
An Evolutionary Training Algorithm for Artificial Neural Networks
with Dynamic Offspring Spread and Implicit Gradient Information

Martin Ruppert
Institute of Computer Science

Worms University of Applied Sciences
Worms, Germany

ruppert@fh-worms.de

Eric MSP Veith, Bernd Steinbach
Institute of Computer Science

Freiberg University of Mining and Technology
Freiberg, Germany

{veith, steinb}@informatik.tu-freiberg.de

Abstract—Evolutionary training methods for Artificial Neural
Networks can escape local minima. Thus, they are useful to train
recurrent neural networks for short-term weather forecasting.
However, these algorithms are not guaranteed to converge fast or
even converge at all due to their stochastic nature. In this paper,
we present an algorithm that uses implicit gradient information
and is able to train existing individuals in order to create a
dynamic reproduction probability density. It allows us to train
and re-train an Artificial Neural Network supervised to forecast
weather conditions.

Keywords–artificial neural network; evolutionary algorithm;
weather forecasting; smart grid.

I. INTRODUCTION

Machine learning finds its application in many areas. One
of them is short-term weather forecasting, which is useful for
predicting the output of renewable energy sources [1]. The
basic assumption that wind speed or solar radiation follow
a particular, detectable pattern introduces Artificial Neural
Networks (ANN) as a probable device for forecasting. The
simplest form of the ANN, the Perceptron, is primarily usable
for detecting static patterns.

However, the more variety input data has, the larger
the error of a Perceptron. Introducing ANNs with a short-
term memory that implement the concept of time, such as
Elman’s [2], increase the success of the ANN.

Traditional training methods based on backpropagation,
such as RPROP [3] and its variants, allow fast weight updates
in online or stochastic mode, i.e., immediately after a pattern
has been seen. However, these algorithms can get stuck in local
minima. Evolutionary algorithms [4] can solve this problem
by introducing randomness through their process of mutation
and crossover, which also includes seemingly bad individuals.
This offers a chance to escape a local minimum. However,
this randomness typically increases the time it takes for an
evolutionary algorithm to arrive at a properly trained ANN,
and it can even be unsuccessful.

In this paper, we present a training method that combines
the gradient descent technique of a backpropagation-based
training method with the resilience of an evolutionary algo-
rithm against local minima.

II. MOTIVATION

Since the search space during the training for artificial neu-
ral networks is big for any real-life application, many training
functions harbor the danger of getting stuck in local minima.

Evolutionary training methods circumvent this by introducing
randomness into the process. However, this, in turn, increases
the training time and does not guarantee success per se. Results
obtained by training using evolutionary algorithms can even
yield worse results, since, by purpose, there is no knowledge
of an error gradient included.

This problem becomes apparent when using artificial neural
networks for weather forecasting since the search space of a
wind profile offers many local minima.

In [5], Maqsood et al. use an ensemble of neural networks
to forecast weather. Although this ensemble technique is
successful, it requires four different networks in order to yield
these results. Moreover, the networks are retrained for the four
seasons (winter, spring, summer and fall) separately. For this
supervised training, they use a hand-selected sample set.

If forecasters are installed at different sites, supervised
training will have to occur separately for each node, because
their different locations mean different weather conditions.
The ANN will have to continuously adapt itself in order to
remain reliable even under uncommon weather conditions.
Since remote sites such as wind parks will typically feature
embedded systems, training should occur in a short period of
time. However, using backpropagation-based algorithms will
yield non-optimal results due to the algorithm getting stuck in
local minima, which will introduce large deviation in cases of,
e.g., gusts of wind.

To address this problem, we propose a combination of both
evolutionary training and deterministic training algorithms that
can use the advantages of both approaches. Our approach,
which employs evolutionary strategies, uses information about
the current success and implicit gradient information when
creating the offspring. Furthermore, we allow existing individ-
uals to be improved instead of resorting to improve the overall
population through the offspring only.

The remainder of this paper is structured as follows. We
describe the training algorithm in the Section III along with
a pseudo-code representation in Figure 2. We discuss our
approach in Section IV and conclude in Section V.

III. THE TRAINING ALGORITHM

The algorithm currently finds its application in training
neural networks that follow the design of Elman [2]. The
difference to Elman’s design lie in the connections to the
context layer: The hidden layer is fully connected to the

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-357-5

EMERGING 2014 : The Sixth International Conference on Emerging Network Intelligence

context layer. Furthermore, these connections can be trained,
i.e., their weight is not set fixed to 1.0.

To the algorithm, the concepts of “neural networks” with
“trainable weights” do not exist. Instead, we operate on indi-
viduals that we call objects. These objects, in turn, that have
parameters. This application-agnostic approach is consistent
with literature. It will, in the future, also allow us to apply
the algorithm to other problems instead of constraining it
to artificial neural networks. For ANNs, a parameter is a
particular, trainable weight.

Additionally to their parameters vector, each object also has
a scatter vector, s. It vector limits the interval of modification
during an iteration, t, for each parameter pi:

pt,i = [−si · pt−1,i,si · pt−1,i] (1)

As soon as an object is evaluated, its fitness is stored in its
fitness vector. The total mean error is stored in f0, while the
mean error values of different samples are stored in f1, . . . , fn.

Each object has additionally a maximum age that limits
the number of iterations it may exist.

Since many steps of the training process require random
numbers, we define a function called frandom() that returns a
random number in the interval [0.0,1.0) with an uniform dis-
tribution. We can create different points of high density of the
uniform distribution by calling frandom() multiple times. The
calls are concatenated by addition or subtraction, depending on
where we want these points to be. This uniform distribution
is used to pick initial values for scatter and parameters for all
objects derived from the user-supplied base object during the
creation of the initial population.

We begin by creating the starting population. Each pop-
ulation consists of a number of objects that are active, i.e.,
trainable. This upper bound of the size of a population is
contained in the variable numActiveObjects.

The training algorithm has the notion of an elite, i.e., a
number of objects that are considered to be better than the rest
of the population. The elite is included in the maximum num-
ber of objects in the population, i.e., population= elite∩others.
The size of the elite never changes: This is a user-configurable
value. However, as soon as any other object outside the elite
is better than any elite object, it is exchanged with the worst
elite object.

The initial set of parameters is supplied by the user. The
initial scatter vector is filled with random numbers within
bounds supplied by the user. However, only the first, i.e., the
base object o0, of the initial population gets these pristine
values assigned; for all other generated objects (on) these are
modified according to Equations 2 and 3.

on.si = o0.si · exp(4.0 · (0.5− frandom())) (2)

on.pi = o0.pi · si−
3

∑
0

frandom() (3)

The user also supplies the fitness function, fitness(o). It
is required to return the fitness value of the object, o, as

Other Object

Elite Object

Implicit Gradient

to Optimum

2
x

1
x

Figure 1. The implicit gradient information used by the modified
reproduction function, GenerateObject()

a single float-point number in order to compare it to the
user-supplied target fitness. The fitness value is also used to
sort the population. Since our training strategy is application-
agnostic, it does not evaluate the ANN directly; this is the
user’s responsibility.

To finalize the initialization phase, the population’s fitness
values are determined and the population is sorted accordingly.

The population is then iteratively improved until either the
maximum number of iterations is reached (maxIter), there has
been no improvement for a designated number of iterations
(maxNoSuccess) or the user’s target fitness (targetFitness)
value has been reached.

A global increase in fitness means that a new best object
(ob) has been found. This also sets lastSuccess to the current it-
eration in order to make this fact known to the outer loop. Oth-
erwise, it would break on iter− lastSuccess>=maxNoSuccess.
The error of the new best object is then, at the end of the
iteration, compared to the user’s target fitness. If it is equal
or better, the training ends and the newly found best object is
returned.

The training function takes samples of the success of the
training at a constant interval, T . This is used to calculate the
mean success dynamically by using a Linear Time-Invariant
system (LTI). This LTI is defined as:

pt1(y,u, t) =

{
u if t = 0

y+
u− y

t
otherwise. (4)

with t = T in our case. The constant T is user-defined and
denotes the number of iterations between two samples. The
pt1(y, u, t) function is called after a newly generated object has
been tested for its fitness. If it is better than the worst object of
the current population, we set success = pt1(success,1.0,T).
But, only if this worst object has still iterations to live; if not,
we set u =−1.0 in the call to pt1(y, u, t), since replacing an
already dead object cannot be counted as success.

This mean success is important during the generation of
new objects, because it is used in order to calculate the implicit
gradient information. These information are used to calculate
a new object’s parameters. Figure 1 shows schematically how
a set of objects uses the implicit gradient information to move
towards the optimum.

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-357-5

EMERGING 2014 : The Sixth International Conference on Emerging Network Intelligence

global population,eliteSize,success, targetSuccess,successWeight,gradientWeight
local on,oe,or, i1, i2,gradientSwitch,∆x,succcessRate,expvar,xl p
xl p← 0.0
i1←| RANDOM() mod eliteSize−RANDOM() mod eliteSize |
i2← RANDOM() mod population.length
if OBJECT1ISBETTER(populationi2 , populationi1) then SWAP(i1, i2)
oe← populationi1
or← populationi2
successRate← success/targetSuccess−1.0
gradientSwitch← RANDOM() mod 3
if gradientSwitch = 2

then

xl p← (∑9
0 FRANDOM()−∑

5
0 FRANDOM()) ·gradientWeight

if xl p > 0.0 then xl p← xl p ·0.5
xl p← xl p · exp(gradientWeight · successRate)

expvar← exp(FRANDOM()− FRANDOM())
for i← 0 to on.p.length

do

∆x← oe.si · exp(successWeight · successRate)
oe.si← APPLYBOUNDSFROMEQUATION 6(∆x)
if FRANDOM()< 0.5 then ∆x← oe.si else ∆x← 0.5 · (oe.si +oe.si)
∆x← ∆x · expvar
on.si← APPLYBOUNDSFROMEQUATION 6(∆x)
∆x← on.si · (∑4

0 FRANDOM()−∑
4
0 FRANDOM())

if gradientSwitch = 0
then {if RANDOM() mod 3 < 2 then ∆x← ∆x+oe.pi else ∆x← ∆x+or.pi
else if gradientSwitch = 1 then ∆x← oe.pi
else if gradientSwitch = 2

then
{

∆x← ∆x+oe.pi
∆x← ∆x+ xl p · (oe.pi−or.pi)

on.pi← ∆x
return (on)

Figure 2. The GENERATEOBJECT() function

In GenerateObject() as detailed in Figure 2, we pick a
random elite object (oe) and a random object of the whole
population (or) in order to create the new offspring, on.

For this, we determine the influence of the implicit gradient
information, xlp. It is used on a random basis with a probability
of p = 1

3 . This prevents GenerateObject() from completely
discarding objects with bad gradients. Discarding only happens
because of an object’s age. If it is used, we first create a custom
uniform distribution by repeated calls to frandom(). We further
modify xlp by exp(successRate ·gradientWeight).

The user is able to tune the influence of the implicit gradi-
ent information by modifying the Variable gradientWeight. Our
experiments have shown that values in the range of [1.0,3.0]
show great success. A value of 0.0 completely disables this
feature. Similarly, the influence of the mean success can be
disabled by setting successWeight to 0.0.

The actual delta (henceforth ∆x) by which first the object’s
scatter and then its parameters are modified is first derived
from the elite object’s scatter as shown in Equation 5.

∆x =
{

0.5 · (oe.si +or.si) if frandom()< 0.5
oe.si · exp(successWeight · success) otherwise.

(5)

The bounds specified in Equation 6 are then enforced.

eamin≤ ebmin· | oe.pi |≤ ∆x≤ ebmax· | oe.pi | (6)

The three variables the define the limits have the following
meanings: eamin is the absolute minimum for values and
typically set to the smallest IEEE 32 Bit floating point number,
i.e., 1 · 10−32. ebmin is the relative minimum of scatter. It is
user-tunable, but (ebmin+1.0)> 1.0 must be true. ebmax is the
relative maximum of scatter. It is also user-tunable. We suggest
ebmin < ebmax < 10.0 per the results of our experiments.

The scatter is finally used to set the new object’s parame-
ters.

We detail the complete process of generating a new object
in Figure 2.

IV. DISCUSSION

The algorithm’s two primary advantages over traditional
evolutionary algorithms are its ability to use implicit gradient
information and the dynamic density by which new objects
spread out in the search space.

We call this dynamic attribute of the algorithm repro-
duction probability density function. It is controlled by the
relationship of the two variables success and targetSuccess. If

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-357-5

EMERGING 2014 : The Sixth International Conference on Emerging Network Intelligence

success> targetSuccess, the spread of new objects is increased.
It is decreased if the opposite holds true.

The function becomes obvious in GenerateObject(). Here,
the current success rate influences not only the new object’s
scatter and parameter vector, but also those of the selected
elite object. This way, objects move dynamically towards a
minimum in the search space. Thus, the training algorithm
does not only work by iteratively creating new object through
mating and crossover, but also enables older elite objects to
“learn” and improve.

An additional piece of information we can draw from
the success of the different objects is an implicit gradient
information. Implicitly, because it is available through the
spread of the selected objects towards a minimum. It is most
obviously in the assignment in Equation 7.

∆x = ∆x+ xl p · (oe.pi−or.pi) (7)

However, using these information also harbors the danger
of converging towards a local minimum instead of a global
one. An evolutionary algorithm typically saves the user from
this by its random crossover and mutation procedures which
always carry a chance of escaping a local minimum. We also
include this behavior since we enable this feature on a random
basis via the gradientSwitch variable.

Preliminary tests have been conducted using 10 minutes
mean wind speeds obtained from Germany’s national weather
service, DWD. We have compared the testing performance of
our algorithm to that of Simulated Annealing [6]. In order to
make the results comparable, both implementations use the
same code base.

For the comparison, two independent ANNs have been
identically configured and initialized. Both algorithms con-
tinuously trained their neural network with the same data.
For each forecast, the ANNs have been fed with the last 12
10 minutes mean values in order to make use of the short-term
memory the Elman ANN provides. The network was then used
to forecast the next 10 minutes. The network’s forecast was
finally compared to the actual measurement provided by the
national weather service in order to calculate the network’s
error.

During the training phase, our algorithm showed an almost
constant training time with a variation of ∆t ≤ 1s. This substan-
tiates that the population had a nearly identical “way to travel”
to an optimum during re-training, doing so targeted based on
the implicit gradient information. The Simulated Annealing
algorithm, in contrast, produced widely varying training times.
On average, our algorithm needed 5% of the time Simulated
Annealing took.

In the day period of which Figure 3 shows a section,
the mean error of the ANN our algorithm trained was 1.31,
while the network the Simulated Annealing algorithm trained
obtained a mean error value of 1.86.

Figure 3 depicts a representative section of a test run. One
can observe the varying training time of the Simulated Anneal-
ing algorithm due to its completely stochastic nature, while
our algorithm shows constant training time. The three large

-30

-25

-20

-15

-10

-5

 0

 5

 0 100 200 300 400 500 600
 0

 500

 1000

 1500

 2000

 2500

 3000

A
bs

ol
ut

e
E

rr
or

 [m
/s

]

T
ra

in
in

g
T

im
e

[s
]

Minutes since start

REvol
Simulated Annealing

Figure 3. Absolute error and training duration of our algorithm
(“REvol”) and Simulated Annealing

spikes in the error values come from turbulences measured;
interestingly, the network trained with our algorithm was able
to forecast two of the three.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a training algorithm for ANNs
that combines the strengths of evolutionary algorithms and
deterministic ones. Our algorithm is able to include implicit
gradient information into the reproduction process and allows
training of already existing objects. It reduces the possibility
of getting stuck in a local minimum, because it is based on
paradigm of evolutionary algorithms that introduce random-
ness in order to escape local minima.

Due to these two features, we expect our algorithm to
converge on a good minimum with a higher probability while
still being able to escape a local minimum.

In the future, we will test our approach against other
algorithms in terms of speed and convergence towards good
minima. We will especially pay attention to Long-Short Term
Memory approaches.

VI. ACKNOWLEDGMENTS

This paper has been created as part of a cooperative
doctorate program between the TU Bergakademie Freiberg and
Wilhelm Büchner Hochschule, Pfungstadt.

REFERENCES

[1] C. Potter, A. Archambault, and K. Westrick, “Building a smarter smart
grid through better renewable energy information,” in Power Systems
Conference and Exposition, 2009. PSCE ’09. IEEE/PES, March 2009,
pp. 1–5.

[2] J. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2,
Jun. 1990, pp. 179–211.

[3] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” in IEEE International
Conference on Neural Networks, 1993, pp. 586–591.

[4] J. Branke, “Evolutionary algorithms for neural network design and
training,” in Proceedings of the First Nordic Workship on Genetic
Algorithms and its Applications, 1995, pp. 145–163.

[5] I. Maqsood, M. Khan, and A. Abraham, “An ensemble of neural networks
for weather forecasting,” Neural Computing and Applications, vol. 13,
no. 2, May 2004, pp. 112–122.

[6] S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Prentice Hall, 2010.

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-357-5

EMERGING 2014 : The Sixth International Conference on Emerging Network Intelligence

