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Abstract— Image deblurring is a challenging task in image 

processing. It is an ill-posed problem to estimate the unknown 

blur kernel and recover the original image from a blurred image. 

There are many methods for blurred natural images; however, 

few of them are able to perform well on blurred face images. 

Based on 𝐋𝟎 norm prior, we propose a two-step method for the 

images deblurring. The proposed method does not require any 

facial dataset to initialize the gradient of contours or any 

complex filtering strategies. In the first step, we combine 𝐋𝟎 

norm prior with our local smooth prior to predict the blur 

kernel. With simple Gaussian filtering, we could maintain the 

smooth region in the latent image. In the second step, we refine 

the previous estimated kernel. In order to discard low intensity 

pixels that seemed to be noises on the kernel, we impose the 

sparsity on the kernel.  Experimental results demonstrate that 

our proposed algorithm performs well on the facial images. 
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I.  INTRODUCTION  

Blind deblurring is a tough task in image processing. It can 

be modelled as   

B = x ∗ k + n ,                                 (1) 

where B is an observed blurred image, x is a latent image, ∗ 

is a convolution operator, k is a blur kernel, and n is a noise. 

Recovering a sharp image from the single blurred image B is 

an ill-posed problem. It can be solved by infinite set of pairs 

of the blur kernel and the latent image. Recent researches 

have a significant advance on image deblurring by iterative 

methods to estimate x and k. We can obtain a recovered 

image and an estimated kernel in each iteration. Usually, the 

temporarily recovered image is referred to as a latent image. 

The latent image is a clear and deblurred image. With edge 

information, the latent image and the blur kernel are 

estimated iteratively [3][5][8][10]. Shan et al. [2] adopted a 

sparse image prior via global and local priors. Krishnan et al. 

[6] used the 𝐿1/𝐿2 prior on the high frequencies of an image. 

Xu et al. [9] used an unnatural 𝐿0 prior to select high gradient 

edges iteratively. Kotera et al. [11] used straightforward 

maximum a posteriori method with 𝐿0.3 heavy-tail prior. In 

this paper, we add a local prior to maintain smooth regions 

and refine the estimated kernel by the 𝐿0 prior. In contrast to 

Pan et al. [14], which is focused on facial image deblurring, 

we predict the latent image without dataset supports and our 

experiments are better in image quality with appropriate 

parameters. In Section 2, related works are addressed. In 

Section 3, our proposed method is introduced. Section 4 

describes our experimental results and Section 5 is the 

conclusion.  

II. RELATED WORK 

Image deblurring can be divided into two parts: blind 

deblurring and non-blind deblurring. The former is to recover 

a sharp image with only a given blurred image; the latter uses 

deconvolution to get a better result than the former. The 

challenge on facial images deblurring is that there is less 

texture in facial images. The existing methods use few edges 

in the blurred image to estimate a blur kernel. Cho and Lee 

[3] used an explicit filter as the shock filter to process the 

blurred image to select its real edges. Xu et al. [5] created a 

metric to measure the usefulness edges which is defined by 

local gradient information. Bae et al. [8] focused on the 

informative edges in patches. They combined gradient 

magnitude, the edges of straightness and usefulness edges as 

mentioned above. Other works have constraints on the 

sparsity of image gradients [2][6][9][11]. Shock filter has 

been used in [3] as a sharpened reference image for 

deblurring. However, due to severe blurring motion, 

recovering facial contour is difficult due to wrong edge 

selection. The gradient of heavy-tail distribution 

[1][2][4][7][11] property on face images might not work well 

because of less textures in those images. In other works, 

different sparsity priors [6], such as the normalized prior 
‖𝑥‖1

‖𝑥‖2
 

were introduced.  According to Xu et al. [9], we can use it to 

recover the latent image with only several iterations. Without 

extra filtering such as shock filters, the optimization progress 

is faster than other methods. Recently, Pan et al. [14] 

proposed a deblurring method which uses similar face 

contours in their exemplar dataset for initial guess, and solve 

the objective function by the 𝐿0  prior of the gradient 

magnitude. They collected hundreds of images and the 

gradients of those images to build their exemplar dataset. The 

success of the method is due to the facial global structure 

which has similar contours. However, an additional dataset is 

required to choose the initial guess. Different from the 

method of Pan et al. [14], we propose a two-step method to 

refine our results without dataset support. We focus on the 

smooth regions in face images and preserve the flat regions 
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by a local smooth term to alleviate the problem of ambiguous 

edge selection. 

III. PROPOSED METHOD 

The proposed method is shown in Figure 1. The blurred 

image is processed with the kernel estimation to obtain the 

initial kernel. Then, with the adjustment of the initial kernel 

based on its sparsity, we can get the final estimated kernel 

and the deblurred image. The kernel estimation is done with 

a coarse-to-fine approach. We estimate the latent image (x 

step) and the blur kernel (k step) iteratively in different scales. 

The coarse-to-fine method solves x by minimizing the 

objective function with a local smooth term from a low image 

scale to a high image scale. The estimated kernel at the last 

scale will be the initial kernel next round. In the kernel 

adjustment, the predicted kernel is denoised by using 𝐿0 

regularization to discard its low intensity pixels. The 

objective function with our local smoothness term is 

min
𝑥,𝑧

‖𝑥 ∗ 𝑘 − 𝐵‖2
2 + 𝜆‖𝛻𝑥‖0 + 𝛼‖𝛻𝑥 − 𝛻𝑧‖2

2       (2) 

where 𝑥 is a latent image, 𝐵 is a blurred image, and 𝑘 

is a blur kernel, 𝛻 is a gradient operator of two directions 

(horizontal and vertical). 

Figure 1. The flow chart of our proposed method 

The first term represents the error between the observed 

blurred image and the estimated blurred image convoluted by 

the latent image and the kernel. The second term represents 

the constraint of the sparsity in the latent image. The third 

term is our proposed local smoothness term that we want the 

latent image to be close to the 𝑧 map which indicate the 

smooth regions in the blurred image. As in Pan’s [14], we can 

rewrite (2) as 

min
𝑥,𝑤,𝑧

‖𝑥 ∗ 𝑘 − 𝐵‖2
2 + 𝛽‖𝛻𝑥 − 𝑤‖2

2 + 𝜆‖𝑤‖0 + 𝛼‖𝛻𝑥 − 𝛻𝑧‖2
2,    (3)  

and                        𝑤 = {
𝛻𝑥, 𝑖𝑓  |𝛻𝑥|2 ≥

𝜆

𝛽

0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
,                      (4) 

 The variable w helps us to solve 𝐿0  term. The larger 𝛽 

becomes, the closer the solution of (3) approaches (2). 

Because of the multiple-variable minimization of (3), we 

solve it alternatively by updating  𝑤, 𝑧 and 𝑥 independently. 

Given the latent image 𝑥, we obtain 𝑤 by (4) with a threshold. 

Here, 𝜆 is a constant, and 𝛽 becomes larger in each iteration 

by a factor of 2. In this function, we only choose high gradient 

pixels in the blurred image which makes the latent image 

sparse.  We set  

𝑧 = ~𝑡 ∘ 𝑥̂,                                   (5) 

𝑥̂ is the latent image,  which is filtered by a Gaussian filter 

with initial variance σ = 0.3 and increases over each scale, ∘ 

is a pointwise product (pixel to pixel), and ~ is a NOT 

operator.  𝑡 is a binary image indicating high gradients in the 

latent image (using 𝑤),  

𝑡 = {
1, 𝑤 ≠ 0 
0,         𝑤 = 0

, 

We dilate 𝑡 to avoid the influence on high gradient edge,  

𝑡 = 𝑡⨁𝑚, 
where ⨁  is a dilation operator, 𝑚  is a square structuring 

element whose width is a half of estimated kernel size. 

 In our experiment, we set the initial kernel size for 3 pixel, 

and increases it over each scale by factor of √2. Thus, the 𝑧 

map we introduced could be thought of  as the set of all pixels 

in the latent image with filtering, which is exclusive of the 

high gradient pixels in each iteration.  According to Shan et 

al. [2], the smooth region in the latent image is still smooth 

after motion blur. The results with our smooth term are shown  

  
(a)                         (b)                     (c) 

Figure 2. The latent image and estimated kernel recovered by our method 

with and without our priors of local smoothness. (a) Our local smooth prior 

(𝛼 = 0.0008, 𝜆 = 0.02) (b) Without our local smooth prior (𝛼 = 0, 𝜆 =
0.02) (c) original kernel 

 

in Figure 2 (a).  Minimizing  (6) with respect to 𝑥, we obtain  

min
𝑥

‖𝑥 ∗ 𝑘 − 𝐵‖2
2 + 𝛽‖𝛻𝑥 − 𝑤‖2

2 + 𝛼‖𝛻𝑥 − 𝛻𝑧‖2
2 .    (6)      

According to Pan et al. [14], we can get  

𝑥 = ℱ−1(
ℱ(𝑘)ℱ(𝐵)+𝛽(ℱ(𝜕𝑥)̅̅ ̅̅ ̅̅ ̅̅ ℱ(𝑤𝑥)+ℱ(𝜕𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ℱ(𝑤𝑦))+𝛼(ℱ(𝜕𝑥)̅̅ ̅̅ ̅̅ ̅̅ ℱ(𝑧𝑥)+ℱ(𝜕𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ℱ(𝑧𝑦))

ℱ(𝑘)̅̅ ̅̅ ̅̅ ̅ℱ(𝑘)+(𝛽+𝛼)(ℱ(𝜕𝑥)̅̅ ̅̅ ̅̅ ̅̅ ℱ(𝜕𝑥)+ℱ(𝜕𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ℱ(𝜕𝑦))
   (7) 

where ℱ−1(∙)  and ℱ(∙)  are the Inverse Discrete Fourier 

Transform (IDFT) and Discrete Fourier Transform (DFT), 

and 𝜕𝑥 and 𝜕𝑦 are derivative operators in x and y directions, 

and ∙ ̅  is the complex conjugate operator. The objective 

function of the kernel estimation is 
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min
𝑘

‖𝑥 ∗ 𝑘 − 𝐵‖2
2 + 𝛾‖𝑘‖2

2                         (8) 

where 𝑥  is a latent image, 𝐵  is a blurred image, and 𝑘  
is a blur kernel, 𝛾 is the parameter for regularization term on 

the kernel sparity. It can be solved by the conjugate gradient 

decent easily. Here, the data term is on gradient level 

according to Pan et al. [14], which has a stable kernel 

estimation can be written as  

 min
𝑘

‖𝛻𝑥 ∗ 𝑘 − 𝛻𝐵‖2
2 + 𝛾‖𝑘‖2

2, (9) 

where 𝛻 is gradient of horizontal and vertical direction.  It is 

efficient to rewrite (9) in the matrix form. Thus, (9) can be 

rewritten as below: 

(𝛻𝑥K − 𝛻𝐵)T(𝛻𝑥K − 𝛻𝐵) + 𝛾KTK  

= K𝑇∇𝑥𝑇∇𝑥K − K𝑇∇𝑥𝑇∇𝐵 − ∇𝐵𝑇∇𝑥K + 𝛾KTK ,  (1) 

where K is a convolution matrix referred to k. By the 

minimization of (10) with respect to K we can obtain  
(∇𝑥𝑇∇𝑥 + 𝛾)K = ∇𝑥𝑇∇𝐵                   (11) 

Then, (11) can be solved by the conjugate gradient decent. 

The coarse-to-fine kernel estimation is with (11) and 

estimation of the latent image is with (4), (5) and (7).  The 

experimental observation of output kernel shows that there 

are still some low intensity pixels that seemed to be noise. 

The straightforward concept is using L0 norm to let the kernel 

be sparse. Based on L0 norm method, this problem involves 

the following terms 

min
𝑘

‖𝛻𝑥 ∗ 𝑘 − 𝛻𝐵‖2
2 + 𝜆‖𝑘‖0 ,              (12) 

Which represents the constraint on the sparsity of blur kernel. 

Since the function in equation (12) is a non-convex function, 

we add an auxiliary variable 𝑟 into (12) and rewrite it as the 

previous case 

min
𝑘,𝑟

‖𝛻𝑥 ∗ 𝑘 − 𝛻𝐵‖2
2 + 𝜆‖𝑟‖0 + 𝛽‖𝑘 − 𝑟‖2

2. (13) 

In each iteration, we alternatively solve subproblems with 

respect to each variable 𝑟 and 𝑘, 

𝑟 = {
𝑘,   𝑖𝑓 |𝑘|2 ≥

𝜆

𝛽

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  .            (14) 

Here, 𝜆 is a constant, and 𝛽 increases by a factor of 2 in each 

iteration. The threshold of the intensity of kernel pixels is to 

discard the low value of pixels. 

min
𝑘

‖𝛻𝑥 ∗ 𝑘 − 𝛻𝐵‖2
2 + 𝛽‖𝑘 − 𝑟‖2

2 .          (15) 

After the variable 𝑟 is obtained, minimization of (14) can 

be rewritten as below:         

(∇𝑥𝑇∇𝑥 + 𝛽)K = ∇𝑥𝑇∇𝐵 + 𝛽R,             (16) 

where K is a convolution matrix referred to  𝑘 , R is a 

convolution matrix referred to 𝑟. 

We can solve (16) by conjugate gradient decent. The 

concept in the second step is based on the progressive sparsity 

of 𝐿0 norm. Because 𝐿0 norm is a non-convex function, we 

have to use additional variables and iterations to solve. 

Therefore, in the k step (kernel estimation process), we 

estimate the kernel with 𝐿2 norm regularization which can be 

done easily by conjugate gradient decent. Compared to Pan 

et al. [14], we rewrite the 𝐿0  method in coarse-to-fine 

approach. Without dataset support, we solve it in a single 

image. Compared to Xu et al. [9], the local smooth prior is 

introduced, and we use two steps to refine our predicted 

kernel. Figure 2 shows the refinement of kernel estimation. 

We can see that Figure 3 (b) shows the kernel after refinement. 

It is much closer to the kernel of ground truth than Figure 2(a) 

the kernel before the refinement. 

(a) (b) (c) 
Figure 3. Refinement of kernel estimation (a) Before (b) After (c) Ground 

truth kernel 

 

Finally, we obtain the refinement kernel and use the non-

blind deconvolution provided by Pan et al. [14]: deconvSps 

function to get the recovering image.  

 

IV.EXPERIMENTS 

In our experiments, the parameters: 𝛼 = [4𝑒−4 ~ 64𝑒−4], 

𝜆=[0.02,0.03,0.04], and initial kernel size is 17×17. The 

dataset we test is provided by Pan et al. [14] and Levin et al. 

[11]. The ground truth images are the deconvolution of the 

blur images with the ground truth blur kernel. The non-blind 

deconvolution method is provided by Pan et al. [14]: 

deconvSps function, which  is the same method we used in 

our estimated kernels to recover the sharp images for 

consistent measures. To validate our framework, we compare 

the visual quality of the recovered sharp latent image and 

kernel which is shown in Figure 4 without our local smooth 

prior and  Figure 5 with and without our kernel refinement. 

Figure 6 shows the comparison of the results by various 

methods. The recovering method, deconvSps function, is the 

same provided by Pan et al. [14]. The image quality shows 

that the image recovered by our kernel looks softer and 

smoother. In addition, our local smooth prior and kernel 

adjustment could reduce the noise of the estimated kernel; 

that is, it is reasonable to fit two-step approach to improve the 

kernel.   Also, 40 blur images provided by Pan et al. [14] are 

used. PSNR (Peak Signal to Noise Ratio) and SSIM 

(Structural Similarity) are the metrics between the images 

with ground truth kernel via non blind deconvolution and the 

deblurred images. Figures 7 and Figure 8 show that the 

comparison of  PSNR and SSIM values for 40 images and our 

method has better performance.  

IV. CONCLUSION 

We present a new framework combined with L0  norm 

prior for images which leverages those smooth regions and 

refines the kernel to get better results. The local smooth term 

is to maintain the smoothness in images. Without any dataset 

support, we use coarse-to-fine approach and perform well on 

face images.The better results could be credited to the flat 

region in these face images to alleviate the ambiguous edge 

selection. 
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(a)                        (b)            

Figure 4 (a) without our local smooth prior. α=0, λ=0.02     (b) With our local  

smooth prior. α=16e-4, λ=0.02 

 
(a)               (b) 

Figure 5 (a) Without our kernel refinement (b) With our kernel refinement  

(a) (b) (c)

(d)     (e) 

Figure 6. Comparison of Image quality (a) Our method (b) Pan [14] (c) 

Kotera [11] (d) Xu [5]   (e) Ground truth kernel with non-blind deconvolution  

 

Figure 7. Comparison of PSNR values for 40 blurred images 

 

Figure 8. . Comparison of SSIM values for 40 blurred images 

24Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-602-6

EMERGING 2017 : The Ninth International Conference on Emerging Networks and Systems Intelligence


