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Abstract— We present a computationally simple 

approach for mobile node motion recognition and prediction 

in decentralized wireless networks. The ability to observe 

and analyze movement data and infer targeted mobile 

subscriber motion strategies offers performance gains in 

Delay Tolerant Networks (DTNs). The method here offers 

new mechanisms for the Store-Carry and Forward Relaying 

Scheme to create opportunities for the system to increase its 

overall performance. The motion data are processed by the 

Kalman Filter (KF) algorithm, which may be viewed as a 

series of prediction, tracking and smoothing calculations of 

the movement of mobile subscribers. The outcomes illustrate 

that the algorithm performs well on prediction and tracking 

the motion of mobile users. A Java based routing protocol 

implementation of the KF algorithm offers a delivery 

probability of at least 0.7 and a mean hop count of between 

2.1 and 3.7 for small and large networks, respectively. For 

modest node densities, between 60% and 80% of the 

messages will be delivered but after a substantial delay. 

Thus, the approach described will be of benefit in data 

collection as part of the Internet of Things and small sensor 

networks.   

Keywords— Store-Carry and Forward; Decentralized 

Wireless Networks; Kalman Filter 

I.  INTRODUCTION 

 One of the aspects introduced into networking by the 
use of wireless links is the potential mobility of the 
communicating nodes but in a classic infrastructure-based 
wireless network, a fixed access point provides onward 
routing into a wired network [1]. In recent years, the idea 
of mobile ad hoc networking without a pre-defined 
structure or designated central controller has gained in 
popularity with the use of multiple network hops providing 
the necessary communication range [2]. In such a 
decentralized wireless network, each of the mobile nodes 
is allowed to determine how to assist other network nodes 
since stable end-to-end paths rarely exist because of node 
mobility, node sparsity and node connection or 
disconnection [3]. The prevailing network conditions 
produce a Delay Tolerant Network (DTN), in which 
connectivity is provided between a pair of nodes despite 
the intermittent connectivity and long delays to provide 
more network flexibility and resilience [4]. The network 
uses the limited connectivity to forward segments of the 
payload, which can thus be randomly forwarded to any 
neighboring nodes. This has the potential to lead to 
unmanageable system efficiency, intolerable overall delay 
and considerable energy wastage. As a result, specialized 

routing paradigms have been developed for DTNs [5] that 
utilize the Store-Carry and Forward (SCF) relaying scheme 
[6] that is further discussed in Section II. There has also 
been substantial interest in the use of predictive 
information to assist in the SCF process, which will also be 
discussed in Section II. The mechanisms used to determine 
the forwarding in SCF will critically influence the wireless 
network performance. The key metrics include network 
efficiency, transmission delay, Quality of Service (QoS), 
energy efficiency and network load distribution. Wireless 
networks provide subscriber mobility and flexibility, 
allowing portable device vendors to implement more 
advanced features than in wired networks. The SCF 
relaying scheme utilizes this mobility to achieve relaying 
but the positional uncertainty of the wireless nodes can 
lead to uncontrollable DTN performance. Thus, subscriber 
motion prediction offers the prospect of well-managed and 
optimized relay routing. 

The rest of the paper is organized as follows. In Section 
II, the context for the work is provided by a short overview 
of the literature. The methods of node movement 
prediction are introduced in the Section III and then the 
simulation methods are contained in Section IV, 
culminating with the results obtained. The final section 
presents the conclusions and suggestions for future work.  

II. RELATED WORK 

To deal with the motion of the nodes within a DTN, it 
has been common to form routing paths between nodes 
that are in each other’s direct communication range [7]. 
Thus, the network needs to maintain an end-to-end 
structure whilst its intermediate structure varies with node 
movement. This is difficult because the variations in node 
positions constantly change the underlying communication 
graph and mean that nodes must quickly adapt to the new 
configurations. One of the methods for solving this 
problem is link reversal [8], which models the problem as 

a directed   graph, reversing the link directions when 

needed as a result of motion induced connection loss. 
Unfortunately, as shown in [8], the time to produce a 
stable link for communication grows as the square of the 
number of nodes in the network, limiting the scalability of 
such algorithms. As a result, the SCF approach [6] was 
developed, in which intermediate mobile nodes store 
messages in their local memories if they do not encounter 
a suitable relay node. The messages are then carried whilst 
the nodes move until they find an appropriate node to 
which they can forward their data towards the destination. 
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Early DTN protocols such as epidemic routing [9] 
operated without network information to aid their 
decisions. The target in such an approach is to spread 
packets rapidly throughout the network without a node 
selection criterion (that would need extra information). 
Packets are copied at all node encounters and persist in the 
network until they reach their destination or exceed a 
chosen lifetime. Protocol performance drops with 
increasing load because of the growing demands for 
storage space and low probability that useful forwarding 
nodes will be encountered rapidly. Limiting the number of 
copies permitted was introduced by protocols such as 
Spray-and-Wait (SnW) [10]. In this method, once the 
maximum number of copies is reached, the carrying node 
keeps the packet until it reaches the destination, storage 
limits are exceeded or the packet times out. To overcome 
the limitations of the random approach above, many 
protocols have been developed that collect network 
information to select relay nodes enhancing delivery 
probability despite limited storage and energy resources 
[5]. A well-known example of a protocol that predicts 
contacts among DTN nodes is PROPHET [11]. This 
produces a node metric via the number of meetings 
between nodes; the link weightings between nodes are 
increased when they meet along with the weightings of 
other nodes that they have met. The adoption of this 
method produces an increased delivery ratio but at the 
price of an increased average packet delay. The 
information gleaned from node interactions may also be 
used to detect what can be described as social relationships 
between the network nodes [12]. These formalize the 
concept that to be considered part of the same community, 
nodes should be in frequent, regular and long-lasting 
contact that will suggest promising forwarding paths. For 
brevity, the summary above naturally leaves out many 
variations on the themes presented, so the interested reader 
is referred to [13] for further details and references.  

With particular reference to uncertainty in wireless 
subscriber movement prediction, it is known that given 
knowledge of a large population, accuracies approaching 
90% can be achieved [14]. However, here we need real-
time estimation based on limited information. Sometimes, 
the DTN in question will have movement restrictions such 
as that considered by Ahmed and Kanhere [15]. They 
considered operation where public transport networks or 
street patterns reduced the range of subscriber movement 
choices to simplify the prediction work. In general, we 
need to allow the networks nodes more freedom and the 
approach taken can be reactive or proactive [16]. In the 
former, nodes report their location to a central network 
authority such as a base station. However, in the latter, 
prediction is used and this has the potential to reduce the 
inevitable latency whilst waiting for location updates. The 
uncertainty arises from the mobility model extending into 
the future based on known mobility history data. The 
success of a mobility model depends on how well it can 
learn and predict future node locations based on the 
available scenario history [16]. User movements are to a 
large degree predictable [17] so the problem becomes one 
of designing an efficient location prediction algorithm 
using past data.  

Similarly, the idea of using prior probability and 
Bayesian inference to properly drive a search process in ad 

hoc delay tolerant networks has been exploited [18]. This 
use of a generic computable inference mechanism to 
increase the performance of DTNs has gained popularity in 
the last few years, culminating in a recent study employing 
a weighted feature Bayesian predictor that outperforms a 
naïve Bayesian approach [19]. However, there is no 
comprehensive and systematic research study on the entire 
system to improve the network performance by using 
rigorous prediction and analysis methods. Although 
Kalman filtering has been used to update connection 
probabilities [20], the work in [18] was the first adoption 
of Bayesian inference, in the context of DTN routing. 
However, the main focus of the paper is on gradient 
routing in which the message tends to follow a gradient of 
increasing utility function values towards the destination. 
Another paradigm has been employed by Talipov et al. 
[21], who utilize a hidden Markov model to predict to 
predict the future location of individuals. The inspiration 
for the scheme is the same as ours and based on the 
observations of Gonzalez et al. [22] that human trajectories 
show a high degree of temporal and spatial regularity, and 
in social environments individuals move subject to a 
deterministic schedule with only a few random deviations. 

III. PREDICTION METHOD 

The movement prediction of mobile terminals 
comprises a series of estimations of moving targets. This 
can use techniques from problems in different areas such 
as tracking flying objects using radar. Tracking is a special 
case of estimation, as the inference of mobile subscriber 
movement will be represented as a set of complex state 
space estimation elements [23], each of which records a 
certain mobile subscriber’s position, instantaneous velocity 
and instantaneous acceleration (or deceleration). For each 
particular moment or interval, every individual mobile 
node has its own state data set indicating its state space 
information forming a state space identification vector. A 
series of these vectors record the trajectory of a mobile 
subscriber or preset mobile user group within the network. 

All the mobile nodes have the ability to move freely 
around the radio frequency coverage area, with their 
random motion forming a random walk stochastic system. 
The unknown state of the targeted wireless subscriber 
(denoted by X) is computable based on the observation or 
measurement (denoted by Y) of mobile subscriber 
behavior. Prediction is then possible with inference using 
historical measurements [24]. 

These potentially computationally burdensome tasks, 
such as algorithm computation and historical data storage, 
need to be performed by each individual subscriber’s 
mobile device, such as smartphones, tablets, e-book 
readers, portable handsets and laptops. The outcomes need 
to be propagated wirelessly. Each mobile device will have 
its own limitations on processing capacity, embedded 
storage memory and particularly wireless bandwidth. 
Thus, the computerized algorithms need to be simplified 
and utilized on a minimized scale, which is within mobile 
device capabilities including the available wireless link 
bandwidth. Each mobile node only needs to track and 
predict nodes that can establish direct bi-directional radio 
connections between the two adjacent nodes. The 
prediction information is only exchanged among these 
neighboring mobile nodes. Thus, for prediction, each 
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mobile node needs to obtain its neighbor node state 
information nodes by movement tracking.  

Here, established Bayesian statistical methods are used 
to accomplish the moving object motion prediction 
operation [25]. According to the overall behavior of 
mobile subscribers, the nodes will be classified into 
different categories by utilizing different criteria, for 
instance, non-maneuvering objects and maneuvering 
objects. If the objects are maintaining a constant velocity 
so that they may be classified as non-maneuvering objects, 
then the system is Linear Quadratic Gaussian (LQG) [24] 
and may be solved using linear system models. The motion 
of maneuvering objects is normally more dynamic with 
different accelerations and the trajectory is non-linear so 
the solution will be more difficult and perhaps only sub-
optimal solutions can be obtained [26]. 

IV. TRACKING STRATEGIES 

The tracking problem is actually to estimate the state of 
moving mobile subscribers (targets) based on the 
observation data via statistical algorithms. The state of the 
targets can thus be seen as in a dynamical system [27] with 
time independent states, forming an autonomous system. 
The trajectories of targeted mobile subscribers are 
normally continuous, but observations are made at fixed 
time intervals and so are taken in a discrete mode. This 
mathematical statistics status is called the continuous – 
discrete filtering mode [23], with the discrete observations 
forming the state space information input. 

The classical Bayesian approach provides us with a 
method to deduce the further states of observed moving 
objects. Bayes’ theorem [25] implies that the mobile node 
states can be predicted from the observation data, which is 
the joint probability of the state of event x and the 
observation of event y divided by the unconditional 
probability of the observation of event y, which is the 
normalization factor. 

The movement of a mobile subscriber is a random 
walk [24] obeying the Markov property [28], so the 
stochastic motion of each mobile node can be treated as a 
series of Markov process individually. A first order 
Markov chain can be used for predicting the state space 
identification of each mobile subscriber step by step. The 
recursive Bayesian solution is [28]: 

𝑝(𝒙𝑘|𝒚𝑘) =
𝑝(𝒚𝑘|𝒙𝑘)

𝑝(𝒚𝑘|𝒚𝑘−1)
𝑝(𝒙𝑘|𝒙𝑘−1)𝑝(𝒙𝑘−1|𝒚𝑘−1) (1) 

Leading to a state conditional density: 

𝑝(𝒙𝑘|𝒚𝑘) = ∫ 𝑝(𝒙𝑘|𝒚𝑘)𝑑𝒙𝑘−1
𝒙𝑘−1

              (2) 

In these equations, the superscripts refer to vectors of 
all x or y values from one to k or k-1 whereas the subscripts 
denote single instances of x or y. 

A. Simulation Model 

The targeted system and observation methods are 
based on linear system models with quadratic system 
optimization. The wireless system and observation are 
subject to Gaussian noise so they obey the basic LQG 
regulator [24]. Hence, the object tracking and movement 
prediction problem can be solved by a Kalman Filter (KF) 

[24]. Equation (2) is the recursive estimation of the state 
conditional density function and the term 

𝑝(𝒙𝑘−1|𝒚𝑘−1)gives the prior probability density function. 

In the Bayesian recursive solution, 𝑝(𝒙𝑘|𝒚𝑘) is a 
conditional density of the targeted mobile subscriber state 
𝒙𝑘 = (𝑥𝑘1, 𝑥𝑘2, … , 𝑥𝑘𝑛) ∈ ℝn  at the moment k given all 

the observed data  𝒚𝑘 = (𝒚1, 𝒚2, … , 𝒚𝑘) with 𝒚𝑘 =
(𝑦𝑘1, 𝑦𝑘2, … , 𝑦𝑘𝑚) ∈ ℝm. 

The moving object tracking algorithm with noise is: 

𝒙𝑘 = f(𝒙𝑘−1) +  𝒗𝑘                             (3) 

where f(𝒙) is some function of 𝒙 and 𝒗𝑘 is a vector of 
Gaussian noise. 

In practice, the movement of mobile users cannot 
remain at a constant velocity or absolute steady state but 
relatively small perturbations occur that can be regarded as 
Gaussian noise. Given that only a small portion of wireless 
users will exhibit high mobility [22], such a model is of 
some utility. 

In the decentralized wireless networks designed to 
date, each mobile node has to observe the movement of 
other nearby nodes and try to estimate the state to 
implement the SCF relaying scheme. Here, this state is 
restricted to the position and velocity of the mobile 
subscriber wireless nodes. The observation cannot be ideal, 
and there is always some noise that enters the system. 
Generally, the KF algorithm is able to deal with two kinds 
of noise, namely measurement or sensor noise and 
transition or process noise [29]. Both types of noise are 
zero mean Gaussian in nature, and the dynamic and 
observation models are linear Gaussian. The filtering 
model presented above obeys the basic LQG regulator as 
mentioned before, so the filtering equation can be 
expressed as [30]: 

𝒙𝑘 = 𝐀𝒙𝑘−1 + 𝒒𝑘−1                              (4) 

𝒚𝑘 = 𝐇𝒙𝑘−1 + 𝒓𝑘                                 (5) 

where 𝒙𝑘 is the hidden state vector and 𝒚𝑘  is the 
observation vector at time k, respectively; 𝒒𝑘−1~𝑁(0, 𝑄)  
is the transition noise; 𝒓𝑘~𝑁(0, 𝑅) is the sensor noise. 

The movement of the mobile subscriber is described by 
two-dimensional Cartesian coordinates, so the hidden state 
vector has four dimensions 𝒙𝑘 = (𝑥𝑘1, 𝑥𝑘2, 𝑥𝑘3 , 𝑥𝑘4). The 
first two elements capture the position of the mobile node 
and the second two represent its corresponding velocity. 
The observation vector is 𝒚𝑘 = (𝑦𝑘1 , 𝑦𝑘2). 

The matrices within the dynamic model are: 

𝐀 = (

1
0
0
0

0
1
0
0

∆𝑡
0
1
0

0
∆𝑡
0
1

) = (

1
0
0
0

0
1
0
0

1
0
1
0

0
1
0
1

) 

𝐐 = (

0.1
0
0
0

0
0.1
0
0

0
0

0.1
0

0
0
0

0.1

) 

where ∆t is one second in the simulations and 𝑸(𝑖, 𝑗) is 
the transition covariance [14]. 

The matrices in the observation model are: 

𝐇 = (
1 0
0 1

0 0
0 0

) 
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𝐑 = (
1 0
0 1

) 

where 𝑹(𝑖, 𝑗) is the observation covariance [14]. 

Here, the KF equations can be described as two steps 
[30]: 

(i) prediction: 

𝒎𝑘
− = 𝐀𝑘−1𝒎𝑘−1                              (6) 

𝑷𝑘
− = 𝐀𝑘−1𝑷𝑘−1𝐀𝑘−1

𝑇 + 𝑸𝑘−1                  (7) 

(ii) update: 

𝐒𝑘 = 𝐇. 𝐏𝑘
−. 𝐇𝑇 + 𝐑                              (8) 

𝐊𝑘 = 𝐏𝑘
−. 𝐇𝑇 . 𝐒𝑘

−1                              (9) 

𝐦𝑘 = 𝐦𝑘
− + 𝐊𝑘 . {𝒚𝑘 − 𝐇. 𝐦𝑘

−}             (10) 

𝐏𝑘 = 𝐏𝑘
− − 𝐊𝑘 . 𝐒𝑘 . 𝐊𝑘

𝑇                              (11) 

In which 

𝒚𝑘 is the measurement at the time step k; 

𝐏𝑘 is the covariance of a Kalman/Gaussian filter at 
the time step k; 

𝐏𝑘
−  is the predicted covariance of a 

Kalman/Gaussian filter at the time step k just before 
the measurement 𝒚𝑘; 

𝑺𝑘 is the innovation covariance of a Kalman/ 
Gaussian filter at step k; 

𝐊𝑘 is the gain matrix of a Kalman/Gaussian filter; 

𝐦𝑘 is the mean of a Kalman/Gaussian filter at the 
time step k; 

𝐦𝑘
−  is the predicted mean of a Kalman/Gaussian 

filter at the time step k just before the measurement 
𝒚𝑘. 

Before the filtering process starts, both the state vector 
𝐢𝐧𝐢𝐭𝐢𝐚𝐥_𝐬𝐭𝐚𝐭𝐞  (which is a column vector) and the state 
covariance vector 𝐢𝐧𝐢𝐭𝐢𝐚𝐥_𝐕 have to be initialized thus: 

𝐢𝐧𝐢𝐭𝐢𝐚𝐥_𝐬𝐭𝐚𝐭𝐞 = (

10
10
0
0

) 

𝐢𝐧𝐢𝐭𝐢𝐚𝐥_𝐕 = (

10
0
0
0

0
10
0
0

0
0

10
0

0
0
0

10

) 

B. Algorithm Simulation 

To simulate the scenario studied, the true mobile user 
locations are generated by MATLAB, producing a 
stochastic linear dynamical system, which is a type of 
hidden state [29]. This is because the mobile node states 
cannot be directly measured by neighboring mobile 
subscribers and KF algorithms are used for estimation. 
Figure 1 illustrates the results of simulated KF algorithms 
using 50 individual states in each time step. These are the 
true states that simulate the real locations of the mobile 
subscriber during a continuous period of time, and that are 
represented by the black squares. The trajectory shown by 

the black line linking the black squares is the ‘real path’ of 
the motion of a certain mobile node. The blue stars 
indicate the observed location of the mobile device which 
simulates the measurements from another neighboring 
mobile terminal. The red crosses show the KF outcomes, 
processed by the neighboring mobile smart device with the 
estimated path represented by the red dotted line. 

 

Fig. 1. Results of the prediction simulation for the filtering model. 

It may be seen in Figure 1 that for most of the time, the 
filtered trace represents the true path well. Only when the 
mobile user’s movement is more dynamic (close to the 
maneuvering model), particularly the right hand side of 
Figure 1, does the algorithm have difficulty following the 
true path. Nevertheless, when the motion of the object 
exhibits behavior that is close to the non-maneuvering 
scenario, the outcomes still reflect the real motion of the 
target very well as in the top and bottom parts of the 
trajectory, and the mismatched portion is relevant small. 

C. Protocol Simulation 

The simulation testbed for this part used the 
Opportunistic Network Environment (ONE) simulator and 
a JAVA based protocol for the KF routing scheme was 
developed. For testing the performance, resilience and 
tolerance of designed protocol, the sample dataset that 
comes with the ONE simulator package was utilized to 
simulate a complex wireless network condition, which is 
the data collected from the downtown Helsinki area. 
Parameters for the simulation configurations are specified 
in Table 1. These are chosen to be of the same order as the 
parameters in [5] with the buffer size large enough that it 
does not impact performance [5]. 

TABLE I.  PARAMETERS OF SIMULATION CONFIGURATIONS 

Simulation Time (s) 86400 

Buffer Size (MB) 50 

Packet Lifetime  100 minutes 

Message Interval (s) 3, 5, 10, 20, 30, 60 

Message Size (kB) 500 

Number of Nodes 40, 100, 200, 300, 400, 500 

The message interval simulated the information rate of 
the sender. The parameters for this category tested the 

4Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-602-6

EMERGING 2017 : The Ninth International Conference on Emerging Networks and Systems Intelligence



circumstances from a low packet generation rate of 1 
packet per minute (67 kbps) to a high packet generation 
rate of 20 packets per minute (1.33 Mbps). The number of 
nodes varied the density of the wireless system from a 
low-density (40 nodes) mobile network to an extremely 
high-density (500 nodes) system. 

In this work, there are four key factors of wireless 
system that are addressed to evaluate the overall 
performance of proposed mobile routing strategy, which 
are: Delivery Probability, Overhead Ratio, Average 
Latency and Average number of hops. 

 

(a) (b) 

Fig. 2. (a) Delivery probability; (b) average hop count for different 

network densities. 

Figure 2 shows the performance of the proposed 
protocol at the maximum bit rate considered. It provides 
good resilience for different network densities and 
maintains a delivery probability in excess of 0.7 for all 
circumstances. Moreover, as the algorithm is able to 
predict the movement of portable nodes, the protocol 
delivers an average hop count of between 2.1 and 3.7, 
leading to the involvement of fewer intermediate nodes in 
the relaying path saving retransmission energy and 
improving efficiently. 

Figure 3 shows that the overhead ratio rises sharply 
with the number of nodes since there are more possible 
packet relay candidates. However, there is a corresponding 
decrease in the average latency as there are more nodes 
that can complete delivery. The balance of these two 
factors makes the protocol able to maintain useful 
performance when the network setup changes. 

 

(a) (b) 

Fig. 3. (a) overhead ratio; (b) average latency for different network 

densities. 

To test the capability of the protocol to deal with 
various traffic volumes, the packet generation rate in a 
network comprising 40 nodes was varied. Figure 4 
illustrates the variation in delivery probability and hop 
count as the data rate increases. The former drops with 
increasing traffic volumes but the KF protocol still 
maintains a probability of approximately 0.6 whilst the hop 
count falls from almost three to a little over two with 
increasing bit rate. 

 

(a) (b) 

Fig. 4. (a) Delivery probability; (b) average hop count as a funcion of 

data rate for low node density. 

 Figure 5 shows that the overhead ratio decreases from 
148% to 31% as the bit rate increases but this is 
accompanied by an increase in average Latency from 1875 
seconds to 3153 seconds. 

 

(a) (b) 

Fig. 5. (a) Overhead ratio; (b) average hop count as a funcion of data 

rate for low node density. 

The KF relaying scheme exhibits a good overall 
performance which benefits from the portable device 
movement predication ability allow more packets to arrive 
successfully at the receiver or be relayed to the correct 
intermediate nodes. This feature maintains the delivery 
probability at a high value whilst and keeping the average 
hop count at a low level. 

V. CONCLUSIONS AND FUTURE WORK 

The KF is an optimal recursive data processing 
algorithm [24] that provides the online estimation solution 
to solve the object tracking problem. We have presented a 
detailed evaluation of the performance of a protocol that 
utilizes KF algorithm models. This has shown that such an 
approach enables smart devices to predict and track the 
motion of a targeted mobile node and assist it to find the 
next hop as a better or best option for a relaying route. The 
subsequent routing protocol simulation results proved the 
theoretical idea. The strengths of the KF are that the 
algorithm is rather small and simple and thus the majority 
of mobile devices and sensors are able to process the 
program. Moreover, the algorithm does not require 
substantial memory resources to store the movement 
history of targeted mobile node. 

The results indicate that the KF algorithm will face 
challenges when significant numbers of wireless users fall 
into the category where a maneuvering model is needed. 
When the user is moving unsteadily, both the direction and 
the velocity could be changing at all times; in the case, 
acceleration or deceleration will be included in future as 
another dimension of the state vector to indicate the state 
of the mobile subscriber. However, as the dimension of the 
inputs becomes high, the calculation volume will 
substantially increase exponentially. Thus, to let the 
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algorithm still be available for individual smart devices, 
the computation time should be taken into account. 
Nevertheless, the results indicate that at modest node 
densities, the protocol will deliver between 60% and 80% 
of the messages but after a substantial delay. Thus, real-
time applications will not be well served by the simple 
approach taken here but it will be useful, for example in 
data collection as part of the Internet of Things.   

Our ongoing work shows that in sparse networks, the 
KF algorithm exhibits similar delivery probabilities, 
latency and hops counts to established protocols such as 
Spray and Wait. Although some of the advantage is lost 
with dense and complex networks, the protocol’s 
simplicity offers utility to, for example, small sensor 
networks. Its modest bandwidth requirements also offer 
advantages in constrained communication environments.   

As a classical optimal prediction and tracking 
algorithm, the KF is suitable for many scenarios, since 
only small portion of wireless users will exhibit high 
mobility [17]. The introduction of users who move rapidly 
according to a random walker model as described by 
Shang [31] would lead to significant prediction errors. 
Hence, to broaden the application of this smart relaying 
scheme to include such very mobile users, other algorithms 
that can improve the prediction and tracking performance 
for the maneuvering model, such as the Extended KF 
(EKF), Unscented KF (UKF), Particle Filter and other 
potential filtering schemes [28] will be examined in the 
future. 
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