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Abstract—Enabling Internet to Vehicular multicast communi-
cation is fraught with challenges due to the heterogeneous nature
of the two networks. While the conventional multicasting in the
Internet relies on ”structured” multicast routing, it is not clear
how robust can be such routing structure in vehicular networks.
We study the robustness of the multicast routing structure in
vehicular networks for data flow from the Internet to a set
of vehicles. In this paper, we investigate the impact of the
urban traffic dynamics on the link stability of the multicast tree.
Our study shows that in an intersection scenario, the link can
be sufficiently stable without depending much on the relative
direction of the vehicles, while on straight roads, the link stability
is largely affected by the relative direction.

Keywords—Multicast routing; vehicular networks; urban traffic
dynamics; link stability

I. INTRODUCTION

A number of Intelligent Transportation System (ITS) ap-
plications, including the vehicular fleet management and pub-
lish/subscribe geo-scoped services, requires multicast commu-
nications from the Internet to Vehicular networks. Enabling
such application is challenging due to the hybrid communi-
cations path (the Internet and wireless media) and the highly
mobile nature of the destination nodes, which are the members
of the multicast group.

The conventional multicast routing in the Internet is based
on protocols such as Protocol Independent Multicast (PIM)
[1], which relies on a tree structure to deliver packets form
the source to the destinations. Due to the fixed topology of
the Internet, the size of the multicast tree can be very large.
On the other hand, due to the highly mobile nature of vehicular
networks, it can be difficult to maintain a large tree in vehicular
networks. Indeed, there is tendency to prefer structureless rout-
ing, e.g., opportunistic routing, for vehicular communications.
However, it is not clear how such a structureless routing can
be used for multicasting and how it can be combined with the
structured multicast routing, which is used for the Internet, for
Internet-to-Vehicular multicast communications.

To the best of our knowledge, very few studies are made on
pure multicasting for Internet to vehicular communications for
different road environments. The analysis made by Karaoglu
and Heinzelman [2] shows that multicasting is preferable to
broadcasting when the number of nodes in the network or
the size of the area increase. Most of the existing works on
multicasting for vehicular networks including [3] assume that

the multicast members are all the nodes that belong to a
specific geographic area and tackle the problems of geographic
broadcasting (geocast) among the vehicles. On the other hand,
some other works focus on vehicular group clustering orga-
nization and management. Although promising solutions are
proposed (e.g., [4]), the proposals lack a deeper analysis of the
impact of realistic road traffic on the communication between
vehicles.

In this paper, we study multicasting for vehicular networks
for data flow between Internet and vehicles. Since the tree-
based multicast routing is the de-facto scheme in the Internet,
we first investigate the stability and robustness of the tree
structure in realistic road environments. This paper reports our
preliminary analysis, which is carried out using the SUMO
traffic simulator [5] targeting a realistic intersection road
scenario. The simulations show the impact of some parameters
such as velocity on maintaining stable links in urban scenarios
including intersections.

This paper proceeds as follows. The related works are intro-
duced in Section II. In Section III, we present our preliminary
study concerning the impact of traffic dynamics on neighbor
link stability. Finally, we conclude the paper in Section IV.

II. RELATED WORK

A number of efforts are made for multicasting in ad hoc
networks. Feng et al. [6] showed the feasibility of maintain-
ing a multicast delivery tree for vehicular ad hoc networks
(VANET) in straight roads environments. The scheme identi-
fies the multicast members as the set of vehicles, which are
concerned by the road warning message, and builds a delay-
constrained minimum Steiner tree and optimize it by using a
specific cost function. Unlike our work, the intersection road
scenarios, which create more complex traffic dynamics, are not
considered in this study. Chandra et al. [4] propose a multicast
mechanism that enables communication in the context of an
architecture which integrates the Long Term Evolution (LTE)
technology and the IEEE 802.11p in VANET. In what they call
”low-level multicasting” (group communication in a cluster),
they build a two-hops shared tree to disseminate the message
from the Cluster Head to the members of the group. In their
analysis, the authors claim that the use of the multicast tree
provides efficiency and low control overhead. However, the
authors didn’t justify the chosen size of the tree and they did
not analyze the effects of the vehicular moility characteristics
on the tree’s stability.
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In [7], Badessari et al. propose an approach to deliver
multicast packets from the Internet to the vehicles which are
located in a specific geographical area. In this approach, the
packets are first forwarded to the access router, whose IP
address is matched with the destination geographic area, and
then the access router broadcasts the packets over one or
more number of hops. Tonguz et al. [3] present a broadcasting
protocol named DV-CAST that addresses the problem of deal-
ing with the extreme situations of dense and sparse vehicular
traffic. The design of the protocol strongly relies on the one-
hop neighborhood informations and shows a certain reliability
in each road traffic situation. Although the approaches based
on geobraodcast ensure robustness in some situations, it is
not clear yet how efficient and scalable they are, especially
in situations when the vehicular density is high or when the
multicast group size is small as read in [2].

In [8], a study of the impact of the spatio-temporal traffic
density variation in highway scenario is presented. The authors
use in their study both empirical and analytical data to analyze
and report the impact of different traffic situations on the
communication performance. Although this work is similar to
ours, it considers only simple dissemination mechanisms based
on multi-hop geocast and single-hop broadcast.

III. IMPACT OF TRAFFIC DYNAMICS ON NEIGHBOR LINK
STABILITY

In our simulations, we consider an urban area with an
intersection as illustrated in Fig. 1. The size of the overall
area is 4000m× 4000m. Each road has a single forward and
backward lanes. Vehicles are generated at the edge of each
lane (the points A, B, C and D in Fig. 1) following the
Poisson process at the average rate λ Hz (car/second). The
maximum speed, acceleration and deceleration are 50 km/h,
0.8 m/s2 and 4.5 m/s2 respectively. The minimum inter-vehicle
distance is 2.5 m. The velocity of the vehicles is limited to
50 Km/h. Their acceleration ability is set to 0.8 m/s2 and
their deceleration ability is set to 4.5 m/s2. The intersection
is equipped with traffic lights and so that, the vehicles stop
at the intersection if necessary. At the intersection, vehicles
select randomly their destination and follow the route to their
destination. Consequently, vehicles dynamically control their
mobility following the traffic rule as well as to avoid collisions.
The total simulation time is 15 minutes.

The aim of the simulations is to evaluate the number of K-
hops neighbors of randomly chosen ego nodes (vehicles), the
neighborhood lifetimes, the relative directions and velocities.
We define a node as a neighbor of the ego node, if the distance
between the node and the ego is less than the communication
range R. R is set to 300 m, with the IEEE 802.11p technology
[9], in mind. The neighborhood lifetime is the period of
time during which the nodes stay as neighbors. The relative
direction is the angle difference between the moving directions
of the neighbors.

Fig. 2 illustrates the maximum, the minimum and the aver-
age values of lifetimes for 10 randomly chosen ego vehicles.
The horizontal axis is the road density, more specifically λ
(the average vehicle generation rate). For each simulation, we
change the value of the density, λ. As shown is the figure,
the neighborhood lifetime linearly increases with the increase

Figure 1: Intersection scenario set up

of the density. When the vehicular density on the road is
low (λ=0.04 Hz), the maximum lifetime that we obtain is
about 150 seconds, resulting in shorter neighborhood lifetimes
with individual neighbors compared to those when density
is higher (e.g., 650 seconds expressed by λ=0.2 Hz). The
minimum neighborhood lifetime remains the same for all
densities. This value is obtained when both the ego vehicle
and its neighbors are moving at the maximum velocity and
in opposite directions. As in the scenario, assuming that the
maximum velocity is 50 km/h and the range R is 300 meters,
the minimum neighborhood lifetime value can be obtained in
this scenario as following:

∆t =
R

|vego − vneighbor|
=

0, 3km

100km/h
= 10, 79sec

The average neighborhood lifetime drops notably compared
to the maximum value of the neighborhood lifetime. The range
of the average neighborhood lifetime varies from 30 seconds
for a density λ of 0.04 Hz to 170 seconds for a density λ of 0.2
Hz. Those values explain that only few neighbors are kept for a
long period (maximum lifetime) and that most of the contacts’
durations belong to the interval [30sec,170sec]. Thus, vehicles
are able to share common links with their neighbors during
relatively long periods of time (i.e., neighborhood lifetime) in
intersection scenarios.

In the following, Fig. 3, Fig. 4 and Fig. 5 show, respec-
tively, the number of the neighbors, the relative direction and
the relative velocity measured (w.r.t ego node) when λ is
0.1 Hz. The horizontal axis of Fig. 3 and Fig. 4 (corresponding
to the vertical axis of Fig. 5) is the normalized neighborhood
lifetime. Based on our analysis, we used different markers;
both rectangular and cross markers correspond to the results
obtained for straight roads whereas triangular markers corre-
spond to the results obtained in the intersection area.

Fig. 3 shows that a great number of neighbors, between 35
and 15 (expressed with rectangular markers), kept less than
0.07 of the total lifetime (more precisely between 4% and 7%
of the total lifetime). This explains why the average lifetime
is much lower compared to the maximum lifetime in Fig. 2.
The relative direction of these neighbors, as shown in Fig.
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Figure 2: Variation of the maximum neighborhood lifetime
with the road density

Figure 3: Average number of neighbors

Figure 4: Neighbors’ relative direction w.r.t the ego vehicle.

4 is as high as close to 180 degrees (i.e., opposite direction
with the ego vehicle). Fig. 3 also shows that the lifetime of
very few neighbors (1 to 3 neighbors) is longer than 50% of

Figure 5: Neighbors’ relative velocity w.r.t the ego vehicle

the maximum neighborhood lifetime and the corresponding
relative direction is at most 40 degrees (expressed with cross
markers in the figures).

Our investigation shows that such extremely short or long
lifetime values reflect the situations where the ego vehicle is
driving on the straight road. This implies that on the straight
road, the relative direction provides a major impact on the
link stability. While the ego node meets a larger number
of nodes, which are moving to the opposite direction, the
neighborhood lifetime can be short and thus unreliable. On
the other hand, while the number can be few, the neighbors,
which are following the same direction as the ego node even
after the intersection area, can provide stable links, and the
lifetime can be especially long. Those situations correspond to
a normalized lifetime of 1.

Furthermore, the neighbors which start their journey on
the same road segment as the ego node but take a different
direction at the intersection, gives slightly shorter lifetime
(between 0.5 to 0.8) and the relative direction is higher
than 0. The lifetime in the range of [0.05, 0.08[ (expressed
with rectangular markers in the figures) corresponds to the
neighbors which meet the ego node at the intersection. The
relative directions of those nodes are relatively high; 80 to
160. It is interesting to observe that for those neighbors,
the relative direction takes a high value for a long lifetime.
Specifically, the neighbor with the relative direction [80, 120]
had the neighborhood lifetime of [0.1, 0.3], whereas the
neighbors with the relative direction 160 has neighborhood
lifetime of 0.47. Finally, attention should be made to the case
of lifetime neighborhood of less than 0.02 (expressed with
diamond marker) that corresponds to the neighbors, which did
not stop at the intersection and with whom the ego meets at the
intersection. Because the neighborhood lifetime of such nodes
is even shorter than those of the neighbors, which move on
the opposite direction at the straight road), such nodes should
be distinguished from nodes which stop at the intersection.

As a consequence, it should be mentioned that we could
not find a clear relationship between the neighborhood lifetime
and the direction. For this reason, we investigated the impact
of the velocity (Fig. 5) on the neighborhood lifetime duration
of an ego vehicle.
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Fig. 5 illustrates the variation of the neighborhood lifetime
with the neighbors’ relative velocity. From the figure, we can
notice that long neighborhood lifetimes (almost 100% of the
lifetime) are obtained when the relative velocity is low (i.e.,
between 0 to 10 km/h). In contrast, it is almost less than 10%
of of the neighborhood lifetime when the relative velocity is
60 km/h. Those situations correspond to the scenarios where
vehicles are either driving on the same direction or on opposite
direction but in the same road. On the other hand, the lifetime
considerably decreases and becomes almost constant for the
highest relative velocity which reflects the situation where
the neighborhood contact duration is low when the vehicles
are moving in opposite directions. Following the observation
of Fig. 5 and Fig. 4, it seems that keeping relatively long
neighborhood lifetime does not depend much on the moving
direction but more on the relative velocity. indeed, as can be
seen from Fig. 4, at intersection, while vehicles can have large
relative direction, the lifetime’s duration is short.

Consequently, our current investigation of the parameters
that may have impacts on the neighborhood lifetime duration
in the intersection scenario leads to the conclusion that the ve-
locity seems to have the major influence on the neighborhood
link duration. Our next step will be the investigation of such
parameter in n-hop neighborhood.

IV. CONCLUSION AND FUTURE WORK

We studied the traffic road impact on the stability of
multicast routing for data flows from Internet to Vehicular
networks. In this paper, we reported our preliminary study
of the traffic dynamics impact on link stability for a realistic
intersection road scenario. The study is carried out using the
SUMO traffic simulator under different road traffic settings.
Simulation results show that in an intersection scenario, the
link can be sufficiently stable without depending much on the
relative direction of vehicles. On the other hand, on straight
roads, the link stability is largely affected by the relative
direction. Specifically, for the target scenario, only 2 neighbors
are kept for more than 80% of the total ego trip time, whereas
35 neighbors keep a link with the ego for 5%of the total travel
time. Our study shows also the impact of the relative velocity
on the stability of the links between vehicles as it is clearly
shown that a low relative velocity with neighbors ensures long
neighborhood lifetimes and vice versa.

As a future work, we study the impact of vehicles’ velocity
and density on the neighborhood lifetime for K-hop neighbors
under more complex urban scenarios. Based on our studies, we
plan to seek a multicast routing approach that is more adapted
to Internet to vehicular communications scenarios.
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