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Abstract—This article extends the applicability domain of
language models to problems where candidate solutions can
be expressed as an encoded integer sequence. Considering this
sequence, language models can operate in the neural machine
translation setting and leverage their optimization power for
heuristic search techniques. Reinforcement Learning (RL) is ap-
plied to Language Models (LM), regardless of whether character-
level or word-level models are used as a basis. To stabilize the
learning, several approaches are explored, including functional
and architectural decoupling. The framework is then applied
to two combinatorial problems, namely the Traveling Salesman
Problem benchmark and Neural Architecture Search, which is
used to generate a hierarchical (tree-based) text classifier where
the blocks are inspired by the InceptionV1 architecture. The
decoupling results are the main contribution of this paper, easing
the RL and LM stabilization requirements while expanding the
resolution domain beyond Markov Decision Processes to non-
causal normative heuristic problems, such as Neural Architecture
Search (NAS).

Keywords-Heuristic Optimization; Reinforcement Leaning; Lan-
guage Model; Task Semantic Segmentation; Artificial Neural
Network.

I. INTRODUCTION

Regarding the Natural Language Processing domain, the
auto-encoder Language Models are typically trained on a large
corpus. To evaluate the language model, the pretrained en-
coder, along with a custom decoder tailored to the downstream
task, is then fine-tuned to address the specific task. The en-
coder part of the language model retains knowledge and maps
semantics to a reduced latent dimension. This learned mapping
keeps, in the encoder’s weights, general type features, such as
how to speak a language. This work explores the language
model’s encoder capability to retain the semantics of other
problems beyond merely speaking a language. Additionally,
the generative capability of language models is examined.

There are instances where the intention is to model the
dataset’s probability density function rather than the data itself;
for example, in generative models, the goal is to generate data
similar to the dataset. To achieve this objective, variational
models come into play, specifically Variational Auto-Encoders
(VAE) [1]–[11] and Generative Adversarial Network (GAN)
architectures [12]–[18]. The GAN architectures use a Genera-
tor and a Discriminator network and employ min-max training.
During training, the generator network produces data samples
of better quality at each time step to trick the discriminator,
which learns to distinguish real data from fake data generated
by the Generator network. In this manner, both networks
engaged in min-max training learn to perform their respective
tasks. The Generator produces more realistic data samples as

the Discriminator becomes increasingly difficult to deceive.
In terms of VAEs, these models approximate the dataset’s
probability density function by modeling its parameters [19]
or by assigning an odds to each output [20], generating
data from the random variable where each output holds the
model’s estimated odds. The resulting binary text classifier
positioning of a dataset, this work posits that any problem for
which the solutions can be encoded in an integer sequence
can also be addressed in a generative manner. It is essential
to assert that the optimization goal is expressible through a
heuristic function, akin to the fitness function in the context
of Genetic Algorithms (GAs) [21]–[30]. Heuristic search using
Language Models suffers from a lack of exploration due to
the well-known difficulty of stabilizing complex neural models
when trained using Reinforcement Learning. Traditional issues
include training convergence and subsequent hyperparameter
tuning. Furthermore, RL is usually applied sequentially to
causal problems. This paper proposes decoupling-based RL
training techniques and network architecture design principles
that enable the application of RL to new problem types, as
well as the incorporation of Language Models’ feature capture
capabilities to address problems beyond linguistic ones. Con-
sidering the sequence encoding of the candidate solutions gen-
erated by the language model, an ontology must be defined to
encode and serialize the candidates, allowing the architectures
to generate data structures and refine them during training,
similar to a GAN training setting. In contrast to traditional
Heuristic Search methods, where the candidate solution can be
an array of various degrees of freedom in the problem (e.g.,
variables in a multivariate optimization problem), language
models can capture the data structure or ontology with the
help of special characters. These characters are used in the
sequence encoding, signaling the evaluation methodology to
build and assess a diversity of data structures. This capability
is referred to in this paper as Semantic Encoding. It is applied
to the Neural Architecture Search downstream problem. The
rest of this paper is organized as follows: II. Related Work,
III. Semantic Encoding, IV. Proposed Architectures, V. Rein-
forcement Learning as a Search Methodology, VI. Decoupled
Asynchronous Advantage Actor-Critic, VII. Decoupled Soft
Q-Learning, VIII. Decoupling’s Mathematical Formalization,
IX. Proposed Training Formulation, X. Accessed Problems,
XI. Results, XII. Error Analysis. Finally, the paper concludes
with XIII. Conclusions and Future Work.
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II. RELATED WORK

The proposed heuristic search relates mainly to evolutionary
algorithms, such as Genetic Algorithms. The adopted models
are neural Language Models, and the training is based on Re-
inforcement Learning. In this section, all the aforementioned
methods are detailed. Evolutionary algorithms can be seen
as heuristic search engines in the sense that they generate
candidate solutions, which are evaluated on the fly using a
heuristic function, such as the fitness function in the case
of Genetic Algorithms. Neural Language Models (LMs) are
used for language modeling [31]–[38]. They learn meaningful
features from text data through embedding generation tech-
niques. When an LM is used in the context of Neural Machine
Translation [36], [39]–[44], LMs can be viewed as generative
models because they generate tokens that, when decoded, are
words in the target language domain. This problem can be gen-
eralized into a Sequence2Sequence problem when considering
the same language model architecture generating a sequence
with a different semantic encoding than target language tokens,
always restricted to a differentiable loss function. Neural
Machine Translation (NMT) architectures are generative by
nature because they produce tokens in the model’s target
language, although their training typically requires a differen-
tiable loss function that might not accurately express the train-
ing goals. The same occurs in NAS tasks, where the primary
objective is to increasingly enhance the candidate network’s
performance metric. In [45], a Recurrent Neural Network
(RNN) is trained using Reinforcement Learning (RL) with the
candidate network’s performance almost directly serving as the
reward function, employing various techniques to reduce the
training’s variance and facilitate learning through the described
method. To relax the differentiable metric constraint, a new
type of training is necessary; this is where Reinforcement
Learning (RL) becomes relevant. RL techniques are primarily
based on Markov Decision Processes (MDPs). Several training
approaches attempt to optimize non-differentiable metrics in
a deep model, such as surrogate losses [46], minimum risk
training [47], and reinforcement learning [45]. All these train-
ing methodologies have their limitations: surrogate losses and
reinforcement learning are difficult to stabilize, and minimum
risk training is too computationally expensive when applied to
a language model like an NMT architecture. Focusing on RL
training, this article explores methods to stabilize the training
and establish a robust optimization framework.

III. SEMANTIC ENCODING

Sequence semantic encoding is one of the core subjects
in this proposal. When applied to the sequence generated
by a Neural Machine Translation model, the problem can be
transposed into an optimization problem where the candidates
can be encoded as a sequence of integers [45]. The candidate
solutions’ meta-format can be a single value or a sequence
of values, depending on the downstream problem. Special
characters such as separators or sequence terminators can
also be used to help specify the solution’s evaluator behavior.
The optimization problem structure that this kind of semantic

Figure 1. Heuristic search architecture.

encoding enables is a heuristic search, since the candidate
solution’s quality is evaluated by a reward function that can
be non-differentiable, and its value can be generated during
the search execution.

For example, in order to access the Neural Architecture
Search (NAS) problem using the proposed technique, the
sequence can be the Network Structure Code (NSC), which
encodes the candidate neural network hyperparameters. The
network is then built and trained so that the performance
metric can be extracted and the candidate sequence evaluated.
Figure 1 highlights the proposed heuristic search architecture.

IV. PROPOSED ARCHITECTURES

Depending on the nature of the problem, it can be beneficial
to generate the sequence iteratively or through composition.
As this article’s subject is the usage of language models
in optimization problems, and language models can encode
semantics based on characters or words, both approaches will
be explored further.

With the RL training enabled by the decoupling, based on
unitary and semantically segmented tasks assigned to unitary
model parts, the proposed architectures consist of two models
inspired by character-level and word-level language mod-
els, respectively. With this training possibility, these models’
generalization capability, as well as the proposed modeling
principle, will be assessed.

A. Char-Conv with DeepQNet-Policy Learning

Starting from the model proposed in [48], two output
kernels were used to decouple the tasks into position and
value generation. In this way, one model pair, Q-Network
and Policy-Net, is used to compose the candidate sequence.
Regarding the Traveling Salesman Problem, a benchmark
problem, the proposed training setting works without issues.
When considering the Neural Architecture Search problem,
the reward signal presents high variance and the training
did not converge to zero. In addressing this problem, two
changes were made: entropy regularization was added, and
the output activation function was changed to linear so that
the model output is interpreted as log probabilities for each
output position.
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Figure 2. Vector Quantized Variational Auto-Encoder proposed architecture.
The encoder comes from the Transformer architecture, the quantization layer
from [20], and the decoder is made of stacked dense layers.

B. Transformer-based Vector Quantized Variational Auto-
Encoder with Asynchronous Advantage Actor Critic

The word-level model is based on the Transformer archi-
tecture proposed in [49], which includes both the Transformer
encoder and decoder architectures, along with the vector
quantization layer proposed in [20]. This Vector Quantized
Variational Autoencoder (VQ-VAE) architecture was decou-
pled as well; however, in this case, its outputs correspond to the
actor and the critic. The actor outputs log probabilities for the
possible actions of the RL agent, and the critic rates the inputs.
Maintaining the sequence composition decoupling strategy,
two models are employed to compose the target sequence.
Once again, one model specializes in generating the position,
while the second model generates the value to be assigned.
Figure 2 illustrates the architecture utilized for the VQ-VAE.

V. REINFORCEMENT LEARNING AS A SEARCH
METHODOLOGY

Since the search for optimal solutions is guided by rein-
forcement learning, the model generates multiple candidate
solutions and iteratively improves them based on feedback.
A heuristic evaluation function g : Y → R assigns a quality
score to candidate solutions, serving as a reward signal:

R(y) = g(y). (1)

Given any problem where the solution space Y is structured
as integer sequences, the proposed methodology guarantees:

• Expressibility: The model f̂θ can learn to generate valid
sequences from X using neural networks that are trained
on D.

• Optimization Capability: The reinforcement learning-
based search ensures that generated solutions are itera-
tively improved using g(y).

• Generalization: The auto-regressive nature of the model
allows it to generate variable-length solutions applicable
to different instances of the problem since a special
character can be used as a sequence terminator.

Thus, for any integer-encoded problem, the formulation is
sufficient to obtain high-quality solutions through iterative re-
finement. The proposed formulation applies to a wide range of
problems where solutions are represented as integer sequences,
including:

• Combinatorial optimization problems (e.g., the Traveling
Salesman Problem, Knapsack Problem).

• Scheduling and planning tasks where actions are encoded
as integer sequences.

• Code synthesis and symbolic regression.
• Game strategies with discrete action spaces.
• Non-sequential problems that benefit from value-position

decoupling.

For any such problem, the integer-encoded representation
ensures that the model can map problem instances to structured
sequences and refine them over iterations using reinforcement
learning. The search methodology follows a reinforcement
learning-based approach such as DQN-PL [50], [51], A3C
[52], and SoftQ-Learning [53]. The exploration methodology
is epsilon-greedy for all the approaches. The different training
methodologies are described in the next subsections.

VI. DECOUPLED ASYNCHRONOUS ADVANTAGE ACTOR
CRITIC

The main concept in decoupling is to create a problem fea-
ture extraction core and decoupled output decoders to model
the output value according to the problem’s required output.
For example, in the VQ-VAE with the A3C training case, the
same model generates the action and its corresponding critic
value. To generate a sequence, two models with the specified
decoupling are used: one generates the position of the new
element, and the second generates its value. The resulting
sequence is then updated and iteratively refined. Next, the
formal formulation of this kind of decoupling is provided.

A. Policy and Value Functions

Let S be the state space, A be the action space, and
P (s′|s, a) be the transition probability. The reward function
is defined as R(s, a, p), where p is the selected position.

The policy consists of two independent components:

π(a|s; θa) and π(p|s; θp) (2)

where:

• π(a|s; θa) selects an action based on state s.
• π(p|s; θp) selects a position based on state s.

The value functions are defined as:

Vact(s; θv) = E [R(s, a, p) + γVact(s
′)] (3)

Vpos(s; θp) = E [R(s, a, p) + γVpos(s
′)] (4)

B. Exploration-Exploitation Strategy

The exploration rate for both action and position selection
follows an epsilon-greedy decay:

ϵa(t+ 1) = max(ϵa(t) · d, ϵmin) (5)

ϵp(t) = ϵa(t) (6)

where d is the decay factor and ϵmin is the minimum explo-
ration rate.
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C. Advantage Function and Returns

The advantage function for actions is given by:

Aact(s, a) = r + γVact(s
′)− Vact(s) (7)

The advantage function for positions is:

Apos(s, p) = r + γVpos(s
′)− Vpos(s) (8)

The discounted return at timestep t is:

Gt =

T−t∑
k=0

γkR(st+k, at+k, pt+k) (9)

The returns are then normalized:

Ĝt =
Gt − µ(G)

σ(G) + ϵ
(10)

D. Loss Functions

The critic losses for action and position value networks are:

Lcritic-act =
∑
t

(Aact(st, at))
2 (11)

Lcritic-pos =
∑
t

(Apos(st, pt))
2 (12)

The actor losses are:

Lactor-act = −
∑
t

log π(at|st)Aact(st, at) (13)

Lactor-pos = −
∑
t

log π(pt|st)Apos(st, pt) (14)

The total losses are:

Ltotal-act = Lactor-act + Lcritic-act (15)

Ltotal-pos = Lactor-pos + Lcritic-pos (16)

E. Gradient Updates

Gradients for action and position networks are computed
separately:

∇θaLtotal-act =
∑
t

∇θaLtotal-act (17)

∇θpLtotal-pos =
∑
t

∇θpLtotal-pos (18)

These gradients are applied using an optimizer:

θa ← θa − α∇θaLtotal-act (19)

θp ← θp − α∇θpLtotal-pos (20)

where α is the learning rate.
This content was generated with the help of generative

artificial intelligence [54].

VII. DECOUPLED SOFTQ-LEARNING

Regarding the CharConv model in the NAS problem as-
sessment, it was not possible to stabilize the training using
the traditional DQN-PL approach. In the NAS setting, it was
found beneficial for training stability to use stochastic outputs
followed by a random experiment with the model’s predicted
output odds to generate the predicted action. To help stabilize
the training in a stochastic environment, entropy regularization
was employed.

Concerning the decoupling technique used in this context,
two models were utilized. One model features a CharConv
core and two decoupled outputs: one for value and another
for the position of the new element in sequence generation.
The second model is the target network, which generates the
stochastic SoftQ-values for each output.

Additionally, an epsilon-greedy exploration strategy was
applied in conjunction with an experience replay buffer. The
proposed SoftQ-Learning approach uses a different decoupling
when compared to the method presented in the previous
section. This is specified in the subsequent subsections.

A. State and Action Representation

Let s ∈ S be the state space and a ∈ A be the action space.
Additionally, let p ∈ P denote the position selection space.
The agent selects both an action and a position at each time
step.

B. Soft Q-Function

Define the Q-function as:

Q(s, a, p) = Qaction(s, a) +Qposition(s, p). (21)

This decoupling allows independent learning of action and
position values.

C. Soft Q-Learning Update Rule

The update rule follows the soft Bellman equation:

Qaction(s, a)← (1− α)Qaction(s, a)

+ α

[
r + γτ log

∑
a′

exp

(
Qaction(s

′, a′)

τ

)]
,

(22)
Qposition(s, p)← (1− α)Qposition(s, p)

+ α

r + γτ log
∑
p′

exp

(
Qposition(s

′, p′)

τ

) .

(23)

where:

• α is the learning rate,
• γ is the discount factor,
• τ is the temperature parameter for soft Q-learning,
• r is the received reward,
• s′ is the next state.
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D. Action and Position Selection

The action and position are selected using the softmax
policy:

P (a|s) = exp(Qaction(s, a)/τ)∑
a′ exp(Qaction(s, a′)/τ)

, (24)

P (p|s) =
exp(Qposition(s, p)/τ)∑
p′ exp(Qposition(s, p′)/τ)

. (25)

This formulation [55] allows efficient and structured learn-
ing by decoupling position and value, improving performance
in reinforcement learning tasks that require both action selec-
tion and spatial positioning.

In the next section the position-value decoupling for integer-
based sequences is formalized.

VIII. DECOUPLING’S MATHEMATICAL FORMALIZATION

When considering an iteratively generated sequence, in
which the elements are generated one after another, the po-
sition is fixed and incremental, which implies causality in
the sequence generation. By decoupling the functionality into
position generation and value generation, thereby composing a
single sequence (RL state), it is possible to break the causality
implication and still utilize the reinforcement learning capa-
bility of optimizing heuristic functions. In this article, the
decoupling is achieved at an architectural level; in a multi-
branch architecture, each output branch is responsible for one
single decoupled task in the non-causal sequence generation.
To optimize a single sequence using two models, the state
must be shared, and the RL techniques must still be applied to
each model, utilizing separate optimizers guided by the same
resulting reward.

In incremental sequence generation, this type of sequence
generation allows for imposing causality in the RL agent’s
behavior, leading to a succession of actions generated through-
out the training. Regarding compositional sequence generation,
where the problem focus is to generate a candidate answer
encoded in the sequence rather than a set of actions, decou-
pling can come into play to divide and conquer the generation
problem into two sub-problems, enabling the composition of
the sequence without needing to condition on the previous
actions.

To extend RL beyond causal MDPs, we decompose the Q-
function as follows:

Q(s, a) = P (s) +A(s, a), (26)

where:
• P (s) = E[R|s] is the position value, which captures the

expected reward at state s independent of actions.
• A(s, a) = Q(s, a) − P (s) is the advantage function,

representing the additional benefit of taking action a
beyond merely being in state s.

If actions have no influence (a fully non-causal setting), then
A(s, a) = 0, reducing RL to pure statistical inference:

V (s) = P (s) = E[R|s]. (27)

The objective function is defined as:

J(π) = Es∼D[P (s)], (28)

where D is a dataset of observed states and rewards. If actions
have partial influence, it is optimized as follows:

J(π) = Es,a∼D[P (s) +A(s, a)]. (29)

This formulation bridges RL and supervised learning, enabling
RL in non-causal settings, such as:

• Counterfactual reasoning.
• Offline and batch RL.
• Decision-making in complex, non-Markovian environ-

ments.

IX. PROPOSED TRAINING FORMULATION

In this section, two training algorithms for Heuristic Opti-
mization are proposed: the VQ-VAE model with A3C training
and Char-Conv with DQNet-PL, so both character-level and
word-level language models are explored.

We define the problem as a Markov Decision Process
(MDP) with:

• State space: S
• Action space: A
• Transition dynamics: P
• Reward function: R

The objective is to learn a policy π that maximizes the
cumulative expected reward.

A. State Representation

The state at time t, denoted as st, represents the environment
state:

st ∈ S. (30)

B. Action Selection

A neural network models the probability distribution for
action selection:

at ∼ π(at|st; θ). (31)

The chosen action at is sampled from this distribution.

C. Critic Network (Value Estimation)

A critic network estimates the value function V (st), repre-
senting the expected return from state st:

V (st) = E

[ ∞∑
k=0

γkrt+k

]
. (32)

D. Reward and Return Calculation

The immediate reward rt is received from the environment.
The discounted return is computed as:

Gt = rt + γGt+1. (33)

The returns are then normalized:

Ĝt =
Gt − µ

σ + ϵ
. (34)
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E. Advantage Estimation

The advantage function measures how much better the taken
action was compared to the expected return:

At = Ĝt − V (st). (35)

F. Actor-Critic Loss Functions

The loss for the actor (policy gradient) is:

Lactor = −
∑
t

log π(at|st)At. (36)

The critic is updated using the Huber loss:

Lcritic =
∑
t

Huber(V (st), Ĝt). (37)

The Huber loss is defined as:

Huber(x, y) =

{
1
2 (x− y)2, if |x− y| < δ

δ(|x− y| − 1
2δ), otherwise

(38)

G. Gradient Update

The gradients of the total loss function are computed as:

∇θLtotal = ∇θ(Lactor + Lcritic). (39)

The parameters are updated using the Adam optimizer:

θ ← θ − α∇θLtotal. (40)

H. Termination Criteria

Training stops when the running reward exceeds a threshold:∑
t

rt > Rtarget. (41)

This indicates that the agent has effectively learned an optimal
policy for the given task. In this A3C setting, two models are
used in order to generate the sequence. In each step a new
value and its corresponding position in the sequence (RL state)
are generated. Each model has two outputs: one for the action
and another for the critic score.

I. Char Conv + DQN-PL

1. Q-Function Approximation

We approximate the action-value function (Q-function) by
a neural network with parameters θ:

Q(s, a; θ) ≈ E

[ ∞∑
t=0

γtrt

∣∣∣∣ s0 = s, a0 = a

]
,

where:

• s is the state,
• a is the action,
• rt is the reward at time t,
• γ is the discount factor.

2. Experience Replay

Experiences are stored in a replay buffer as tuples:

(s, a, r, s′, d),

where d is an indicator that equals 1 if s′ is terminal and 0
otherwise.

A mini-batch of N experiences is sampled uniformly at
random from the replay buffer for training.

3. Target Calculation

For each sampled experience (s, a, r, s′, d), the target value
y is computed as:

y = r + γmax
a′

Q(s′, a′; θ−) · (1− d),

where θ− denotes the parameters of the target network,
which are periodically updated to match the primary network
parameters θ.

4. Loss Function

The loss function for a mini-batch is defined as the mean
squared error between the target and the current Q-value
estimate:

L(θ) =
1

N

N∑
i=1

(yi −Q(si, ai; θ))
2
.

This loss is minimized to update the parameters θ of the Q-
network.

5. Gradient Descent Update

The parameters θ are updated via gradient descent:

θ ← θ − α∇θL(θ),

where α is the learning rate.

6. Action Selection (Epsilon-Greedy Policy)

At each step, the action a is chosen according to the epsilon-
greedy strategy:

a =

{
random action, with probability ϵ,

argmaxa′ Q(s, a′; θ), with probability 1− ϵ,

with ϵ decaying over episodes from an initial value ϵstart to a
minimum value ϵmin.

7. Periodic Target Network Update

Every fixed number of episodes (or steps), the target net-
work parameters are updated by copying the weights from the
primary network:

θ− ← θ

X. ACCESSED PROBLEMS

For each of the two described ways to generate sequences,
causal or non-causal, and regarding the Reinforcement Learn-
ing (RL) usage along with the proposed architectures, one
benchmark problem was selected. The Traveling Salesman
Problem (TSP) for causal generation and Neural Architecture
Search (NAS) for non-causal generation.
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A. Traveling Salesman Problem

The TSP consists of generating a tour from a given starting
city that passes through all the other cities while minimizing
the overall path distance. The considered cities have the
following coordinates:

TABLE I. CITIES’ COORDINATES USED IN THE TRAVELING SALESMAN
PROBLEM.

X Y
23 45
57 12
38 78
92 34
45 67
18 90
72 55
66 24
83 62
49 40

A distance matrix is calculated based on the euclidean
distance between all the cities. A boolean array is used to
track the cities already visited. If a generated city is already
visited, the reward function gets the value of -100, in contrary,
if a city is not visited, then the reward function gets the value
given by:

normalized_reward = 100 ·
(
1− distance

max_distance

)
With:

distance = distance_matrix[current_city][action]

The cities road is generated iteratively, one city after another
until the generated city is already visited. When this final
condition is met, the obtained road is evaluated and the current
episode ends.

B. Neural Architecture Search

For the NAS problem, the sequence is interpreted as the
Network Structure Code (NSC), meaning that it encodes an
Artificial Neural Network (ANN). In this case, it is intended
to generate a neural text classifier architecture built by several
InceptionV1 blocks [56]. The NSC is composed by two
decoupled models which contribute to the same RL final state,
also known as NSC. The reward function is the child-network
training accuracy which, in the current problem’s case, is a
classifier network. This classifier is built from an inverted n-
ary tree encoded in Depth-First-Search (DFS).

XI. RESULTS

In this section, the performance plots for the NAS problem
are presented. The adopted search space is an encoded n-ary
tree using Depth First Search (DFS). The tree is encoded using
[0, 1, 2] in a sequence with a maximum of five positions. A
zero encodes a change in the tree branch, a one encodes a

deeper instruction, and the two is interpreted as a padding
character. Each tree element is a Conv1D version of an
InceptionV1 block [56]. When constructed, the tree is inverted
so that the root node represents the classifier’s final decision
kernel. The search focuses on a text classifier, where the
embeddings are provided by a Keras embedding layer. For
evaluation purposes, this layer is replaced by the RoBERTa
large model from Hugging Face [57], achieving state-of-the-
art results with the IMDB sentiment analysis dataset [58]. The
resulting model from the search was trained using a learning
rate scheduler and presents the training curves shown in Figure
3.

Figure 3. Classification accuracy and binary cross-entropy loss when using
the generated NAS classifier and RoBERTa as embedding model.

The resulting binary text classifier positioning in the state
of the art is presented in Table III.

TABLE II. FINAL MODEL RESULTS ON IMDB SENTIMENT ANALYSIS
DATASET.

Test Loss 0.2521449327468872
Test Accuracy 0.9054897427558899

The results presented were obtained by replacing the em-
bedding layer with a pre-trained model from [59].

TABLE III. IMDB SENTIMENT ANALYSIS TEST SET ACCURACY FOR
DIFFERENT MODELS IN THE LITERATURE

Model Accuracy (%) Reference
Naive Bayes (Baseline) 83.5 [60]
LSTM (Long Short-Term Memory) 89.0 [61]
BiLSTM with Attention 91.2 [62]
FastText 88.5 [63]
RoBERTa+NAS Tree-based Classifier 90.5 -
CNN (Convolutional Networks) 90.6 [64]
ULMFiT (Pretrained LSTM) 94.0 [65]
BERT-base (Fine-tuned) 95.2 [66]
RoBERTa (Fine-tuned) 96.3 [67]
DistilBERT 95.1 [68]
GPT-2 (Fine-tuned) 95.0 [69]
XLNet 96.4 [70]
ALBERT 95.8 [71]
ELECTRA 96.6 [72]
T5 (Text-to-Text Transfer) 96.1 [73]
GPT-3 (Few-shot) 94.7 [74]
DeBERTa (Fine-tuned) 96.7 [75]
ChatGPT (Prompting) 96.0* [76]

The neural architecture search task was performed using
both language models: character-level using SoftQLearning
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and word-level using asynchronous advantage actor-critic
training. In both cases, the problem’s probability density
function for each output was predicted by the models, and
the final output is a result of a random experience with
the model-predicted odds. This feature allows the models to
represent more complex problems, such as NAS. This behavior
also enables the model to learn the probabilistic aspects
of a dataset; by fixing a serializable data ontology, it can
generate datasets. Returning to the scope of this article, more
specifically regarding these models’ optimization capability
in the NAS task, the learning and performance curves are
presented below.

Figure 4. Loss function of SoftQ-Leaning using Char-Conv inspired archi-
tecture.

Figure 5. RL reward function, child network’s training accuracy, using SoftQ-
Leaning using Char-Conv inspired architecture.

In the above experiment the model presented in [48],
has two decoupled outputs which are used to compose the
sequence - Network Structure Code. The Soft Q-Learning
training method was adopted instead of DQNet-PL because
the latest presents a very high training variance, making the
training to not converge. Additionally the entropy regulariza-
tion also helped to attain training convergence.

The transformer-based Vector Quantized Variational Auto
Encoder (VQ-VAE) follows the same decoupling logic to
compose the sequence, as described previously. In this case,
the model has two outputs: the actor and the critic. The actor
predicts odds for each possible model action, and the second
output, the critic rates the overall model performance. In terms
of architecture, the actor-critic decoupling is made only in the
model’s last layer to shape the output according to the needs
to generate the critic score and actor’s odds.

Two Transformer-based VQ-VAE models were used to
compose the sequence, one to generate the action and another
to generate the position in the candidate sequence where the
action value will be assigned. Bellow, the obtained training
curves are presented:

Figure 6. Loss function of action sequence composing parameter during the
A3C training using Transformer inspired architecture.

Figure 7. Position loss function of A3C using Transformer inspired architec-
ture.

The observable outliers are due to the epsilon-greedy
technique used to introduce exploration in the algorithm’s
behavior. All the loss function plots in the presented results
converge to zero, and the reward signals reflect the overfitting
tendency of the proposed NAS methodology. The decoupling
strategies are effective in stabilizing the training methodologies
in both character and word-level approaches. Additionally, the
sequence generalization and problem modeling capabilities are

Figure 8. RL reward and child network accuracy as functions of A3C using
a Transformer-inspired architecture.
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verified when observing the obtained training curves; both
approaches exhibit stable behavior.

Next, the Traveling Salesman Problem results are presented.
Experiments with both the architectures are presented bellow.

Starting from the Char-Conv as DQNet and as well as Policy
network, the results were the following:

Figure 9. Char-Conv architecture’s loss function during the DQNet-PL
training, while solving the Traveling Salesman problem.

Figure 10. Reward function of Char-Conv architecture during the DQNet-PL
training, while solving the TSP problem.

Both curves indicate that the RL agent is learning, as
evidenced by the loss function’s convergence to zero and the
reward function’s increasing behavior during training. Next,
the VQ-VAE model is used in conjunction with A3C training
to generate the salesman route:

Figure 11. Loss function during the A3C training using Transformer inspired
architecture in the TSP problem resolution.

The loss function chart exhibits zero convergence; therefore,
training stability is concluded, and the generally increasing re-
ward function reflects the VQ-VAE agent’s learning. Depend-
ing on the problem complexity, generating action odds might

Figure 12. Reward function obtained by the VQ-VAE based agent in A3C.

be preferred rather than generating the agent’s actions directly,
as occurred with the Char-Conv architecture in NAS, where
Soft-Q Learning was used, and in the TSP where DQNet-PL
was utilized. The Transformer-inspired VQ-VAE demonstrates
overall better training behavior compared to the Char-Conv
architecture, as this model can map the search space into
several sub-regions by utilizing the Vector-Quantized layer,
thereby parallelizing the search.

XII. ERROR ANALYSIS

During the experimentation phase of this work, the Trav-
eling Salesman benchmark problem was addressed using
A3C training together with the Transformer-based VQ-VAE
model. Additionally, the Char-Conv model was tested along-
side DQNet-PL training on the same problem. After several
unsuccessful experiments resulted from the usual issues of
high variance in the reward signal and a non-converging loss
function, a functional decoupling methodology was developed
and successfully applied to the TSP problem. The training
results are presented in Figures 9 and 11 for the Char-Conv
and VQ-VAE models, respectively.

In considering the NAS problem, the combination of Char-
Conv with DQN-PL training did not succeed in solving this
issue, as the loss function did not converge to zero. In
contrast, the combination of VQ-VAE, A3C, and the respective
decoupling effectively solved the problem (Figures 6 and
7). To address the limitations of solving the NAS problem
using CharConv, SoftQ Learning with entropy regulation was
employed, as it enables modeling the odds of each output and
reduces the variance of the reward signal.

XIII. CONCLUSIONS AND FUTURE WORK

Many problems are non-sequential and do not require strict
left-to-right order dependency. To handle such cases, a value-
position decoupling strategy is proposed. Considering the
Transformer-based VQ-VAE trained with A3C, the model
has two outputs: an actor output and a critic output. Instead
of using two models, a single model is employed. In this
way, the network weights are updated on both occasions:
when the actor learns and when the critic learns. Two A3C
models with a shared state and reward are used; one generates
the new element’s position, and the other generates the new
element’s values. The VQ-VAE architecture has the capability
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to divide the latent space into quantized subspaces and perform
a parallelized search in each subspace.

The deep convolutional network, which is trained using
Deep Q-Learning for value generation and Soft Q-Learning
for sequence generation, applies similar reasoning to design
the training. One model with two outputs is responsible for
generating the new element’s position, while another model
generates the new element’s value. To make this training
generative, the output odds are modeled, and the outputs are
generated using a random experiment in which each output
odd is defined by the Deep Q-models. Additionally, to reduce
training variance, an entropy term is added to the loss function.
This process is called entropy regularization and promotes
training convergence towards zero.

This study demonstrates that it is possible to generate se-
quences without causality constraints while still using slightly
adapted Reinforcement Learning techniques. Training con-
vergence is improved if the same model with two outputs
is used to perform actions and to critique its performance,
regardless of its architecture. In both cases, Transformer and
Char-Conv, it was the most performant architectural variation
and performed heuristic search in this manner. Complex on-
tologies describing the candidate solutions can be encoded and
serialized into integer sequences. The encoded sequences can
then be optimized by this type of solver when used together
with a performance metric designed as the Reinforcement
Learning reward. Since sufficient decoupling is achieved, the
language models can absorb the problem’s semantics and gen-
erate admissible candidate solutions of increasing quality. The
position-value decoupling must be employed in the NAS sce-
nario to avoid imposing causality in the sequence generation
during the RL training. Additionally, using variational models
in complex RL environments such as NAS is more efficient
since they model the environment’s unknown properties. The
Transformer-based VQ-VAE is also capable of parallelizing
the search due to the vector quantization layer.

Looking toward the future, the models presented, along with
the proposed training techniques, can be used to generate more
than encoded solutions for a given problem. By selecting an
appropriate reward function, the generated sequence can be
utilized in the standard format to produce content, similar to
Generative Adversarial Networks.

A comparison of the proposed solvers, together with other
state-of-the-art heuristic search algorithms, can be made to sys-
tematically explore the limitations of this proposal and extend
its applicability domain. An analysis of the problem’s degrees
of freedom versus processing time will be conducted, focusing
on solver quality analysis based on degrees of freedom, the
solver’s scaling with DoF, and the algorithm’s parallelization.
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