of Barabási-Albert [29] and gener-
ate a scale-free network with no churn. In scale-free networks,
the node degrees can vary significantly with respect to the
average network degree. In practice, this impacts heavily the
search process. In this experiment we test the behavior of our
approach on such networks. This particular network starts with
three connected nodes. Each new incoming node is connected
to two existing nodes (m = 2). New nodes prefer to link with
nodes with more neighbors. The total number of nodes on the
network is 30,000. Resource popularity is uniform and equal
to q = 0.0016.

Figure 5 illustrates the simulation results. We observe that
flooding is successful after 2 hops, ARPS and A2PF need 1
more hop, while mBFS needs a further 1 hop. At the same
time, we observe an exponential growth of duplicate messages
in the case of plain flooding and ARPS. In contrast, mBFS
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TABLE I. SIMULATION NETWORK TYPES AND PARAMETERS

d network nodes q Flooding mBFS ARPS
6 dynamic ER 30, 000 0.0006 pf = 1 pf = 0.5 pf = 0.9
4 BA 30, 000 0.0016 pf = 1 pf = 0.5 pf = 0.8
4 dynamic BA 20, 000 0.005 pf = 1 pf = 0.5 pf = 0.7
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Figure 5. Success rate (left) and duplicate messages (right) in a BA power-law network with 30,000 nodes and m = 2, q = 0.0016.

and, especially, A2PF, manage to keep such messages in quite
limited quantities.

Finally, we consider the search performance of the four
strategies on a dynamic BA network with 20,000 nodes under
high churn (45%). The experimental results are given in
Figure 6. Flooding has the best success rate as a function
of hop distance. At the same time, it pays the price of the
largest number of redundant messages. ARPS and A2PF have
similar success rates while A2PF produces the fewest number
of messages among all strategies. mBFS does not seem to be
very effective in this case.

All the above experiments indicate the consistent superior-
ity of A2PF over the other three strategies (flooding, ARPS,
mBFS) regarding the success rate and the number of redun-

dant messages. The employment of the heuristic estimator is
responsible for the success of A2PF, giving it the ability to
moderate the redundant traffic.

V. CONCLUSION
In this work, we propose the A2PF, an adaptive probabilis-

tic search strategy, which exploits knowledge collected from
received queries at each node. A2PF is based on APF and
embeds a new heuristic mechanism. The heuristic mechanism
assists nodes in estimating the average degree of nodes t ≥ 2
hops away from them. The estimations guide a node to make a
knowledgeable decision whether to further propagate a query
message or not. Our experimental results confirm that A2PF
is fast and efficient.
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