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Proposal and Evaluation of a Predictive Mechanism for Ant-based Routing

Abstract—To tackle problems emerging with rapid growth
of information networks in scale and complexity, bio-inspired
self-organization is considered one of promising design princi-
ples of a new generation network, which is scalable, robust,
adaptive, and sustainable. However, self-organizing systems
would fall into a local optimum or converge slowly under
some environmental conditions. Therefore, it may take a long
time for self-organizing systems to adapt to environmental
changes. In order to adapt to dynamically changing conditions
of information networks, each component needs to predict
the future state of its neighbors from their past behaviors
and to adapt its movement to conform to the predicted
states. There are several investigations into self-organization
with prediction in the field of biology, but its application
to information network systems and technologies needs more
discussion. In this paper, we take AntNet, an ant-based routing
protocol, as an example and consider a mechanism to accelerate
path convergence with prediction. The proposed mechanism is
compared with AntNet from viewpoints of the recovery time,
path length, and control overhead. Simulation results show
that our predictive mechanism can accelerate path convergence
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INTRODUCTION

to realize information network systems and technologies,
which can adapt to dynamically changing conditions in
a timely manner, it is necessary that systems should be
controlled considering the future state of systems, which is
predicted by observing behaviors of systems.
Self-organization is a natural phenomenon of distributed
systems, where components behave individually and au-
tonomously. In a self-organizing system, they behave in
accordance with simple rules and information locally avail-
able to a component. Through direct or indirect interactions
among components, a global behavior or pattern emerges
on a macroscopic level without central control. In a self-
organizing system, the cost of information management
can be considerably reduced since none needs up-to-date
information of the entire system or many other compo-
nents. Moreover, local failures and small environmental
changes are handled locally and immediately by neighbor
components without involving the entire system. Therefore,
self-organizing system can recover from failures and adapt
environmental changes automatically. In particular, biology
is mines of self-organization models that can be applied
to information networking such as routing, synchronization,
and task assignment since biological systems are inherently

Due to rapid growth of information networks in scale self-organizing [5].

and complexity, conventional information network systems However, it is pointed out that self-organizing control
and technologies, which are based on central control ohas some disadvantages [6]. First, in a large-scale system,
distributed control with global information, are to face it may take a long time for a global pattern to emerge
limitations. An information network system adopting con- because it appears as a consequence of interaction between
ventional control technologies suffers from the considerableutonomous components. Second, self-organization, which
overhead in managing up-to-date information to grasp dyuses only local information, would fall into a local optimum
namically changing conditions as the scale and mobilitywhile a conventional system using global information can
increase. Considering the problems that would emerge ineach an optimal solution in most cases. Furthermore, a self-
future networking, there have been research activities sucbrganizing system is not controllable in general, whereas
as GENI [1] and NSF FIA [2] in the USA, FP7 [3] in unnecessity of control is one of the significant aspects
Europe, and the AKARI Project [4] in Japan to establish aof self-organization. These disadvantages lead to the slow
novel network architecture and relevant technologies. Takingdaptation to environmental changes in a self-organizing
into account requirements for new generation networkssystem. Ant Colony Optimization (ACO), which is a heuris-
i.e., scalability, adaptability, robustness, and sustainabilittic in the traveling salesman problem, is a mathematical
higher than ever before, the paradigm shift is needed tonodel of foraging behavior of ants [7]. Because of the
organize and control the whole network system in a fullysimilarity, it has been adopted as a routing mechanism by
distributed and self-organizing manner. Moreover, in ordermany researchers [8], [9], [10]. Previous research shows
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that AntNet is superior to conventional mechanisms incalled ants, i.e.forward antsand backward antsA source
robustness against failure, control overhead, and commuode proactively launches mobile agents called forward ants
nication performance [11]. However, the time required forat regular intervals. A forward ant stochastically selects
path establishment to converge depends on the length @ neighbor node to visit in accordance with the amount
the path, i.e., the distance between a source node andad pheromoneswhich are laid by ants. On a way to a
destination node [12]. Moreover, a considerable amount oflestination node, a forward ant records its path and the time
control messages generated in path establishment depletefarrival at each node in order to evaluate the quality of the
network bandwidth and hinders data message transmissiotravelled path.

In [13], a predictive mechanism was proposed for faster When a forward ant arrives at the destination node, it
consensus in flocking birds. In self-organized flocking withchanges to a backward ant. A backward ant returns to the
a predictive mechanism, each component predicts the fusource node on the disjoint reverse path of the forward
ture state of its neighbors from their past behaviors andnt, updating pheromone values along the way. When the
adapts its movement to conform to the predicted statepath has better quality, i.e., smaller delay, a backward ant
When applied to self-organized behavior of flocking birds,increases a pheromone value for the neighbor node it came
a predictive mechanism is considered to contribute to fastemore.
self-adaptation to environmental changes. There are severalEach data packet is forwarded to a neighbor node as
investigations into self-organization with prediction in the a next hop node according to the pheromone values that
field of biology [14], [15], but its application to information backward ants have updated. Since a neighbor node with a
network systems and technologies needs more discussiolarger pheromone value is more likely to be selected, a data
In this paper, we adapt a predictive mechanism to antpacket reaches a destination node following a shorter path.
based_ _routlng since ant-based routing is a typical SelfB. Self-Organization based Path Establishment and Main-
organizing system and its property and performance hav?enance
been researched well.

In this paper, we take AntNet [16], which is an ant- N AntNet, each node has a pheromone tabfeas routing
based routing, as an example of self-organization baseiformation. 7% = {7} where T is a list of pheromone
control and propose a predictive mechanism for AntNet. Invaluest), € [0, 1] for all neighbor node: € N, regarding
an ant-based routing mechanism, a shorter path collects mofi€stination node, i.e., 7; = {7);,}. Ny is a set of neighbor
pheromones than longer paths. Then the preferentially accitodes of node:. Source node establishes and maintains a
mulated pheromones attract more ants that further deposiath to destination nodéby sending forward ants at regular
pheromones on the path. Such positive feedback eventualifitervals. A forward ant stochastically selects a next hop
leads to all ants’ following a single path. Therefore, anode to visit. The probability,, that neighbor node € N,
increase rate of pheromone values implicitly indicates thdS selected as a next hop node of ndedor destination
goodness of a path. In our mechanism, each node predici9ded is given as follows.

a path that will obtain a large amount of pheromones from |f there is no pheromone information for destination
historical information about pheromone accumulation. Thennoded at nodek, a next hop node is randomly chosen.

it boosts pheromone accumulation on the predicted path for 1 if [V =1
faster convergence. We show that prediction helps adaptation Pra =< s 0 [Nk > 1AR# v (1)
to environmental changes through simulation experiments. (l) Kl otherwise

The reminder of this paper is organized as follows. First, . o
we describe AntNet in Section Il. Then we propose and Otherwise, selection is performed based on the pheromone

explain a predictive mechanism for AntNet in Section 11l Valu€ .

and give simulation results and discussion of our proposal 1, if [N =1
in Sefction V. Fkinally, in Section V, we provide conclusion Wk%j if |[No| > 1A € Vi An 01
and future work. Pnd = tal, -
%7 if [Nkl > 1A ¢ Vi
Il. ANTNET 0, otherwise
. . . 2)
We use AntNet as a basis of our investigation of self- . . (
9 where Vs, = {s,v1,va,---,v;—1} IS & list of nodes that

organization with prediction. In this section, we give a

summary of a mechanism of AntNet. the forward ant has visited before arriving at nédat thei-

th step andy;_; is an identifier of the(s — 1)-th node on the

A. Overview path.l,, is a variable indicating the degree of congestion for
i I I I _ dn
AntNet [16] is an adaptive best-effort routing algorithm N€ighbor node: at nodek, which is given byl O

in packet-switched wired networks based on the principlegnd g, is the number of messages waiting in a §ending
of ACO. AntNet introduces two types of control messagesbuffer for neighbor node.. « € [0, 1] is a coefficient. A
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larger o allows forward ants to select a next hop node in [1l. PREDICTIVE MECHANISM FORANTNET
accordance with local traffic condition. As a consequence, ) ) o .
path convergence becomes hard to accomplish. On the IN this section, we propose a predictive mechanism
contrary, witha close to zero, a path traversing congested©r AntNet. We consider prediction only from pheromone
links would be established. A forward ant whose travelledchanges and pheromone control with updating it indepen-
hop count reaches the predetermined TTL is discarded at @€ntly of internal control in AntNet.
node.

A forward ant changes to a backward ant when it reacheé. Overview
the destination node and returns to the source node
following the disjoint path that the forward ant traversed
while updating pheromone values at visited nodes. Th

pheromone valuey;; for neighbor node: € Ny, at nodek  tperefore. we take AntNet as example of self-organization

is updated by (3). based control and consider a predictive mechanism in which
ko tho4r(l—7k), ifn=7f @) components observe their past behaviors, predict the future
nd TR —rrk otherwise state of the system, and then control their behaviors in

accordance with the predicted future state.

where f corresponds to the previous node that the backward |, our proposal, we introducpredictive antsin addition

ant visited just before arriving at node i.e., the first node 5 two types of control messages, i.e., forward ants and

of the path from the node to the destination nodeeflects  packward ants, anihcrease rates of pheromone valua®

the goodness of the path, on the transmission delay frogopted as an indicator for predictive control. Each node
nodef to the destination nodé The smaller the delay is, the g nches predictive ants at regular intervals. A predictive

largerr is. Consequently, the shortest path among paths thafnt that arrives at a neighbor node remembers increase

forward ants found has the largest amount of pheromonegytes of pheromones in the neighbor node and returns to

and attracts most of forward ants. its originating node. On its return, the predictive ant boosts
The parameter, which determines the increasing amount pheromone accumulation for the neighbor node for faster

of pheromones, is evaluated from the trip tifig.s and  path convergence if its increase rates are high.

the local statistical modeM”* = {M[}, where Mjj = Each node has a pheromone talilé as routing infor-

It is difficult for components to adapt faster to dynamically
changing conditions of networks in a self-organizing system
ecause each component uses only local current information.

d k k
Wi, na,oq}- mation. 7% = {7X} where T} is a list of pheromone
Wi Loup — Liny valuest”, € [0, 1] for all neighbor node: € N, regarding
r=c ) +e e ) destination nodd, i.e., 7* = {r% }. N}, is a set of neighbor
! (Tk—nl) : ((Isup — Ling) + (Tr—a — Ling) d =T} N g

(4)  nodes of nodé:. At the beginnings?, is initialized toﬁ.

whereT}_, , is the ant's trip time from nodé to destination !N our proposal, forward ants and backward ants behave
noded. W is the best traveling time of ants from node similar to AntNet. That is, a forward ant stochastically se-
to destination nodel over the last observation window of €cts @ next hop node to visit in accordance with pheromone
size w, and @5’ a’(;) are the average and dispersion of thevalues by (1) and (2), and the pheromone value.is updated
traveling time of ants over the last observation window.Py Packward ants by (3). The pheromone value is used for
I, and I, ¢ are estimates of the limit of an approximate next-hop selection by ants and data messages.
confidence interval fop, which are given by (5) and (6).
B. Increase Rates of Pheromone Values
Ling = Wy, (5) _
In our proposal, each node also has a increase ratedéble
Loy = 4k + (% /y/w), with z =1/\/T—~ (6) for prediction.£* = {&€}} where &} is a list of increase
rates of the pheromone value$, € [0, 1] for all neighbor
wherecy, ¢, andy are coefficients, anfc,, c2,v) is setto  noden € N, regarding destination node At the beginning,
(0.7,0.3,1.7) in [16]. ek, is initialized to zero.
Node & that receives a backward ant from noflec Ny,
updates the increase rat§, € [0,1] of all its neighbor
A data message is forwarded to a next hop node based ardesn € N regarding destination nodéby (7).
pheromone values, where the selection probabﬂ’if;g that ]
neighbor node: is chosen as a next hop node for destination k { (L=PBepa+ B, ifn=f @)

€ €nd < k i

noded is given as% (e > 0). Therefore, data (1= Bena, otherwise
ien, \Tjd

messages follow thejghkortest path established by forwardhere$ € [0, 1] is a parameter that determines the weight

and backward ants. of individual increment of pheromones.

C. Transmission of Data Messages
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source node

C. Behavior of Predictive Ants *

In our proposal, each nodepredicts better paths that will [tar]
obtain a large amount of pheromones from sending predic- ]
tive ants to its all neighbor node at regular intervals,.

A predictive ant that arrives at neighbor noge € N,

remembers nod¢’s increase rate table, i.e£/, and returns

to its originating nodé: while updating pheromone values at

nodek. The pheromone valug®, for neighbor node: € Ny,

at nodek is updated by (8) if the max value in the increase I I I S
rate table of nodef regarding destination nodd, i.e., destination node
maxe’,, (n' € Ny), exceeds 0.5.

- (b)

(c).

Figure 1. Network and congestion model in simulation where traffic near

i T’r]fd +p(1 — T,’fd)» ifn=f 8 the center of the network increases after the network converges as shown
Tod — fa L ' (8) in Table I.
TR 4+ DT, otherwise
wherep is a parameter that determines the increasing amount Table |
of pheromones. Even if the max value aﬁ exceeds 0.5, TRAFFIC CHANGES IN SIMULATION
the pheromone values are not updated wéigias not been . 20(a)R 1o(b)R - (C)R
updated since nodg received a predictive ant from node A((:ﬂzrg) 201 - 401 - 601 -

at the last time.
Each node starts tq send pred|9t|ve ant; \{vhen it rece|ve§acket_ The one-hop transmission delay at liak k) is
a backward ant, and it stops sending predictive ants when ven b
does not receive backward ants for a fixed period of time. g y
|(7’l, k)‘ Pnk

T, 1
T —— s [ms] (10

D. Transmission of Data Messages cost(n, k) =

A data message selects a next hop node based on _ L . .
pheromone values in the same way as AntNet, where thgherepnk is the average utilization rate of lif(lke, k), which

selection probability?* , that neighbor node is chosenasa 'S 9Ven by(.)‘"’“ + Aen)Ts, and|(n, k)| corresponds to the
b - ¢ (rk )¢ Euclidean distance between nodeand nodek (= 30 m).

next hop node for destination nodés given asm The average processing tinig is set to 6.5 ms.

(e > 0). Therefore, data messages follow the shortest path In this evaluation, we evaluate the recovery time, control

established by forward and backward ants. overhead, convergence rate of AntNet with and without
prediction. We first have the network converge to a state
IV. PERFORMANCEEVALUATION where ants repeatedly select the same path using original

In order to evaluate adaptability to environmental change#\ntNet. Convergence of the network is defined as a state
of our proposal, we evaluate the time to recover from trafficwhere the same path is selected by forward ants for 10

changes. consecutive times. Convergence check is done everytime
) ) ) a backward ant reaches a source node. After the network
A. Simulation Settings converges, we cause traffic changes. At the beginning of the

We distribute 100 nodes onld x 10 grid with separation simulation,),,;, of links betweert x 6 nodes in the center of
of 30 m. We appoint a node at the top-left corner asthe network is set td0 + R packet/s ), of links between
a source node and one at the bottom-right corner as & x 4 nodes in the center of the network is setite- R
destination node. The communication range is set to 30 npacket/s, and\,,;, of other links is set t®0 + R packet/s
Therefore, each node can communicate with four neighborgR is a random number if—0.5,0.5]). Once the network
The coefficientx in (2) is set to 0.004. Other parameters of converges)\,,;, of links between6 x 6 nodes in the center
AntNet are set in accordance with their default settings [16]of the network is increased t¢0 + R packet/s, and\,,;

In order to establish the path considering the traffig, of links betweerd x 4 nodes in the center of the network
which is a variable indicating the degree of congestion foris increased t®0 + R packet/s as shown in Figure 1 and

neighbor node: at nodek, is given by Table |I.
Regarding performance measures, the recovery time is
ln=1- 9) defined as the time from the occurrence of environmental

ZjeNk Aks T change till path recovery. Path recovery is defined as the
where A\, corresponds to the average arrival rate of datdime when the network is converged and total delay of a
packets to the queue for sending to nodat nodek, and created path from the source node to the destination node
T, corresponds to the average processing time per one daig smaller thanthe minimum delay x 1.05. Path recovery
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predict(p=0.06)
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Figure 2. Path recovery time\¢, = 100 ms) Figure 3. Convergence raté\¢, = 100 ms)

e
e

1.2e+006 T T T T
AntNet —+—

check is done everytime a backward ant reaches a source

node. The control overhead corresponds to the total number et
of travelled hops of control messages until path recovery. Le005 | ”E”g“?g"g"% 1
The convergence rate is defined as ratio of path recovery predietp=0)
within given simulation time, i.e., 1,000 s, to 300 simulation

runs.

800000 [ 1

600000 H

400000 - A R

B. Results and Discussion

cumulative overhead [hops]

In this evaluation, the interval of predictive ant emissions, 200000 - |
i.e., Aty, is set to 100 ms, and we change the interval of
forward ant emissions from 100 ms to 1 s. The parameter “0 200 30 40 500 00 700 80 00 1000

interval of forward ant [ms]

which determines the weight of individual increment of
pheromones in the increase rate of pheromones ((7)), is set

to 0.2. The parameter in (8) is changed from 0.06 to 0.6. ,
In each simulation, a path that runs through the centePU" proposal. Our proposal boosts pheromone accumulation

of the network is established by AntNet at first becausé® @ shorter path whose pheromone values are still low but
the amount of traffic in the center of the network is smallincreasing, and this is the reason why path reestablishment
at the beginning of the simulation. Then, another path i&fter environmental changes is accelerated.
reestablished avoiding the center of the network by AntNet [n our proposal, the recovery time is shorter and the
or our proposal after traffic changes, i.e., the amount ofonvergence rate is higher especially when the parameter
traffic in the center of the network increases. is low as shown in Figures 2 and 3. In an ant-based routing
We show simulation results in Figures 2, 3 and 4. Inmechanism, the stochastic path exploration in accordance
these figures, the recovery time, convergence rate, andlith pheromone values plays an important role in the
control overhead for the interval of forward ant emissionsdiscovery of shorter paths. However, a forward ant selects
are depicted. The recovery time and control overhead i@ next hop node in an almost deterministic manner if the
these figures show averaged values over 300 simulatioficreasing amount of pheromones in our proposal is too
runs for each interval of forward ants except for cases thal@rge, i.e.,p is too high. In consequence, a loose control
convergence cannot be achieved by the end of a simulatiofith lower p leads to a better recovery time and a high
run, i.e., paths fluctuate. convergence rate. Moreover, whenranges between 0.06
As shown in Figures 2 and 3, the recovery time of ourand 0.2, there is not much difference in the recovery time
proposal is shorter and the convergence rate of our proposand convergence rate in our proposal. In other words, we do
is higher than AntNet. Furthermore, our proposal is superiofot need to take so much care of parameteetting.
to AntNet regardless of the value of parametealthough As shown in Figure 4, control overhead of our proposal
we changesp widely. In original AntNet, a forward ant is much higher than that of AntNet. It is because each
selects a next hop node in accordance with only currenhode that receives a backward ant regularly sends predictive
pheromone values. Then, most forward ants go through thants to all its neighbor nodes for a fixed period of time in
path that has more pheromones than others even if therder to obtain neighbor nodes’ information in our proposal.
are other better paths. Therefore, it takes a long time tdiowever, overhead of forward and backward ants is reduced
reestablish a shorter path when the quality of the existingpecause the recovery time is shortened with prediction.
path falls off because of environmental changes such alloreover, overhead of predictive ants becomes trivial as the
traffic changes. On the contrary, a next hop node is selectegumber of sessions becomes larger since predictive ants can
while taking changes of pheromone values into account ircollect increase rates for different destination nodes at one

Figure 4. Cumulative overhead\¢, = 100 ms)
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