
Imputation of Missing Values for Unsupervised Data
Using the Proximity in Random Forests

Tsunenori Ishioka
Research Division

The National Center for University Entrance Examinations
Tokyo, Japan

Email: tunenori@rd.dnc.ac.jp

Abstract—This paper presents a new procedure that imputes
missing values by random forests for unsupervised data. We
found that it works pretty well compared with k-nearest neigh-
bor (kNN) and rough imputations replacing the median of the
variables. Moreover, this procedure can be expanded to semi-
supervised data sets. The rate of the correct classification is
higher than that of other conventional methods. The imputation
by random forests for unsupervised or semi-supervised cases
was not implemented.

Keywords-Ensemble learning; k-nearest neighbor; R; rfIm-
pute; impute.knn.

I. INTRODUCTION

A method of random forests [1] is a substantial modifi-
cation of bagging techniques that builds a large collection
of de-correlated trees and then averages them. Therefore,
it is mainly used as an accurate classifier or regression
tree. The latest Fortran77 code programmed by Breiman
[2] is Version 5.1, dated June 15, 2004. Since Version 4
contains modifications and major additions to Version 3.3,
replacement of missing predictor values has been enabled
[3]. Breiman offers two options. One is the “missquick”
(Ver. 4), which replaces all missing values by the median of
the non-missing values in their column, if real, and by the
most numerous value in their column if categorical. Another
is “missright” (Ver. 5). This option starts with “missquick”
but then iterates by using proximities and does an effective
replacement even with a large amount of missing data.
Missing values are presented by a proximity weighted sum
over the non-missing values.

On the basis of these ideas, Andy Liaw implemented
their varieties in statistical environment R [4], calling them
“na.roughfix” and “rfImpute” [5]. The advantage is that these
R functions work for both regression and classification, but
unfortunately cannot be applied for unsupervised (unlabeled)
cases as a training data set [6]. Only predictive variables in
supervised learning are allowed missing.

However, Breiman’s ideas could be extended to unsuper-
vised data if we could obtain the proximity of the unsuper-
vised data. The new proximities can be obtained by starting
the rough imputation for missing data (“na.roughfix”) and
repeating to run random forests. The artificial occurences of

response variable are given by the method described later
(Section 2). In the case of supervised data, Breiman [3]
found that an estimate error of a bootstrap train sample
(called “out-of-bag”, or oob) tends to be optimistic when
run on a data matrix with imputed values.

Related works are follows: Pantanowitz and Marwala [7]
evaluated the impact of missing data imputation by using
human immunodeficiency virus (HIV) seroprevalence data.
Rieger et al. [8] provided an implementation of random
forests with missing vales in the covariates. Nicholas [9] ex-
tended the random forest to handle multi-response variables,
and presented another imputation method called “yaImpute.”
But all the methods described above are not allowed for
unsupervised or semi-supervised data.

In this paper, we present a new procedure for proper
missing values imputation, which can avoid the overfitting
of the estimated model for unsupervised data. In Section 2,
we summarize the elements of a technique that imputes the
missing values for unsupervised data. In Section 3, we show
a new procedure for imputing the missing values. In Section
4, two examples, iris and spam data sets, are illustrated.
We assume these data to be unsupervised by dropping
the response variables; nevertheless, both are supervised.
Section 5 shows the expansion of our method to semi-
supervised data sets. Section 6 is the summary.

II. RFIMPUTE

A. Proximity measure

Breiman [3] defines the data proximity as follows: The
(i, j) element of the proximity matrix produced by a random
forest is the fraction of trees in which elements i and j fall
in the same terminal node. The intuition is that “similar”
observations should be in the same terminal nodes more
often than dissimilar ones. The proximity matrix can be
used to identify structures in the data, and for unsupervised
learning with random forests.

B. An unsupervised learning example [10]

Because random forests are collections of classification
or regression trees, it is not immediately apparent how they
can be used for unsupervised learning. The “trick” is to call

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-253-0

eLmL 2013 : The Fifth International Conference on Mobile, Hybrid, and On-line Learning

the data “class 1” and construct “class 2” synthetic data, and
then try to classify the combined data with a random forest.
There are two ways to simulate the “class 2” data:

1) The “class 2” data are sampled from the product
of the marginal distributions of the variables (by an
independent bootstrap of each variable separately).

2) The “class 2” data are sampled uniformly from a
hypercube containing the data (by sampling uniformly
within the range of the variables).

The idea is that real data points that are similar to one
another will frequently end up in the same terminal node of
a tree — exactly what is measured by the proximity matrix.
Thus, the proximity matrix can be taken as a similarity
measure, and clustering or multidimensional scaling that
uses this similarity can be used to divide the original data
points into groups for visual exploration.

C. R procedure

Missing values are indicated by NAs in R [4]. A function
returning a result of random forests is “randomForest”
developed by Liaw [5]. The algorithm starts by imputing
NAs by using “na.roughfix.” Then, “randomForest” is called
with the completed data. The proximity matrix from the
“randomForest” is used to update the imputation of the NAs.
For continuous predictors, the imputed value is the weighted
average of the non-missing observations, where the weights
are the proximities. For categorical predictors, the imputed
value is the category with the largest average proximity. This
process is iterated a few times.

A function returning the imputed values by random forests
is “rfImpute,” coded by Liaw [6]. We should note that Liaw’s
imputation is only available to supervised data without any
missing response values.

III. NEW PROCEDURE TO IMPUTE THE MISSING DATA

A. Missing value replacement on the training set

Our procedure as well as Liaw’s “rfImpute,” has two ways
of replacing missing values. The first way is fast. If the mth
variable is not categorical, the method computes the median
of all values of this variable in class j, then it uses this value
to replace all missing values of the mth variable in class j. If
the mth variable is categorical, the replacement is the most
frequent non-missing value in class j. These missing values
are replaced or filled by “na.roughfix.”

The second way for replacing missing values is compu-
tationally more expensive but performs better than the first,
even with large amounts of missing data. It begins by doing
a rough and inaccurate filling in of the missing values. Our
key technique is to estimate the missing values on the basis
of not all non-missing proximities but k-nearest proximities,
which include missing data. Then, it runs a forest procedure
and computes proximities.

If x(n,m) is a missing continuous value, we estimate its
fill as an average over the k-nearest neighbor values of the

mth variables weighted by the proximities between the nth
case and the other case. If it is a missing categorical variable,
we replace it by the most frequent non-missing value where
frequency is weighted by proximity.

In summary, we use, in case of a missing continuous
value,

x̂(n,m) =

∑
i ̸=n

i∈neighbor

prox(i, n)x(i,m)

∑
i ̸=n

i∈neighbor

prox(i, n)
, (1)

instead of rfImpute’s

x̂(n,m) =

∑
i ̸=n

i∈non-missing

prox(i, n)x(i,m)

∑
i ̸=n

i∈non-missing

prox(i, n)
,

where prox(·, ·) is the proximity.
In case of a missing categorical variable, we use

x̂(n,m) = argmax
Cm

∑
i̸=n

prox(i, n), (2)

instead of

x̂(n,m) = argmax
Cm

∑
i ̸=n

i∈non-missing

prox(i, n),

where Cm means the mth categorical variables.
Now, iterate-construct a forest again by using these newly

filled in values, find new fills, and iterate again. Our expe-
rience is that 4–6 iterations are enough.

The reason we use only k-nearest neighbor data in (1)
is that the missing imputation of this method would be
robust. Even if proximities to the target are rather small,
the other continuous values may be outlying. In this case,
some outliers will affect the estimate of the target toward
ill direction. Our numerical investigation shows that our
procedure, the mixture of kNN and random forests, is better
than using only random forests. This technique leads the
estimates to avoid overfitting of the random forest model.

In (2), however, all data besides k-nearest neighbor data
are treated. Because majority votes were adopted, outlying
values of x would be unregarded. While, we should regard
the proximity associated with missing data, especially when
the missing rate is high.

B. Missing value replacement on the test set

When there is a test set, there are two different methods
for replacement depending on whether labels exist for the
test set.

If they do, then the fills derived from the training set are
used as replacements. If labels do not exist, then each case
in the test set is replicated “number of classes” times. The

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-253-0

eLmL 2013 : The Fifth International Conference on Mobile, Hybrid, and On-line Learning

first replicate of a case is assumed to be class 1 and the class
1 fills used to replace missing values. The second replicate
is assumed class 2 and the class 2 fills used on it.

This augmented test set is run down the tree. In each set
of replicates, the one receiving the most votes determines
the class of the original case.

C. Algorithm

The procedures are summarized as follows.
1) Impute NAs by using “na.roughfix.”
2) Repeat following steps for “iter” times. Compute the

proximities between all cases by using “randomFor-
est.” Then, impute the missing values. If the imputed
values are converged, break the loop.

3) Output the data that include estimated (imputed) data.
The procedure will stop when either of the following

conditions is satisfied.
1) The number of iterations reaches pre-determined rep-

utation times; the default is 5.
2) The relative differences between the imputed missing

values are sufficiently small, less than 1.0e-5.
The R program used in this paper should be referred to

Appendix (Fig. 6). Fairly detailed comments are included in
the program. The format is in accordance with the tradition
of unix or R codings.

IV. NUMERICAL EXAMPLES

A. E-mail database indicating spam or non-spam

We use a spam data set [11] collected at Hewlett-Packard
Labs, which classifies 4601 e-mails as spam or non-spam. In
addition to this class label, there are 57 variables indicating
the frequency of certain words and characters in the e-
mail. That is, a data frame with 4601 observations and
58 variables. The first 48 variables contain the frequency
of the variable name (e.g., business) in the e-mail. If the
variable name starts with num (e.g., num650), it indicates the
frequency of the corresponding number (e.g., 650). Variables
49–54 indicate the frequency of the characters “;”, “(”,
“[”, “!”,“$”, and “#”. Variables 55–57 contain the average,
longest, and total run-length of capital letters. Variable 58
indicates the type of the mail and is either “nonspam” or
“spam,” i.e. unsolicited commercial e-mail.

The data set contains 2788 e-mails classified as “non-
spam” and 1813 classified as “spam.” The “spam” concept is
diverse: advertisements for products/web sites, make money
fast schemes, chain letters, pornography, and so on. This col-
lection of spam e-mails came from the collectors’ postmaster
and individuals who had filed spam. The collection of non-
spam e-mails came from filed work and personal e-mails,
and hence, the word “george” and the area code “650” are
indicators of non-spam. We would have to blind spam/non-
spam indicator, because we are focusing unsupervised data
in this numerical experiment.

0.1 0.2 0.3 0.4 0.5 0.6

0.
05

0.
10

0.
20

0.
50

Missing rate

R
el

at
iv

e
re

si
du

al
 s

um
 o

f s
qu

ar
es

rfImput.unspvsd
na.roughfix
impute.knn

Figure 1. Relative residual sum of squares for unsupervised spam/non-
spam data

To illustrate the performance of our method, we compare
it with two conventional methods: “na.roughfix” and “im-
pute.knn.” The former is used as the baseline of our method.
The latter is a typical kNN method [12] stored at biocLite
library in R. We set k as the number of neighbors to be
10, the default value of this library. We name our method
“rfImput.unspvsd”, which means “an imputation method by
using random forests for an unsupervised data set.”

Missing data for 57 variables are randomly dropped.
The missing data rates are 5%, 10%, 20%, 30%, 40%,
50%, and 60%. Fig. 1 shows the relative residual sum of
square errors (RSS) between dropped true values and the
estimates, depending on missing data rates. Three meth-
ods, “na.roughfix”, “impute.knn” and “rfImput.unspvsd,” are
compared with each other. Less RSS shows better perfor-
mance of their imputations. We found that our method is
not inferior to the other two methods irrespective of the
missing data rate. Roughly speaking, our method improves
the performances 20–30% compared with “na.roughfix” and
5–10% compared with “impute.knn.”

B. Edgar Anderson’s iris data

The next example is the famous Fisher’s or Anderson’s iris
data set, which gives the measurements in centimeters of the
variables sepal length and width and petal length and width,
respectively, for 50 flowers from each of three species of iris.
The species are “Iris setosa,” “versicolor,” and “virginica”
[13]. In R, “iris” is a data frame with 150 observations and
5 variables.

Since this data set was treated as an example of discrim-
inant analysis by Fisher, it became a typical test case for

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-253-0

eLmL 2013 : The Fifth International Conference on Mobile, Hybrid, and On-line Learning

−3 −2 −1 0 1 2 3 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

cmdscale(dist(iris[, −5]))[,1]

cm
ds

ca
le

(d
is

t(
iri

s[
, −

5]
))

[,2
]

Iris setosa
versicolor
virginica

Figure 2. Actual species visualized by MDS

many classification techniques in machine learning. Note
that the data set only contains two clusters with rather
obvious separation. Fig. 2 shows the actual iris species
by using multidimensional scaling (MDS), which is used
in information visualization for exploring similarities. We
assign a location to each observation in 2-dimensional MDS
space.

One of the clusters contains Iris setosa, while the other
cluster contains both Iris virginica and Iris versicolor and is
not separable without the species information Fisher used.
This makes the data set a good example to explain the
difference between supervised and unsupervised techniques
in data mining.

In the same framework of the previous experiment for
spam/non-spam, three methods are investigated. Here, we
pretend that iris spaces (5th variable) are not measured.
Fig. 3 shows the results.

The identical data set corresponding with the missing
rate are used to evaluate three methods. Since the missing
data structure depends on a seed of the randomization, RSS
does not always increase monotonously. It may also be
caused by the small sample size of 150. Despite the lack of
monotonicity, our method (“rfImput.unspvised”) is the best
of the three, irrespective of the missing data rate. Rough
imputation (“na.roughfix”) is worst, naturally enough.

V. SEMI-SUPERVISED LEARNING

We point out that our method is easy for expanding
to a semi-supervised data set, where both predictor (x)
and response variables (y) may include missing values. In
general, semi-supervised learning, including large amounts

0.1 0.2 0.3 0.4 0.5 0.6

0.
00

1
0.

00
2

0.
00

5
0.

01
0

0.
02

0
0.

05
0

Missing rate

R
el

at
iv

e
re

si
du

al
 s

um
 o

f s
qu

ar
es

rfImput.unspvsd
na.roughfix
impute.knn

Figure 3. Relative residual sum of squares for unsupervised iris data

of response variables (y), has a potential to cover the real-
world data considerably. A good semi-supervised learning
method gives us many benefits. Our proposed procedures
are as follows.

1) By starting the rough imputation for missing predictor
(x), we estimate the missing response variables (ŷ) by
running a random forest.

2) We replace the missing predictor (x̂) by using the
proximities between cases, and estimate the response
variables (ŷ).

3) If the imputed vales (x̂) are converged, we output them
(x̂, ŷ).

We call this procedure “rfImput.smspvsd,” which means
“an imputation method by using random forests for a semi-
supervised data set.” We found that the repetitive operation
of 2) does not contribute significantly to improvement.

To evaluate the performance of “rfImput.smspvsd,” we
compare it with the following two methods.

1) Liaw’s “rfImpute” [6]: Since “randomForest” does not
work for y that includes missing responses, “rfImpute”
functions as well. Therefore, we configure the forest
model for non-missing response cases (y) by obtaining
imputed predictor (x̂) by using “rfImpute.” Then, using
this model, we estimate the response values (ŷ) for
their missing y.

2) kNN [14]: We start the rough imputation of x̂ for non-
missing y, and a training kNN model is configured.
Then, using this model, we estimate the response
values (ŷ) for their missing y.

In semi-supervised as well as supervised learning, the
prediction or estimation of y based on x is accomplished.

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-253-0

eLmL 2013 : The Fifth International Conference on Mobile, Hybrid, and On-line Learning

0.1 0.2 0.3 0.4 0.5 0.6

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Missing rate

R
at

e
of

 th
e

co
rr

ec
t c

la
ss

ifi
ca

tio
ns

rfImput.smspvsd
rfImpute
kNN

Figure 4. Correct classification for semi-supervised spam/non-spam data

0.1 0.2 0.3 0.4 0.5 0.6

0.
7

0.
8

0.
9

1.
0

Missing rate

R
at

e
of

 th
e

co
rr

ec
t c

la
ss

ifi
ca

tio
ns

rfImput.smspvsd
rfImpute
kNN

Figure 5. Correct classification for semi-unsupervised iris data

Therefore, as a criterion for evaluating the performance of
learners, we use the precision, that is, the rate of the correct
classifications.

The values of three methods are shown in Fig. 4
(spam/non-spam data) and Fig. 5 (iris data). A larger value
on the vertical axis indicates a better performance. A value
of 1 means that all missing y are completely predicted.

In general, the larger the missing data rate on the horizon-
tal axis, the smaller the value on the vertical axis becomes.
Due to the randomization of the missing data, the lines on the
graph do not always decrease monotonously. Nevertheless,

our method (“rfImput.smspvsd”) is always the best of the
three, irrespective of the missing data rate. In particular,
in the case of the high missing data rate, e.g., 60%, the
advantage of our method is remarkable.

Whereas spam data is alternative, iris data is a threefold
choice. Therefore, the slopes of decreasing lines in the latter
(Fig. 5) are sharper than those in the former (Fig. 4).

VI. SUMMARY

For unsupervised data sets, the proposed method (“rfIm-
put.unspvsd”) works pretty well compared with the other
conventional method: k-nearest neighbor imputation (“im-
pute.knn”) as well as the replacement by column median
(“na.roughfix”). For semi-supervised data sets, our method
(“rfImput.smspvsd”) is also superior to the other two meth-
ods (“rfImpute” and “knn”).

Since data imputation enables us to handle missing data
the same as complete data, even statistical beginners can use
this type of data easily. Speaking from a statistical point of
view, our method makes an assumption called “missing at
random (MAR)”[15], wherein the missing depends on only
observations and not non-observations. The MAR is a more
general assumption than “missing completely at random”
wherein the probability of missingness is the same for all
cases.

We should note that, even at a low missing data rate,
e.g., 5% for spam/non-spam data, a complete case is rare.
The occurrence probability is only (0.95)57 ≈ 0.0537. The
missing data rate of 10% in turn, yields an occurrence of
0.00246. If we use only complete cases by removing missing
data, almost all cases should be avoided. Our method works
effectively under the condition that the number of variables
is rather large.

Moreover, our method does not take account of the
effects on the data selection biases, because all cases can
be available as they were. The situation or condition under
which the complete data are obtained is often restricted. We
hope that our method can be widely used in the future.

Indeed, the limitations of this method should be inves-
tigated. Especialy, the influence of cases in which MAR
assumption is not satisfied, as well as the dependency of
missing ratio and the number of variables, are significant.
Because our method is based on the MAR assumption.

REFERENCES

[1] L. Breiman, Random Forests, Machine Learning, 45 (1), 5–32,
2001.

[2] L. Breiman and A. Cutler, Random Forests, http://www.
stat.berkeley.edu/∼breiman/RandomForests/ updated March 3,
2004.

[3] L. Breiman, Manual for Setting Up, Using, and Understand-
ing Random Forest V4.0, http://oz.berkeley.edu/users/breiman/
Using random forests v4.0.pdf, 2003.

[4] The R Project for Statistical Computing, http://www.r-project.
org/

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-253-0

eLmL 2013 : The Fifth International Conference on Mobile, Hybrid, and On-line Learning

[5] A. Liaw, Missing Value Imputations by randomForest, R
Documentation, http://www.stat.ucl.ac.be/ISdidactique/Rhelp/
library/randomForest/html/rfImpute.html

[6] CRAN, Package randomForest, http://cran.r-project.org/web/
packages/randomForest/randomForest.pdf

[7] A. Pantanowitz and T. Marwala, Evaluating the Impact of
Missing Data Imputation, ADMA ’09 Proceedings of the 5th
International Conference on Advanced Data Mining and Ap-
plications, pp.577–586, 2009.

[8] A. Rieger, H. Torsten and S. Carolin, Technische Reports
79, Random Forests with Missing Values in the Covariates,
Department of Statistics, Univ. of Munich, 2010.

[9] C. L. Nicholas and F. O. Andrew, yaImpute: An R Package
for kNN Imputation, Journal of Statistical Software, 23 (10),
Jan 2008.

[10] A. Liaw and M. Wiener, Classification and Regression by
randomForest R News Vol. 2/3, 18–22, ISSN 1609-3631, 2002.

[11] UCI Repository of Machine Learning Databases, http://www.
ics.uci.edu/∼mlearn/MLRepository.html

[12] T. Hastie, R. Tibshirani, B. Narasimhan and G. Chu, impute:
impute: Imputation for microarray data, R package version
1.14.0

[13] R. A. Becker, J. M. Chambers and A. R. Wilks, The New S
Language. Wadsworth & Brooks/Cole, 1988.

[14] k-Nearest Neighbour Classification, R Documentation,
knn {class}, http://stat.ethz.ch/R-manual/R-patched/library/
class/html/knn.html

[15] A. Gelman and J. Hill, Data Analysis Using Regression and
Multilevel/Hierarchical Models, Cambridge University Press,
2007.

APPENDIX�

�

�

�

Description:
Unsupervised data imputation using the
proximity from random forests.
Usage:
rfImpute.unsupvsd(x, iter=10)
#
Arguments:
x: An unsupervised data frame or matrix,
some containing ’NA’s. Response vector
is not needed.
iter: Number of iterations needed to run
the imputation.
Details:
The algorithm starts by imputing ’NA’s
by using ’na.roughfix’. Then, ’randomForest’
is called with the completed data. The
proximity matrix from the randomForest is
used to update the imputation of the ’NA’s.
Note that rfImpute(), developed by Andy Liaw,
has not (yet) been implemented for the
unsupervised case.
#
Value:
A data frame or matrix containing the
completed data matrix, where ’NA’s are
imputed by using the proximity from .
randomForest
#
See Also:
’rfImpute’, ’na.roughfix’
#
Example:
#
library(randomForest)
data(iris)
iris.na <- iris
set.seed(111)
artificially drop some data values.
for (i in 1:4)
iris.na[sample(150, sample(20)), i] <- NA
x <- iris.na[,-5] # Remove the ‘Species’
set.seed(222)
irisImpute.unsupvsd <- rfImpute.unsupvsd(x)

rfImput.unsupvsd <- function (x, iter=5){
x.roughfix <- na.roughfix(x)
rf.impute <- x

while (iter){
x.rf <- randomForest(x.roughfix, ntree=100)
x.prox <- x.rf$proximity

for (i in 1:ncol(x)){
rf.impute[,i] <- nafix.prox(x[,i],

x.roughfix[,i], x.prox)
}
diff.rel <- dist.rel(rf.impute, x.roughfix)
if (diff.rel < 1e-5){

break
}else{

x.roughfix <- rf.impute
iter <- iter -1

}
}
return(rf.impute)

}

Return relative distance between ‘x.impute’
and ‘x.org’
Arguments:
x.impute: imputed data
x.org: original data
dist.rel <- function (x.impute, x.org){

max.x <- lapply(abs(x.org), max) # normalize
if (FALSE){ # available for only numeric
diff.x <- (x.impute - x.org) / max.x
diff.rel <- sum(diff.xˆ2) /

sum((x.org / max.x)ˆ2)
}else{
ncol.x <- length(max.x)

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-253-0

eLmL 2013 : The Fifth International Conference on Mobile, Hybrid, and On-line Learning

�

�

�

�

mat.x.impute <- matrix(as.numeric
(unlist(x.impute)), ncol=ncol.x)

mat.x.org <- matrix(as.numeric
(unlist(x.org)), ncol=ncol.x)

max.numx <- as.numeric(unlist(max.x))

diff.x <- sweep((mat.x.impute - mat.x.org),
2, max.numx, FUN="/")

size.org <- sweep(mat.x.org, 2, max.numx,
FUN="/")

diff.rel <- sum(diff.xˆ2) / sum(size.orgˆ2)
}
cat ("diff.rel =", sum(diff.xˆ2), "/",

sum(size.orgˆ2), "=", diff.rel, "\n")
return(diff.rel)

}

Impute or revise NA elements by using the
data proximity.
Arguments:
na.vales: data vector that includes NA;
unchanged.
rough.vales: rough data vector to be
replaced; NAs cannot be included.
x.prox: data proximity matrix; each
element is positive and <= 1.
nafix.prox <- function (na.vales,

rough.vales, x.prox){
if (length(na.vales) != length(rough.vales)){
stop("’na.vales’ and ’rough.vales’

must have the same length")
}else if(length(rough.vales) != ncol(x.prox)){
stop("’rough.vales’ and ’x.prox’ size

incorrect")
}
NA imputation ONLY for NA data
na.list <- which(is.na(na.vales))
replaced.vales <- rough.vales
for (i in 1:length(na.list)){
j <- na.list[i]
x.prox[j,j] <- 0 # imputed datum itself
replaced.vales[j] <- kWeighted.mean

(rough.vales, x.prox[,j])
}
return(replaced.vales)

}

Return k-neighbor weighted mean for numeric
variables or most weighted frequent factor
element for factor variables.
Arguments:
value: vector; numeric or factor variables.
weight: vector; numeric.
k: the number of neighbors.
kWeighted.mean <- function(value, weight, k=10){

if (missing(weight))
w <- rep.int(1, length(value))

else if (length(weight) != length(value)){
stop("’value’ and ’weight’ must have the

same length")
}
k <- min(k, length(value))
if (is.numeric(value)){ # weighted mean
order.weight <- order(weight, decreasing=T)
ww <- weight[order.weight]
vv <- value[order.weight]
ret <- sum(ww[1:k] * vv[1:k]) / sum(ww[1:k])

}else if (is.factor(value)){
wgt.sum <- tapply(weight, value, sum)
most weighted frequent factor element
ret <- names(subset (wgt.sum,

wgt.sum == max(wgt.sum)))
}else{
stop("’value’ is neither numeric nor

factor")
}
return(ret)

}

Figure 6. R program to impute the missing unsupervised data

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-253-0

eLmL 2013 : The Fifth International Conference on Mobile, Hybrid, and On-line Learning

