
A Lightweight Messaging Protocol for Smart Grids

Eric MSP Veith∗, Bernd Steinbach† and Johannes Windeln‡

∗‡Institute of Computer Science
Wilhelm Büchner Hochschule

Pfungstadt, Germany
e-mail: eric.veith@wb-fernstudium.de

∗†Institute of Computer Science
Freiberg University of Mining and Technology

Freiberg, Germany
e-mail: veith@mailserver.tu-freiberg.de

Abstract—The smart grid concept introduces more software
control at both endpoints of the energy consumption chain: The
consumer is integrated into the grid management using smart
metering, whereas the producer will be host to a distributed
agent-based software approach. Including more renewable energy
sources in the energy mix will increase the necessity for a finer-
grained, automatic control of changes in the energy level. Such
changes need to be communicated for a distributed system to
be able to calculate supply and demand. We therefore propose
in this paper a lightweight protocol, which can be implemented
on top of existing technology providing the needed communica-
tion interface. We also specify common behavior and protocol
semantics for all implementing nodes, which forms the basis of
a distributed, decentralized demand and supply calculation in a
future energy grid.

Keywords—smart grid; messaging; protocol description; renew-
able energy sources

I. INTRODUCTION

The term “smart grid” unifies a number of concepts related
to an automated, information-supported management of the
energy grid. In his paper “integration is key to smart grid man-
agement” [1], J. Roncero shows how different technologies are
involved in the rather abstract smart grid concept.

Although a tighter integration of customers via smart meter-
ing is considered one of the cornerstones of a smart grid, the
increased usage of renewable energy sources will also play
an important role. However, although better appliances lead
to a more efficient usage of renewable energy sources, this
also leads to a higher dependence on energy which is not
entirely controllable by the utility, since energy generated by
wind parks or solar panels depends on the wind speed or solar
radiation, more specifically, the weather.

This means that there are variances on both sides of the
producer-consumer chain. Forecasting, as it is already em-
ployed via, for example, standard load profiles, helps to create
more certainty regarding the variances itself, but it will also
increase the number of calculations needed and the amount
of data analyzed. One could therefore argue that a “divide et
impera” approach is necessary, which leads to a decentralized,
agent-based infrastructure. Such an approach, however, needs
an information interchange protocol.

In this paper, we propose a lightweight protocol which
can be used in such a grid based on distributed software
and control. It will define certain basic protocol semantics
which will enable this grid to organize itself based on the

information available. This protocol, as described here, is not
based on a specific implementation: We propose the fields
required and how they are used but refrain from creating a
bit-for-bit specification. This protocol can, however, easily
be implemented on layer 7 of the ISO/OSI protocol stack
using, for example, JavaScript Object Notation [2] (JSON) as
a common data interchange format.

The remainder of the paper is structured as follows: After
describing our initial motivation in Section II, we will outline
the basic protocol structure in Section III, along with common
behavioral rules in Section IV. Afterwards, Section V will
describe the different types of messages available in the
protocol. The discussion in Section VI will show how the
protocol can be applied and outlines several scenarios and the
protocol’s behavior therein. We conclude with our plans for
future work in Section VII.

Since this paper describes a protocol, requirement levels
for implementors must be clear. In Sections III–V, this paper
makes use of the keywords listed in RFC 2119 [3]. This
includes “must”, “must not”, “required”, “shall”, “shall not”,
“should”, “should not”, “may” and “optional”.

II. MOTIVATION

The International Electrotechnical Commission’s IEC 61850
standard has first been issued for communication within a
subsystem automation system [4], but, in the meantime, has
been expanded to other applications as well [5]. Higgins et
al. [6] show how IEC 61850 can effectively be used for
automatic failover.

While IEC 61850 proposes a rich data model for smart
grid devices, it does not define mechanisms for a pro-active,
decentralized interaction of the different components. The in-
creasing inclusion of renewable energy sources tied to external
influences — like wind or solar radiation — also increases the
need for an higher frequency of control messages.

These messages could be issued by a central control unit
which observes the state of the whole or a part of the energy
grid and, given all information available, decides on the proper
course of action. Such a central control unit, however, must
be properly equipped to handle the information load, must
be equally well connected to avoid that the communications
infrastructure becomes a bottleneck, and must be extendible to
add features which help towards a more pro-active operation,
such as forecasting.

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-292-9

EMERGING 2013 : The Fifth International Conference on Emerging Network Intelligence

Since such a central control unit also poses a single point
of failure, it is often assumed that a de-centralized layout of
cooperating agents would be a better approach [7]. This would
not concentrate the control logic in one point, but distribute it
over the grid. Such a distributed system would need a protocol
that would allow for interchanging information critical to the
actual operation.

IEC 61850 offers a very fine-grained data model for electric
grids. However, it misses a simple protocol mechanic that
would be applicable in the distributed supply-demand calcu-
lation that immediately becomes necessary in a smart grid
consisting of distributed agents. These agents would have to
interchange information about the energy state, i.e., demand or
over-supply that is introduced by weather changes or consumer
behavior. A projected increase in wind speed at evenings
would lead to an over-supply, whereas employees returning
home at a projected time of 6pm would mean a demand.

These two simple examples show how the need for a
distributed supply-demand calculation arises. We therefore
propose a lightweight, simple high-level protocol that can form
the basis of this calculation.

While the protocol as it is described here is not based on
IEC 61850 per se, it can still be used on top of IEC 61850 by
employing an appropriate application programming interface
(API). In fact, we avoid to enforce implementation details
wherever possible to make a widespread adaption possible.

III. BASIC PROTOCOL STRUCTURE

Nodes within the grid exchange data via Connections. A
connection is, to the protocol, a virtual concept which resides
in layer 7 of the ISO/OSI protocol stack. As such, it is not
tied to Internet Protocol (IP) addresses or other concepts of
lower levels in the ISO/OSI stack. Connections must be end-to-
end; they are bi-directional communication channels between
exactly two nodes. Concepts such as multicast must be realized
on top of this.

A connection serves two purposes. First, it identifies the
two endpoints. Second, by establishing a (largely virtual)
network of nodes and connections, this protocol creates a
communications structure that resembles the actual power grid,
recreating it on top of any other networking structure, such as
an IP-based wide-area network (WAN). This way, the power
grid and the telecommunications infrastructure do not have
to match in their layout. The layout recreation algorithm must
be implemented by the actual connection facilities which, e.g.,
map to an IP network.

Having those virtual connections represent the actual physi-
cal power supply line also enables us to model “dumb” cables,
which have no other properties than a maximum capacity and a
line loss. Taking these attributes into account, the actual power
transfer becomes part of the protocol. Smart power supply
lines which are equipped with, e.g., metering devices, become
nodes of their own. The simple power line–connection unit
then evolves into a connection–power line–connection building
block, which also adheres to the protocol semantics described
in the following section.

Messages can travel further than the node–connection–node
boundary. To enable nodes to answer to requests which do not
originate from their immediate neighbors, each node must be
uniquely identifiable. The Sender ID of a node must be unique
at any given time. It is an opaque bit array of arbitrary length
and must not contain any additionally information about the
node itself or anything else. Generating an universally-unique
identifier (UUID) [8] whenever the node’s software boots is
one way to get such an identifier.

Each message must contain an unique identifier (ID). This
is important since messages fall into two distinct categories:
requests and answers. A request is sent actively by a node
because of an event which lies outside the protocol reaction se-
mantics, such as a changed power level. Answers are reactions
which occur because of the protocol semantics as described
below. Since any reaction pertains to an original action, it
needs to identify this action, which is the reason for the unique
identifier of each message. Reactions must carry a new, unique
identifier, too.

The type of the message must be denoted by a Message
Type field. The mapping is outlined in Table 1. These numbers
are simple integer values with no coded meaning whatsoever.
We do not distinguish between message classes or priorities
here: The goal of the protocol is to remain simple, and we
believe that the message types outlined here suffice in reaching
the primary goal of the protocol, i.e., energy supply-demand
mediation.

A message must also contain a Timestamp Sent field de-
noting the time and day when the message was initially sent
as an Unix Timestamp (see [9] for the definition of the Unix
Timestamp).

To prevent messages from circulating endlessly, a time-
to-live (TTL) field is introduced. This TTL has the same
semantics as the IP TTL [10] field: It starts at a number greater
than 0. Whenever a message is forwarded or sent, the TTL is
decremented by 1. If the TTL reaches 0, the packet must not be
forwarded or otherwise sent but must be discarded. Messages
with a TTL value of 0 may be processed.

Additionally, an Hop Count is introduced. The Hop Count
is the reverse of the TTL: It starts with 0 and must be
incremented upon sending a message. It allows to measure
the distance between two nodes in the form of hops.

A message must carry an Is Response flag to distinguish
original requests from responses. If the Is Response flag is
set, the ID of the original message is contained in the Reply
To field. If Is Response is not set, the Reply To field must
not be evaluated; however, if a response is indicated, Reply To
must contain a value which must be evaluated by the receiving
system.

An answer must also contain the original message’s Time-
stamp Sent field (in addition to its own), and the Timestamp
Received denoting the time when the original message was
received.

To summarize, each message must contain at least the
fields of the following enumeration. In parentheses, we give
a proposition of the identifier that could be used in an actual

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-292-9

EMERGING 2013 : The Fifth International Conference on Emerging Network Intelligence

Value Type
0 Null Message
1 Echo Request
2 Echo Reply
3 Online Notification
4 Offline Notification
5 Demand Notification
6 Offer Notification
7 Offer Accepted Notification
8 Offer Acceptance Acknowledgement
9 Offer Withdrawal Notification

Fig. 1. Message Types

implementation.
1) message ID (ID)
2) message type (type), see Figure 1 above
3) original sender ID (sender)
4) timestamp sent (sent)
5) TTL (TTL)
6) hop count (hops)
7) is response (isResponse)
The message type defines what additional values a message

carries; these message types are described in Section V. The
message type itself is a simple integer value field with type-
to-number mapping shown in Table 1.

If Is Response is true, the following fields must be added:
1) reply to (i.e., original message ID) (replyTo)
2) timestamp received (received)

IV. COMMON PROTOCOL SEMANTICS

The following rules must be applied to each message,
regardless of their type.

First, a message must not be ignored (“no-ignores” rule).
All messages except the Null Message, the Echo Re-

quest Message and the Echo Reply Message must be for-
warded, partially answered and forwarded, or answered. This
is the “match-or-forward” rule. It becomes important with
requests and offers and is it further specified in Subsections
V-F and V-G.

Forwarding denotes the general process of receiving a
message and resending it. The message may be modified in
this process, for example, the requested energy level must be
lowered when a node can fulfill a portion of the request (see
below).

When forwarding, a given message must be sent on all con-
nections except the connection on which the original message
was received. This prevents message amount amplification:
Would the receiver also send the message on the connection
on which it was originally received, it would be useless since
the original sender already knows about its offer or request. It
would thus only lead to additional processing and unnecessary
use of bandwidth (“forwarding” rule).

Each node must keep a cache of recently received messages.
If a message is received again, it must not be answered or
forwarded (“no-duplicates” rule).

V. MESSAGE TYPES

A. Null Message

The Null message is the simplest message available in the
protocol. It contains no additional information besides the
basic protocol fields each message carries.

Null messages can be used as a form of heartbeat informa-
tion. This is especially useful on weak links, for example for
a remote wind park which might only have a mobile phone
(GSM) connection. It thus can be sent at regular intervals to
keep the line open.

A Null message in JSON representation is shown as an
example in Figure 2.

B. Echo Request Message

An Echo Request can be sent on any connection to see if
the endpoint is still alive and reachable. It must be answered.
An Echo Request must not be an answer, and it also must not
contain any additional information.

C. Echo Reply Message

An Echo Reply is the answer to an Echo Request. It must al-
ways be an answer and thus cannot be sent independently. This
message type also does not contain any additional information;
the proposed common fields (Timestamp Sent and Timestamp
Received) are sufficient for Round-Trip-Time measurements.

D. Online Notification

Using this message, a node in the grid can notify its
neighbors that it is going online or will be online at a certain
point in the future.

To actually be able to carry the second kind of information,
i.e., going online at a certain point in the future, this message
contains two additional fields: Valid From (validFrom) and
Valid Until (validUntil). A message using validity dates
must use the Valid From field and may optionally make use
of the Valid Until field.

This concept of validity dates is used by other message
types, too. It denotes a timespan between the time indicated
by Valid From and Valid To, both inclusive. Both fields are
Unix timestamps like, e.g., the Timestamp Sent. Whenever a
node wants to indicate that a message is valid immediately,
it places the current time and date in the Valid From field.
A “valid until further notice” semantic can be achieved by
omitting the Valid Until field entirely.

Any protocol implementor, however, must take care to
adjust his implementation whenever the Unix timestamp data
type changes. As the time of writing, a Unix timestamp of
64 bit width is typically used in modern operating systems,
which provides enough seconds since 1.1.1970 for the whole
lifetime of this protocol. Previously, the time_t C type was
specified as having 32 bits, which meant that an overflow
would happen on 19.01.2038, the so-called “year 2038 prob-
lem”.

Note that the Unix timestamp also allows for negative values
to represent times before 1.01.1970. Although this would not
be a necessary feature in the terms of this protocol, we advise

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-292-9

EMERGING 2013 : The Fifth International Conference on Emerging Network Intelligence

{
ID: "c3e5aca2-616f-4003-bbc6-eb9e90335495",
type: 0,
sender: "2d60a262-903e-4f70-a9de-e4d9b83d2bb7",
TTL: 42,
sent: 1367846889,
hops: 23,
isResponse: false
}

Fig. 2. An example for a null message, encoded as JSON

against choosing an unsigned type as it would introduce the
need for additional programing quirks for implementors.

An Online Notification may be forwarded, but can also
be discarded. This type of message is important for all
directly connected nodes, because it has influence on the
wires connecting the originating and its neighbor nodes. Any
change in power levels, however, will be communicated using
demand/supply messages which will be described later.

E. Offline Notification

The Offline Notification is the counterpart of the afore-
mentioned Online Notification. It notifies the neighboring
nodes that the originating node will be offline (i.e., possibly
disconnected from the grid), utilizing the same Valid From and
Valid To timestamp fields.

Unlike the Online Notification, this type of message must
be forwarded. It provides additional information to the energy
supply/demand solving algorithms of other nodes, which get
a chance to re-calculate their supply plans. It is assumed that
a demand or supply message which reaches the node sending
the Offline Notification means that the Offline Notification will
also be received by the original sender of the demand/supply
message since the hop count is the same both ways.

However, since the Offline Notification message does not
contain a field supplying the change in the grid energy level
when the shutdown happens, an additional supply/demand
message must be sent if the node has influence on the grid’s
energy level.

F. Demand Notification

A Demand Notification message indicates the need for
energy of a particular node. It carries the Valid From and Valid
To fields.

Additionally and primarily, it carries the quantified demand
for energy in watts in the Power (power) field. Fractions
of watts are not supported, i.e., the lowest amount that can
be requested is 1 W. The field must not be 0, as this would
make the message itself superfluous. This field must not carry
negative values; those would mean an offer which has its own
message type.

Demand Notification messages must be forwarded if they
cannot be (completely) fulfilled. Each node must try to react
to a demand message, i.e., try to match it and supply the
energy requested. This is called the “match-or-forward” rule
as described above. If it cannot fulfill the demand, it must at
least forward it under the semantics outlined in Section III.

demand 500 kW

supply 250 kW

demand 250 kW

Fig. 3. A Demand Notification having the “match-or-forward” rule applied

If the node can supply the requested amount of energy com-
pletely, it must notify the requester using an Offer Notification
message. It must not forward the original Demand Notification
then.

If, however, the demand can only be partially fulfilled, the
node must send an Offer Notification indicating the amount
of energy that can be offered. It must then subtract this value
from the original value indicated in the request and forward
the thusly modified message. It must not change the message’s
ID or the message’s sender ID (“same-ID” rule). The partial
matching described in this paragraph is depicted in Figure 3.

A Demand Notification message must not be an answer.

G. Offer Notification Message

This type of message indicates an offer to the grid. It carries
the fields Valid From and Valid Until as they are described in
Subsection V-D and the amount of energy offered in the field
Power. This number is an unsigned integer and is expressed
in units of watts with no fractions possible.

Additionally, the offer includes a field Cost, which carries
the cost of this offer in cents per kilowatt hour (ct/kWh). This
allows for implementing cost-based policies, such as accepting
energy only if it is cheap.

An Offer Notification may be an answer. If so, it is an
answer to a previous Demand Notification, as described in
the above subsection. A node receiving multiple offers must
prefer offers of lower hop count over those with higher hop
count. This favors micro-grids and reflects the actual flow of
energy.

However, Offer Notification messages may also be sent as
a request. This is the case whenever the agent estimates that
it will output more power than it currently does. Consider for
example a wind park which is dependent on the weather. If the
agent’s forecasting module predicts an increased wind speed
in an hour and therefore an increased energy output, it may
send an Offer Notification instead of pitching or stalling the
wind turbines.

Just like a Demand Notification, such an original offer must
be matched by nodes in the grid. The difference between an
original offer and one that is an answer to a request is the
value of the Is Answer field: If set to 0, the offer must be
matched.

For matching and forwarding, the same mechanics as for
the Offer Notification message type applies, especially if it
can only be partly fulfilled.

H. Offer Accepted Notification

Whenever a request for energy is made and the offers have
been received, there may arise a situation when more energy

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-292-9

EMERGING 2013 : The Fifth International Conference on Emerging Network Intelligence

is offered by all nodes than originally requested. For example,
if a wind park, a solar park and a traditional power plant send
Offer Notification messages after a request has been sent, the
sum of energy offered is likely to exceed the original amount
requested.

For this reason, a node must indicate which offer it accepts.
Otherwise, all offers would be fulfilled, leading to an over-
supply of energy in the grid which would be fatal.

As soon as the node finishes its demand/supply calculation,
it must send Offer Accepted Notification messages to all nodes
that were offering energy. In the body of the message, it must
list the IDs of those nodes whose offer it takes. All other nodes
will notice that their ID is missing from the notification and
thus not actually deliver the energy they offered.

An Offer Accepted Notification must be an answer. It must
also be sent of the node is taking on an original offer (as
indicated above). In that case, the Offer Accepted Notification
must be addressed to the offering node only, while the original
offer must be forwarded if it cannot be completely fulfilled as
described in Subsection V-G.

I. Offer Acceptance Acknowledgement

After an offering node has received an Offer Accepted
Notification, it must reply with an Offer Acceptance Acknowl-
edgement to indicate that the offer is still valid. This message
type must always be an answer.

J. Offer Withdrawal Notification

If a node has offered a certain amount of energy, be it as an
answer or as an original offer, and it can no longer stand up to
the offer, it must withdraw it. This type of message is always
an answer, carrying the ID of the original offer (in case of an
original offer that was withdrawn) or the ID of the original
request in the Reply To field.

If a node can still offer energy, but the amount has changed,
the original offer must be withdrawn using this message type,
and the new amount must be announced separately.

VI. DISCUSSION

Based on the message types, the protocol structure and
the semantics defined in the corresponding section, we will
now illustrate how the protocol helps in a distributed supply-
demand calculation. Therefore, we will not only discuss gen-
eral properties of the protocol, but also present scenarios to
show the protocol’s behavior.

To support the goal of a distributed supply-demand cal-
culation, the protocol must first and foremost help to make
a demand or over-supply known. This is, of course, in the
first place the task of the node itself; the protocol assists
by merely providing a means to transport this change in the
grid’s energy level via the Demand Notification and Supply
Notification messages.

A wind park, which is dependent on the weather, can already
use the supply message to indicate changing power levels.
Together with the validity dates, the wind park can also employ

a forecasting algorithm to notify other nodes in the grid of the
changed energy production beforehand.

Since the protocol uses virtual connections, the layout of
the grid does not have to correlate with the layout of the
communications network. That way, a simple WAN connection
can be used and maintained while the virtual connections still
allow all grid nodes to keep the same, consistent logical view
on the energy grid.

This is important considering the normal current flow in
a grid, which cannot be easily directed. Together with the
protocol’s rule to prefer messages with a lower hop count,
a correct implementation of this protocol steers node behavior
to mimic the energy grid’s behavior. Thus, it automatically
favors local micro grids and reduces load on the transmission
system.

A change of the energy level, may it be imminent or
forecasted, cannot go unnoticed since the “match-or-forward”
rule applies to every node. Provided that a transport-layer
protocol such as the Transport Control Protocol (TCP) [11]
or the Stream Control Transmission Protocol (SCTP) [12]
provides transport layer safety, a demand or supply message
will reach other nodes. This separation of concerns accords
with the ISO/OSI stack design principles.

However, the “match-or-forward” rule has one corner case
where it can lead to an endless amplification in the number
of messages currently circulating in the network: When none
of the nodes can match the demand. In this case, a message
must be discarded after a certain amount of time. This is
done based on the TTL (time-to-live), which is a common
rule also applied to IP packets. The initial TTL shall be user-
configurable and must be high enough for a node’s message
to reach a destination which can answer the request.

The simplest layout involving a consumer and a producer
exists when producer and consumer are directly connected. In
this simple case, when the consumer demands more energy
and the producer can match the request, it will answer with a
message indicating the offer of the required amount of energy.
This basic behavior is dictated through the requirement that
each offer or demand message must be matched or forwarded.

On this basis, more complex layouts can also be tested.
Consider the still rather simple, circular grid layout in Figure 4.

The consumer (labeled C), the factory pictured above,
requests more energy. The request reaches the northern of the
two transformers, which cannot influence the energy balance,
but has to forward it based on the “match-or-forward” rule.
The request message is copied and sent along both links, since
a message must be sent on all links except the receiving one
when forwarding (“forwarding” rule). The message reaches the
two wind turbines P1 and P2 simultaneously, meaning that link
latencies are ignored in this example.

If each one of them can provide half the amount of energy
requested in the time frame it was requested for, it will send
an offer and re-send the modified request. All four messages
will then reach the conventional power plant, P3. This will
also answer, in this example with the total amount of energy
requested. The five messages on the wire will eventually reach

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-292-9

EMERGING 2013 : The Fifth International Conference on Emerging Network Intelligence

C

P2P1

P3

Fig. 4. A simplified, circular grid layout

P1, P2 and P3 again. By examining the message ID, which will
remain the same even if the request was previously modified
(“same-ID” rule), they can re-identify the message and will
remain silent (“no-duplicates” rule).

The answers will eventually reach the requester, C. It will
examine the offers and choose those made by P1 and P2
over the offer made by P3 since the message’s hop counts
are lower. This way, local renewable energy sources near
to a requester are automatically preferred. Finally, the Offer
Accepted Notifications are sent out, reaching P1, P2, and
P3. Since P3 doesn’t find its offer listed in the acceptance
notifications, it will refrain from powering up later. As the
last step, P1 and P3 acknowledge the process by sending
out their Offer Acceptance Acknowledgements. The demand-
supply calculation algorithm C has started when the need for
energy became apparent then stops.

Please note that in both examples, the power line loss has
been ignored. Such power line losses can either be described
using the Connection attributes, or by creating “smart lines”,
which then become nodes of their own. Due to the “match-or-
forward” and “forward” rules, the line loss is simply subtracted
from the message’s Power value.

It can easily be noted that neither the protocol’s semantics
nor its basic representation make an effort at security: We do
not propose a message encryption or impose an authentication
algorithm.

Partly, this is intentional: All nodes in the network shall
be treated equally. However, using a public transport such as
the Internet of course requires additional security measures to
be taken. Since this protocol would be part of the ISO/OSI
stack at level 7, we deem it sufficient to use the encryp-
tion/authentication facilities this stack already offers, such as
IP Secruity [13] (IPsec).

IPsec offers the ability to create a public key/certificate
chain infrastructure. Certificates would authenticate nodes in
the same way as they authenticate an online-banking web
server today. Certificate revocation lists can be used to block
compromised nodes within the smart grid.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have outlined the ground rules of a
messaging protocol which allows proactive communication of
nodes in the Smart Grid. The goal was to enable each node,
consumer and producer alike, to communicate their changing
needs or offer for energy, while allows other nodes to pick up
these pieces of information and act accordingly. This forms the
basis of a tighter integration of renewable energy sources and
allowing them to become more dominant in the energy mix,
even though those sources might be dependent on external
sources of influence outside our control, like the weather.

Proceeding further from that basis, we are going to propose
an agent architecture for the Smart Grid nodes that adheres to
this protocol. It will use the protocol semantics to implement
a solver for the demand/supply calculation process.

We are also going to demonstrate how this protocol can be
implemented using a standard IP network.

VIII. ACKNOWLEDGMENTS

This paper has been created as part of a cooperative doc-
torate programme between TU Bergakademie Freiberg and
Wilhelm Büchner Hochschule, Pfungstadt.

The author E. Veith would like to thank Nike C. Schmidt
for her continuous organizational support.

REFERENCES

[1] J. R. Roncero, “Integration is key to smart grid management,” CIRED
Seminar 2008 SmartGrids for Distribution, no. 9, pp. 25–25.

[2] D. Crockford, “RFC 4627 - The application/json Media Type
for JavaScript Object Notation (JSON),” IETF RFC, IETF, Tech.
Rep. [Online]. Available: http://tools.ietf.org/html/rfc4627 [Retrieved
2013-05-26]

[3] S. Bradner, “Key words for use in RFCs to Indicate
Requirement Levels,” Internet Engineering Task Force, Fremont,
CA, Tech. Rep. RFC 2119, March 1997. [Online]. Available:
http://www.ietf.org/rfc/rfc2119.txt [Retrieved 2013-05-03]

[4] M. Kosakada, H. Watanabe, T. Ito, Y. Sameda, Y. Minami, M. Saito,
and S. Maruyama, “Integrated substation systems-harmonizing primary
equipment with control and protection systems,” in Transmission and
Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES,
vol. 2, 2002, pp. 1020–1025 vol.2.

[5] “Iec 61850 for power system communication.”
[6] N. Higgins, V. Vyatkin, N.-K. Nair, and K. Schwarz, “Distributed power

system automation with iec 61850, iec 61499, and intelligent control,”
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 41, no. 1, pp. 81–92, 2011.

[7] G. Zhabelova and V. Vyatkin, “Multi-agent Smart Grid Automation
Architecture based on IEC 61850/61499 Intelligent Logical Nodes,”
IEEE Transactions on Industrial Electronics, no. 5, pp. 2351–2362.

[8] P. Leach, M. Mealling, and R. Salz, “Rfc 4122: a universally unique
identifier (uuid) urn namespace,” Proposed Standard, July, 2005.

[9] K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual. Bell
Telephone Laboratories, 1975.

[10] S. Deering and R. Hinden, “RFC 2460 - Internet Protocol,”
1998. [Online]. Available: http://tools.ietf.org/html/rfc2460 [Retrieved
2013-05-14]

[11] J. Postel, “Rfc 793: Transmission Control Protocol,” 1981. [Online].
Available: http://tools.ietf.org/html/rfc793 [Retrieved 2013-03-19]

[12] R. Stewart, “Stream Control Transmission Protocol,” RFC
4960 (Proposed Standard), Sep. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4960.txt [Retrieved 2013-05-13]

[13] S. Kent and K. Seo, “Security Architecture for the Internet
Protocol,” RFC 4301 (Proposed Standard), 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4301.txt [Retrieved 2013-06-22]

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-292-9

EMERGING 2013 : The Fifth International Conference on Emerging Network Intelligence

