

Method for Quick Identification of Computer Operations Performed by a Student

Kenta Morita

Graduate School of Information and

Telecommunication Engineering

Tokai University

Tokyo, Japan

e-mail: morita.k@star.tokai-u.jp

Haruhiko Takase

Graduate School of Engineering

Mie University

Mie, Japan

e-mail: takase@elec.mie-u.ac.jp

Naoki Morita

Graduate School of Information and

Telecommunication Engineering

Tokai University

Tokyo, Japan

e-mail: morita@tokai.ac.jp

Abstract – In classes where personal computers (PCs) are

actively used as a part of lesson plans, it is important for

teachers to be able to quickly locate the operations that

students have performed on their individual machines during

exercises. To identify such operations, a method using a global

hook has been utilized previously. However, when this method

is used, numerous successive screen-captured images must be

examined and it is difficult to find the changed portions that

allow the operations to be identified. Herein, we propose a

method that presents changed portions in an easily

recognizable manner and reduces the number of captured

images to be examined.

Keywords- Compute-assisted instruction; Operation Process.

I. INTRODUCTION

Recently, classes in which students use personal
computers (PCs) or tablet devices have become more
commonplace [1]. In most such classes, students learn how
to use applications, such as Microsoft Word or Excel, or
practice programming techniques, by operating their PCs in
accordance with instructions from a teacher.

When teachers present processes that students can
manipulate on their PCs during class, lessons can proceed
more smoothly and students can better understand the class
contents. However, when a student is unable to operate his
device in accordance with the teacher’s instructions, the
instructor must identify which parts of the student’s
operations are incorrect and correct the student’s
misunderstandings.

Unfortunately, when a student has made a mistake, the
teacher may not be able to identify the errors in the student’s
process simply by viewing the student’s screen. For example,
as shown in Fig. 1, in which an exercise for calculating the
sum of list of values using Excel is displayed, there is no
visually identifiable difference between using the SUM
function and directly inputting a value. More specifically,
either 21 has been manually input into cell B6 or the
“=SUM(B2:B5)” operation has been completed, but it is
impossible to know which method has been used simply by
looking at the screen.

Since it is difficult to identify where mistakes have been
made in cases where screens look identical, determining the
process the student used on his/her PC can help the teacher
identify the incorrect operation. Additionally, in
programming classes, it is important for teachers to know the
processes that students use when editing source code because
such processes contain information that the teacher needs to
assess whether students followed instructions correctly. This
allows the teacher to determine whether students have
adequately grasped their lesson content.

Until now, while it has been possible for a teacher to
observe all student operations if the student’s PC screen is
continuously captured in the form of video [2][3], this
process includes all the screen time during which the student
is not operating the PC, most of which is superfluous to the
teacher’s needs. Therefore, a method [4][5][6] that allows
only (operational) changes made by the student to be
collected is desirable.

Accordingly, in this paper, we propose a method by
which all computer operations and the corresponding
changes made by a student can be recorded and rapidly
presented to the teacher, and by which unnecessary screen
captures are eliminated. The use of this method can be

Fig. 1: Excel exercise image

90Copyright (c) IARIA, 2017. ISBN: 978-1-61208-541-8

eLmL 2017 : The Ninth International Conference on Mobile, Hybrid, and On-line Learning

expected to help the teacher quickly ascertain the student’s
lesson comprehension.

This paper describes the previous methods and problems
in Section II. In Section III, the method for quick
identification is proposed. We discuss the effectiveness of
our proposed method in Section IV. Section V presents the
conclusion and future work.

II. PREVIOUS METHODS AND PROBLEMS

Currently, there are two methods that use dedicated
applications [4] [5], and one global hook method [6] that can
be used to restrict the information provided to the teacher to
just changes in the student’s process.

However, the dedicated applications only target
programming operations and acquire the process taken in
creating source code by using a dedicated text editor. Thus,
while this method is capable of presenting information
regarding the process used, it can only acquire changes that
were entered via the dedicated text editor. This means it will
not acquire operations, such as file openings on the desktop,
nor can it acquire and recode the computer operations
performed by students. As a result, this method cannot
present all operations performed by the student.

There is also a global hook method that can be used to
collect all of the operations carried out on a PC. This method
monitors messages the operating system (OS) sends to an
application, takes screen captures when it detects keyboard

Fig. 2 Confirmation using global hook method.

(1)Select [New Project], (2) select [Win32 Console Application], (3) select [OK], (4) select [next], (5) select [Finish] (6) mouse click.

91Copyright (c) IARIA, 2017. ISBN: 978-1-61208-541-8

eLmL 2017 : The Ninth International Conference on Mobile, Hybrid, and On-line Learning

input or mouse clicks, and saves the screen captures as image
data. The process can then be determined by reviewing the
captured images one by one, in order, as shown in Fig. 2, and
noting the changes. By looking at the order in which they
were captured, faulty operations can be determined.

However, while the global hook method acquires all of
the operations that the student has performed and can present
the information to the teacher, the problem with this method
is that it is difficult to locate the path taken because a screen
capture is made whenever student operates the keyboard or
mouse, and each captured image must be examined one by
one. Moreover, editing programming source code results in
less visible changed portions of the screen because the input
characters appear very small, as shown in Fig. 3, thereby
making it necessary to scrutinize each image carefully. This
makes reducing the number of screen capture images
desirable.

Our goal was therefore to develop a technique that
teachers can use to quickly identify operations performed by
a student, while also reducing the number of images captured
via the global hook method.

III. PROPOSED METHOD

In this section, we propose techniques that will permit
teachers to identify computer operations performed by a
student by identifying changes in successive screen captures
while reducing the number of captured images required.

A. Finding changed portions

The basic idea behind our method of finding changed
portions is to present only the portions that have been
changed. For example, if there is an operation B that takes
place after operation A, existing methods presents an image

of B after the image of A is presented. In contrast, our
proposed method presents the image of A next to an image
that shows only the changed portions, which is the difference
between images A and B. By examining the differences
between previous and successive images, a teacher
examining a student’s process can predict where changes
will occur in the next image, and more easily understand the
operations performed, which is where his/her attention
should be focused.

The image (difference image) used to display the
changed regions is made by comparing two successive
screen captures and consists of black and white pixels. Black
pixels correspond to pixels that have changed between the
two images, and white pixels correspond to pixels that have
not changed.

 To clarify the changed portion, the system shows the
difference image between two successive images. For
example, Figure 4 shows transition images of confirmation
using the proposed method. Here, it can be seen that even if a
teacher examines captured images one by one, he/she can
easily understand the student’s process simply by noting the
black pixels in each successive image.

B. Reducing captured images

The basic idea for reducing the number of images to be
captured is to refrain from creating screen captures if the
changes in the screen are insignificant.

Existing methods generate a screen capture whenever the
student operates the mouse or keyboard, which means that
numerous captured images have very small changed portions,
or no changes at all. However, it is still necessary for the
teacher to examine each image to be sure no important
changes are present. In contrast, our proposed method

Fig. 3 Editing programming source code.

(1) Insert [Enter], (2) insert [c], (3) insert [=].

Fig. 4 Confirmation using proposed method.

(1) Previous image, (2) differential image, (3) next image.

92Copyright (c) IARIA, 2017. ISBN: 978-1-61208-541-8

eLmL 2017 : The Ninth International Conference on Mobile, Hybrid, and On-line Learning

compares each new captured image with the one before it,
calculates the number of changed pixels, and then creates a
computer screen capture when the number of changed pixels
exceeds a certain preset threshold value.

Using our proposed method, the number of screen
captures is significantly reduced compared to existing
methods. This method captures the screen if the number of
black pixels exceeds the threshold, thus reducing the number
of captures. For typing programs, the system captures
occasionally, since black pixels appear only for characters
that are being typed. For application menus or windows, the
system captures frequently, since black pixels will appear
over a wider area. Therefore, since only major operations are
captured, it is possible to reduce the number of screen
captures.

IV. EXPERIMENTS

In this section, we discuss the effectiveness of our
proposed method based on the results of a simple experiment.

A. Experimental setup

In this experiment, in which the proposed method is
compared to an existing method, we found it is easy to
identify the changed portions, the number of captured images
is low, and it is easy to determine the operations carried out
by the student.

We selected a class of undergraduate students studying
Java programming to test the method. This class involved a
three-hour long practice session that mixed small operations
with operations producing large changes to the screen.
Students were required to manipulate text-editor-typed
source code as well as run an application that converts the
source code into an executable file. Three test subjects
confirmed the operations.

Regarding the total number of changed pixels used as the
threshold to reduce the number of captured images, 1/20 of
the screen size of the PC seemed to be appropriate.

B. Results

We will begin by discussing whether it was easy to
determine the portions of the screen changed by student
operations using our method. One of the authors asked all
test subjects whether it was possible to identify operations
performed by the students when looking at their screen
capture images one by one. The subjects stated that it was
easy to find the changed portions because all they had to do
was find the parts displayed as black pixels.

Next, we asked whether the number of captured images
was low compared to existing methods. An existing method
captured 1860 images, while the proposed method captured
584 images. Since the programming of the proposed method
limited captures to large screen changes rather than capturing
all changes, including relatively small screen changes caused
by programming, there was a significant reduction in the
number of images captured. Since the teacher wants to know
all the operations of the student, we think that all these
images are useful.

Finally, regarding whether it was easy to locate changes,
we asked all test subjects to interact with the tool and to
identify any operations performed by the students. Three test
subjects responded with the name of the operation the
student had actually performed, such as “press this button”,
or “type A”. Teachers can find mistakes such as, student is
not operating PC as instructed.

V. CONCLUSIONS

We discussed methods that teachers can use to determine
the computer operations being performed by his/her students.
We began by discussing an existing method that is difficult
for teachers to use because it requires them to examine
numerous sequential screen capture images in order to
identify changed portions in the images.

We then introduced our proposed method in which new
images are compared to the image captured immediately
before it, and the portions that exhibit significant differences
are output using different pixel colors. In our method, no
screen capture is performed if the number of changed pixels
is less than a preset threshold.

After examining the results of our experiment, we
confirmed that our proposed method makes it easier for
teachers to identify the changed portions and is capable of
reducing the number of required captured images.

The proposed approach always captures the screen when
the user switches from applications repeatedly. Such an
image may not be useful for the teacher, so it is necessary to
reduce it.

In the future, we want to confirm the effectiveness in
more classes Since the number of subjects and students in
the experiment of this paper is small.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Number 16K16324.

REFERENCES

[1] G. Thavamalar, "Successful implementation of e-learning:

Pedagogical considerations" The internet and higher
education, Vol.4 No.3, pp.287-299.

[2] R. Stannard, “Screen capture software for feedback in
language education” Second International Wireless Ready
Symposium, MAR. 2008, pp. 16-20, ISSN 1995-4557.

[3] J. Nigel, P. Georghiades, and J. Gunson, "Student feedback
via screen capture digital video: Stimulating student’s
modified action." Higher Education Vol.64 No.5, pp.593-607.

[4] Y. Katagiri, Y. Tateiwa, D. Yamamoto and N. Takahashi,
“Implementation of a Context-Aware Programming Instructor
Assistant Using an Analysis Function of Programming
Activity” IEICE Technical ReportET2009-83, pp.181-186.

[5] H. Igaki, S. Saito, A. Inoue, R. Nakamura and S. Kusumoto,
“Programming Process Visualization for Supporting Students
in Programming Exercise” IPSJ Jornal, Vol.54 No.1, pp. 330-
339.

[6] N. Morita, “A Programming Process Visualization System
With Global Hooking” Society for Information Technology
and Teacher Education(SITE2014), MAR. 2014, pp. 1945-
1953, ISBN 978-1-939797-07-0.

93Copyright (c) IARIA, 2017. ISBN: 978-1-61208-541-8

eLmL 2017 : The Ninth International Conference on Mobile, Hybrid, and On-line Learning

