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Abstract—Given the widespread use of social media and other
online platforms for sources of new content, there has been an
increased interest in the research community to improve existing
methods for automating the detection of fake news content. We
present several models for automating the detection of fake news
content while utilizing current state-of-the-art neural language
models. Our work provides an evaluation of the efficiency of
different transformer-based neural language models for the fake
news detection task. The evaluation shows that the proposed
models are able to maintain high accuracy (98.5%) throughout
experimentation tasks. We conclude by discussing the effects of
the different neural language models.

Index Terms—Fake news classification; misinformation; neural
language models; natural language processing

I. INTRODUCTION

A growing number of users obtain news from social media
platforms and other online sources. According to results from
the Pew Research Center, approximately 68% of American
adults obtain their information from social media platforms
occasionally [23]. There are multiple reasons for why many
users prefer these methods of delivery, among which we will
find ease of access and discussion-oriented interactions as
possible reasons. The growing dependence of these platforms
as sources for news has prompted many organizations to take
steps increase the reliability of various postings on their sites.

The low barriers to entry with digital platforms facilitate the
introduction of fake, deceptive, misleading, or malicious news
content to users with relative ease with widespread societal
impacts if left unabated. In one case, a single malicious
posting to a social media site caused a significant fluctuation
in stock market activity [27]. Another major implication has
been in election interference where authors post blatantly

falsified information to favor a particular political candidate
[28]. It should also be noted that not all news information
has sinister underlying motivations. Some sources of online
news are published with the intent of misleading the reader
for entertainment purposes. The consequence of this scenario
is some readers may be inadvertently misled to believe it is
real.

The task of classifying fake news is often not a binary
decision due to the varying degrees in correctness and under-
lying motivation or intent of deception. For example, a single
statement can be factually incorrect, or otherwise inaccurate,
thus prompting a discussion for how the document should
be classified. Granular-level techniques could be employed to
evaluate the truthfulness of statements on a scale rather than
using binary levels. An example of this can be found in how
PolitiFact ranks comments on a scale [9]. There are many
challenges in this task given how minor changes in wording
can lead to differences in how correct a statement is.

In this work, we propose a model that leverages state-
of-the-art neural language models to automate the detection
of fake news to curtail the spread of misinformation. We
present an analytic study of advancements in neural language
models and their impact on the fake news detection task.
Furthermore, we provide empirical evidence that demonstrates
how our proposed model leads to improvements in the fake
news detection performance. We discuss the efficiency of our
proposed model relative to other models with similar goals.

In Section 2, we begin by reviewing previous work con-
ducted over fake news, neural networks, and neural language
models. Section 3 presents information over the fake news
detection task, the data set used, and our proposed models.
Section 4 details the experiments and results described in this
work. Section 5 concludes by discussing the significance of

81Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-986-7

eKNOW 2022 : The Fourteenth International Conference on Information, Process, and Knowledge Management



the experiments.

II. RELATED WORK

In the following, we consider previous work in the areas of
fake news detection and word embeddings.

A. Fake News Detection

Fake news has been an active research area for the past
several years across multiple disciplines. We first start by
defining fake news as content whereby the authors intend
to deceive, or otherwise mislead, readers. Content labeled
as fake news can be further divided in different categories:
satire, hoax, propaganda, and clickbait. Satirical work is fake
news content with some purpose of entertainment, generally
through sarcasm or other misinformation [9]. Hoaxes are con-
tent whereby the author passes deceptive content as truthful,
also with the goal of deception for humor. Propaganda are
deceptive content with the goal of causing harm to a specific
entity or party. Clickbait is content that attracts users through
misleading content.

Fake news detection has a variety of tasks that have been
reviewed, such as rumor detection [25], spam detection [26],
and emotion analysis of news articles [20]. Fake news detec-
tion can also involve text, images, or a combination of both.
Automated fake news detection methods usually target biases
in the linguistic style of writing and word usage [9]. This
typically involves the content of the article, user reactions or
responses, or source fo the article [6].

Some authors have also studied the effects of social media,
disinformation, and political polarization with public policy-
making and quality of democracies [22]. Social media has
enabled misleading and/or fake news content to propagate
throughout social networks with limited restrictions [10]. It
has also been demonstrated the users can have problems differ-
entiating between real and fake content [1] [3]. Furthermore,
it may also be difficult to label an article as being real or fake
due to nuances in the writing [8].

B. Word Embeddings

Word embeddings [29] are neural language models where
words are represented as continuous vector-representations
in a dimensional space that is typically reduced in size
in comparison to other techniques, such as bag of words
methods where feature vectors are often of |V | width, or
the size of the lexicon. In the work presented in [21], the
authors introduced the Continuous Bag-Of-Words (CBOW)
and continuous Skip-gram models as methods for learning
distributed vector representations that reflect both syntactic
and semantic relationships between words in a language. The
CBOW model seeks to predict a word based on the context
words. The Skip-gram model was developed to find different
word representations that can be used for establishing adjacent
words for a given document by maximizing the average log
probability where c denotes the size of the window and wt

represents the centralized word:

1

T

T∑
t=1

∑
−c<j≤c,j 6=0

log Pr(wt+j | wt) (1)

One major problem identified in the work for the full
softmax is its lack of efficiency. The authors in Mikolov et al.
[29] thus proposed other techniques that are computationally
efficient approximations to the full softmax, such as negative
sampling, Noise Contrastive Estimation (NCE), negative sam-
pling, and subsampling.

In subsequent work, the authors in Pennington et al. [5] pre-
sented improvements to word embedding representations by
constructing a global log-bilinear regression model that com-
bined global matrix factorization and local context windowing
techniques. The work from [19] presented bidirectional lan-
guage models computed over the entire input sentence while
jointly maximizing the log likelihood of both the forward and
backward directions:

Pr(t1, t2, ..., tN ) =

N∏
k=1

Pr(tk | t1, t2, ..., tk−1) (2)

Pr(t1, t2, ..., tN ) =

N∏
k=1

Pr(tk | tk+1, tk+2, ..., tN ) (3)

(4)

The log likelihood of the forward and backward passes is
defined by the following where Θx is the token representation
parameters, Θs is the softmax layer parameters, and

→
ΘLSTM

and
←
ΘLSTM are the parameters for the long short-term (LSTM)

layers for the forward and backward directions:

N∑
k=1

[
log
(

Pr(tk | t1, ..., tk−1 ; Θx,
→
ΘLSTM,Θs

)
(5)

+ log
(

Pr(tk | tk+1, ..., tN ; Θx,
←
ΘLSTM,Θs

)]
(6)

Authors from Devlin et al. [13] presented the Bidirec-
tional Encoder Representations from Transformers (BERT)
where their approach focuses on bidirectional pre-training
while achieving a fine-tuned representation model to reduce
or eliminate dependencies on task-specific architectures. The
authors also contend that their work improves the work from
[19] as prior work concatenated independently trained forward
and backward language models whereas BERT implemented
deep bidirectional representations.

DeBERTa, which improves upon BERT and RoBERTa
models, uses a disentangled attention mechanism [16]. This
allows each word to be represented by utilizing two vectors
that encode both the content and position. The attention
parameters for the tokens are calculated by using disentangled
matrices for both the content and relative positions. In addition,
DeBERTa incorporates an enhancement to the mask decoder as
a substitute for the output softmax layer that allows it to predict
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the masked tokens for the purpose of pretraining. XLNet, an
extension of the Transformer-XL model, is an autoregressive
method that learns bidirectional contexts through the maxi-
mization of expected likelihood over all permutations of the
input sequence factorization order [15]. GPT-J is a neural
language model with 6 billion parameters that is an open-
source alternative to the GPT-3 model [17] [18].

C. Recurrent Neural Networks
LSTM and Gated Recurrent Unit (GRU) networks are

both forms of recurrent neural networks that are capable
of processing temporal sequences of data. Both networks
are capable of managing the vanishing gradient problem
that is commonly found when processing long sequences in
traditional recurrent neural networks.

An LSTM cell contains three major gates that attempt to
control how information passes into and out of the cell: input
gate i, output gate o, and a forget gate f . Let t represent the
time step of a sequence such that t ∈ [0...τ ]. The input gate
it at time step t determines what information is relevant and
can be added from the previous hidden state ht−1 and the
current input xt. The forget gate ft is used to decide which
information will be be utilized and which information will
be forgotten (or ignored) at time step t. Lastly, the output
gate ot is used for determining the values of the next hidden
state ht. An LSTM maintains cell state for both the short-term
and long-term. The short-term is denoted as h and the long-
term is denoted as c, noting that ct=0 =

[
0 0 · · · 0

]
and

ht=0 =
[
0 0 · · · 0

]
.

ft = σ(Wfxt + Ufht−1 + bf ) (7)
it = σ(Wixt + Uiht−1 + bi) (8)
ot = σ(Woxt + Uoht−1 + bo) (9)
∼
ct = tanh(Wcxt + Ucht−1 + bc) (10)

ct = ft � ct−1 + it �
∼
ct (11)

ht = ot � tanh(ct) (12)

The two activation functions used are the sigmoid activation
function σ(x) and hyperbolic tangent function tanh(x). The
range of values for both activation functions differ with
σ(x) ∈ [0, 1] and tanh(x) ∈ [−1, 1]. The operator � denotes
the Hadamard product. The input vector xt is defined as
xt ∈ Rd where d denotes the number of input features. The
hidden state vector ht is defined as ht ∈ (−1, 1)h.

GRU cells are similar to LSTM cells, but with simplifica-
tions while maintaining comparable performance. There are
several notable differences between GRU and LSTM cells.
First, an LSTM maintains two state vectors for c and h; a GRU
cell maintains a single vector h for state. In addition, a GRU
maintains an update gate zt that controls for both the forget
gate and input gate, and a reset gate rt which is responsible
for the short-term memory ht.

Recurrent layers generally look at the previous and current
time steps to produce an output without any intuition about

future time steps. In some situations, it may be advantageous
to gather context for inputs at a given time step. Consider the
situation of word embeddings. A token at time step t may
require information from previous and future time steps. A
simple solution to this is to implement a bidirectional recur-
rent layer which implements two recurrent layers and finally
combine the outputs of each layer at each time step t (generally
this is performed through concatenation): one recurrent layer
that iterates in the order of {t = 0, t = 1, t = 2, ..., t = n},
and another recurrent layer that iterates in the reverse order of
{t = n, t = n−1, t = n−2, ..., t = 1}. Bidirectional recurrent
layers can be applied to standard recurrent units, LSTM units,
or GRUs.

D. Attention

Attention mechanisms were introduced by [24] for the task
of neural machine translation. Their work extended the basic
encoder-decoder models and allowed for decoders to have an
attention mechanism so encoders are not required to encode
all information into fixed-length vectors. This attention layer,
or alignment model, is capable of focusing on features at each
time step that are important, which is trained jointly with the
encoder-decoder model. The following conditional probability
was proposed where si represents the hidden state of the RNN
for time step i, yi represent the target word, and ci represents
the context vector:

p(yi | y1, ..., yi−1,x) = g(yi−1, si, ci) (13)

si = f(si−1, yi−1, ci) (14)

The context vector ci is computed from a the sequence of
annotations hi as 〈h1, h2, · · · , hTx

〉 which is produced by an
encoder from a given input sentence. The context vector ci
is constructed as a weighted sum between the annotations hi
and the weights of annotation αij , where eij represents the
alignment model with scores that measure how well the output
aligns with the previous hidden state of the decoder (where a
represents a feedforward neural network):

ci =

Tx∑
j=1

αijhj αij =
exp(eij)∑Tx

k=1 exp(eik)
(15)

eij = a(si−1, hj) (16)

It is important to note that a is jointly trained with the
model. In addition, the sum of all weights αij for a given
time step will have a sum of 1. Other work has been proposed
to use multiplicative attention with other simplifications that
improve on concatenative attention.
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III. FAKE NEWS DETECTION

A. Dataset

In our experiments, we used the publicly available dataset
from [9]. The dataset contains different news articles ob-
tained from seven different fake, or otherwise unreliable, news
sites, including The Onion, The Borowitz Report, Clickhole,
American News, DC Gazette, The Natural News, and Activist
Report. Each of the news articles are labeled as being satire,
hoax, propaganda, or trusted. The trusted news articles were
obtained from [11]. In the trusted news articles data source, the
authors constructed an approach to building a supervised read-
ing comprehension dataset with news articles obtained from
convolutional neural networks (n = 90, 266). Our experiments
extracted n = 10, 000 randomly selected news articles from
the set of possible 90, 266 different articles available in the
CNN dataset.

Fig. 1. The distribution of the dataset used for classification is presented by
the news article type.

TABLE I
NEWS ARTICLES WITH NUMBER OF DOCUMENTS, AVERAGE DOCUMENT

LENGTHS, AND MEDIAN DOCUMENT LENGTHS

Doc. Type # of Docs Avg. Tokens Med. Tokens

Satire 13, 942 206± 177 105

Hoax 6, 892 141± 122 109

Propaganda 15, 061 587± 808 458

Trusted 9, 681 428± 205 401

Table I summarizes the type of news articles, document
frequencies, mean document lengths and standard deviations,
and median document lengths. News articles from the propa-
ganda class have a higher average number of tokens than other
classes. When considering the robustness of the statistical

measures to control for outliers, the median of the propaganda
class is marginally higher than the trusted class. All data is
preprocessed using standard natural language preprocessing
techniques, including downcasing, stopword removal, tok-
enization, etc. We utilize the NLTK toolkit 1 for computational
linguistic analysis. The overall distribution of the data can be
seen in Figure I.

B. Models

Our experiments evaluate different neural network models
and word embeddings for the fake news detection task. We
construct five baseline models that are developed with an
embedding layer, which is a trainable dense vector that can be
used to represent each unique word in the lexicon. The first
model contains a single embedding layer, two LSTM layers, an
attention layer, and a classification segment comprised of two
dense layers, and an output layer with a softmax activation
function having a number of neurons corresponding to the
number of output classes. Dropout is also added to mitigate the
possible situation of overfitting. Attention layers are used to
determine which parts of the data have greater importance than
other parts through a separate alignment model. This alignment
model is trained jointly with the other parts of the network.

Fig. 2. The proposed recurrent neural network model for our experiments
uses a bidirectional network with an attention layer.

The next several models are constructed from the original
model with modifications to the sequence processing layers.
The second model uses bidirectional LSTM) layers so that
both the forward and backward sequences are concatenated
and learned during the training phase (see Figure 2). The third
model considers the use of GRU in place of LSTM layers. The
forth model is constructed from bidirectional GRU layers.

The final model is constructed by using a convolutional neu-
ral network (CNN) on the sequences of data. We implement
a stack of 1D-convolutional layers, batch normalization, and
ReLU activation layers. The batch normalization layer centers
and scales the activation vectors from the hidden layers of the
current batch by using the mean and variance. We implement
dropout in the model to prevent overfitting. A global max
pooling layer is added, which returns the maximum value

1https://www.nltk.org/
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for each feature channel. Finally, a set of fully connected
layers are added followed by a layer with a softmax activation
function with the number of units corresponding to the number
of ŷ target classes such that ŷ ∈ {fake, real}.

Conv1D

Batch Normalization

Input

ReLU

Conv1D

Batch Normalization

ReLU

Global Max Pooling

Dropout

Fully Connected

Softmax

Fig. 3. 1-D convolutional neural network (CNN) model

Each of the documents were converted to sequences of
word embeddings. For our baseline model, we assigned a
unique integer to each token and implemented a standard
word embedding layer with 128 dimensions. To evaluate
the performance of various word embedding methods, we
compare our baseline model to word embeddings produced by
BERT, DeBERTa, XLNet, and GPT-J. The BERT embeddings
contained a total of L = 12 hidden layers with a hidden size of
H = 128 and A = 2 attention heads. We used the V2-XLarge
DeBERTa pre-trained model with a 128, 000 vocabulary, 710
million parameters, hidden size of H = 1536, and L = 24
hidden layers. XLNet contains L = 12 hidden layers, hidden
size of H = 768, and A = 12 attention heads.

For all models, the batch size was set to 64 and we im-
plemented early stopping criteria to limit potential overfitting.
We utilize the Adam optimization algorithm and a categorical
cross-entropy loss function for this multi-class classification
task. A learning rate of 0.001 was used. Each experiment was
conducted from training, testing, and validation splits of sizes
0.7, 0.2, and 0.1, respectively. For each of the performance
metrics reported, the mean of each experiment is reported from
10 random shuffles of the data.

In our experimentation tasks, we evaluated multiple neu-
ral network models, including LSTM, GRU, bidirectional
recurrent neural networks (both LSTM and GRU), and 1D
convolutional neural networks. Each document is represented
in the training set as a set of fixed-length word embeddings
formed by utilizing one of the techniques described previously.
To ensure that each document contains the same number of

features, we padded all documents that where the number of
tokens is less than specified sequence length (|d| < wesize).
Similarly, any document that exceeds the word embedding
length (|d| > wesize) is right-truncated.

IV. EVALUATION

Having presented models for the task of identifying fake
news, we present our evaluations of the models using the data
described in earlier sections. Our hypothesis is that the fake
news detection task can be improved by leveraging state-of-
the-art neural language model representations and improved
neural network architectures.

Our first task is to establish which neural language model
representations work best for the task of automating fake news
detection. For this requirement, we used the model architec-
ture as presented previously with LSTM layers, an attention
layer, and a classification segment. We compared embedding
layers, BERT, XLNet, DeBERTA, and GPT-J for each of the
documents in the training and testing sets. Based on our
experiments, the BERT neural language model outperforms
the other methods with a mean accuracy of 98.1%. While
other methods have additional model parameters, attention
mechanisms, and other improvements to their models, they
do not seem to outperform BERT for this specific task. In
addition, the training time for BERT was faster in the amount
of training time required when compared to the others. We
conclude that BERT achieves both the best results and fastest
training time.

TABLE II
COMPARISON OF NEURAL LANGUAGE MODELS

Method Accuracy Precision Recall F1

WE+LSTM 0.978 0.979 0.977 0.978

BERT+LSTM 0.981 0.981 0.981 0.981

XLNet+LSTM 0.956 0.956 0.956 0.956

DeBERTa+LSTM 0.960 0.960 0.959 0.960

GPTJ+LSTM 0.971 0.971 0.971 0.971

In our next experiments, we present our evaluation of the
neural network architectures as presented in earlier with the
top performing neural language model from the aforemen-
tioned experiments. The work presented in [20] achieved a
76.3% accuracy using a feed forward neural network ar-
chitecture with BERT for document-level embeddings. We
establish this as a baseline model for our experiments. Our
experimental design evaluates the performance of documents
converted to sequences from the neural language models as
input to the neural network models that carry out the fake
news classification. Previous work emphasized document-level
embeddings whereas we focus on sequences of embeddings
from transformer architectures.

The results presented in Table III demonstrate the accuracy
for each of the models using the BERT neural language model.
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TABLE III
COMPARISON OF BASELINE METHODS WITH BERT AND NEURAL NETWORK MODELS

Type Method Accuracy Precision Recall F1

BASELINE BERT+NN 0.763 0.798 0.721 0.757

MODELS

BERT+LSTM 0.981 0.981 0.981 0.981

BERT+BiLSTM 0.985 0.985 0.985 0.985

BERT+GRU 0.982 0.982 0.982 0.982

BERT+BiGRU 0.983 0.983 0.983 0.984

BERT+ConvNet 0.972 0.972 0.972 0.972

The BERT+BiLSTM model achieved the highest accuracy
and was constructed by using bidirectional LSTM layers.
It should also be noted that the BERT+BiGRU model is
relatively comparable to the top performing model while using
layers with fewer gates. The BERT+ConvNet model achieved
a mean accuracy slightly lower than the LSTM and GRU
models. All experimental models outperform the baseline
models we defined earlier, which highlights the benefits of
using sequences of inputs from neural language models for
the fake news detection task.

TABLE IV
EVALUATION OF NEURAL LANGUAGE MODELS AND NETWORK

ARCHITECTURES

Model BERT XLNet DeBERTa GPTJ Average

LSTM 0.981 0.956 0.960 0.971 0.967

BiLSTM 0.985 0.955 0.974 0.970 0.971

GRU 0.982 0.962 0.973 0.973 0.973

BiGRU 0.983 0.955 0.962 0.971 0.968

ConvNet 0.972 0.947 0.958 0.959 0.959

Average 0.981 0.955 0.965 0.969 0.967

Our final task is to compare the mean performance of model
architectures and neural language models. Table IV provides
the mean accuracy for each neural network architecture and
neural language model. As previously mentioned, the top
performing neural language model for our experiments was
BERT. However, the top performing model, on average, was
obtained from the model that leverages layers using the GRU,
which is marginally higher than BiLSTM.

The proposed BERT+BiLSTM model using sequences as
input was able to achieve a 22.2% increase over the baseline
BERT+NN model, which leverages document-level neural lan-
guage model outputs as inputs to the model. Similarly, lever-
aging GRU layers with all neural language models achieves
a 21% improvement while requiring less parameters than the
BiLSTM layer. The mean performance for all proposed models
using BERT and sequences as input achieved 98% accuracy,

which is an improvement of 21.8%. Finally, leveraging se-
quences as inputs for all propose architectures and neural
language models had a mean score of 96.7%, which was a
20.4% increase over the baseline.

The experiments presented here demonstrate the ability of
recurrent neural networks when combined with state-of-the-
art word embeddings to facilitate the classification of fake
news. Our results also demonstrate that the additional train-
ing time and overhead required for some word embeddings
do not necessarily yield better classification results for the
fake news classification task as indicated in our experiments.
Furthermore, more complex architectures for neural language
models may improve semantic and syntactic understandings or
relationships between words, but additional training data may
be necessary to fully exploit these capabilities.

V. CONCLUSION AND FUTURE WORK

We presented a comparative analysis of various state-of-the-
art methods for neural language models and neural network
architectures for the fake news detection task. Our proposed
BiLSTM+BERT model was able to achieve a 98.5% accuracy,
which is an improvement over the baseline model. This
demonstrates the effectiveness of bidirectional LSTM layers
when combined with BERT for automating the classification
of fake news articles. Given that the research continues to
improve neural language models, future work will need to
evaluate improvements in this space to determine how we
can efficiently represent documents with the same model
performance or improve upon the current model performance.

REFERENCES

[1] M. Barthel, A. Mitchel, and J. Holcomb, Many americans believe fake
news is sowing confusion, Pew Research Center, 2016.

[2] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P.
Kuksa, “Natural language processing (almost) from scratch,” Journal
of machine learning research, 12(ARTICLE): pp. 2493–2537, 2011.

[3] C. Domonoske, Students have ‘dismaying’ inability to tell fake news
from real, study finds, National Public Radio, 23, 2016.

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of
word representations in vector space, arXiv preprint arXiv:1301.3781,
2013.

[5] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pp. 1532–
1543, 2014.

86Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-986-7

eKNOW 2022 : The Fourteenth International Conference on Information, Process, and Knowledge Management



[6] N. Ruchansky, S. Seo, and Y. Liu, “Csi: A hybrid deep model for fake
news detection,” In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pp. 797–806, 2017.

[7] K. Shu, L. Cui, S. Wang, D. Lee, and H. Liu, “defend: Explainable fake
news detection,” In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 395–405,
2019.

[8] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, “Fake news detection on
social media: A data mining perspective,” ACM SIGKDD explorations
newsletter, 19(1): pp. 22–36, 2017.

[9] H. Rashkin, E. Choi, J. Jang, S. Volkova, and Y. Choi, “Truth of varying
shades: analyzing language in fake news and political fact-checking,”
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 2931–2937, 2017.

[10] C. Castillo, M. Mendoza, and B. Poblete, “Information credibility on
twitter,” Proceedings of the 20th international conference on World wide
web, pp. 675–684, 2011.

[11] K. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M.
Suleyman, and P. Blunsom, Teaching machines to read and comprehend,
2015.

[12] Q. Le and T. Mikolov, Distributed representations of sentences and
documents, 2014.

[13] J. Devlin, M. Chang, K. Lee, and K. Toutanova, Bert: Pre-training
of deep bidirectional transformers for language understanding, arXiv
preprint 2018.

[14] X. Zhou and R. Zafarani, A survey of fake news: fundamental theories,
detection methods, and opportunities, ACM Comput. Surv 2020.

[15] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q.
Le, XLNet: Generalized Autoregressive Pretraining for Language
Understanding, arXiv:1906.08237, 2019.

[16] P. He, Z. Liu, J. Gao, and W. Chen, DeBERTa: Decoding-enhanced
BERT with Disentangled Attention, arXiv:2006.03654, 2020.

[17] T. Brown et al, Language Models are Few-Shot Learners,
arXiv:2005.14165, 2020,

[18] B. Wang and A. Komatsuzaki, GPT-J-6B: A 6 Billion Parameter
Autoregressive Language Model, https://github.com/kingoflolz/mesh-
transformer-jax, 2021.

[19] M. Peters et al, Deep contextualized word representations, arXiv 2014.
[20] A. Mackey, S. Gauch, and K. Labille, “Detecting Fake News Through

Emotion Analysis,” eKNOW 2021.
[21] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of

word representations in vector space, arXiv preprint arXiv:1301.3781
2013.

[22] J. Tucker, et al, “Social media, political polarization, and political dis-
information: A review of the scientific literature,” Political polarization,
and political disinformation: a review of the scientific literature (March
19, 2018) 2018.

[23] E. Shearer, More than eight-in-ten Americans get news from Digital
Devices, Pew Research Center, 2021.

[24] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by
jointly learning to align and translate, arXiv preprint arXiv:1409.0473
2014.

[25] Z. Jin, J. Cao, Y. Jiang, and Y. Zhang, “News credibility evaluation
on microblog with a hierarchical propagation model,” 2014 IEEE
international Conference on Data Mining, pp. 230–239,2014.

[26] H. Shen, F. Ma, X. Zhang, L. Zong, X. Liu, and W. Liang, “Discovering
social spammers from multiple views,” Neurocomputing, pp. 49–
57,2017.

[27] C. Matthews. How does one fake tweet cause a stock market crash?,
Time, 2013.

[28] H. Parkinson. Click and elect: How fake news helped Donald Trump
win a real election, The Guardian, 2016.

[29] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of sentences and documents,” Advances in neural
information processing systems, 2013.

87Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-986-7

eKNOW 2022 : The Fourteenth International Conference on Information, Process, and Knowledge Management



TABLE V
FAKE NEWS CLASSIFICATION METHODS WITH EACH OF THE PROPOSED MODELS

Type Method Accuracy Precision Recall F1

BASELINE

WE+LSTM 0.978 0.979 0.977 0.978

WE+BiLSTM 0.979 0.979 0.979 0.979

WE+GRU 0.977 0.977 0.977 0.977

WE+BiGRU 0.976 0.976 0.976 0.977

WE+ConvNet 0.966 0.968 0.965 0.967

LSTM

BERT+LSTM 0.981 0.981 0.981 0.981

XLNet+LSTM 0.956 0.956 0.956 0.956

DeBERTa+LSTM 0.960 0.960 0.959 0.960

GPTJ+LSTM 0.971 0.971 0.971 0.971

BILSTM

BERT+BiLSTM 0.985 0.985 0.985 0.985

XLNet+BiLSTM 0.955 0.955 0.955 0.955

DeBERTa+BiLSTM 0.974 0.974 0.973 0.974

GPTJ+BiLSTM 0.970 0.970 0.969 0.969

GRU

BERT+GRU 0.982 0.982 0.982 0.982

XLNet+GRU 0.962 0.963 0.962 0.963

DeBERTa+GRU 0.973 0.973 0.972 0.972

GPTJ+GRU 0.973 0.973 0.973 0.973

BIGRU

BERT+BiGRU 0.983 0.983 0.983 0.984

XLNet+BiGRU 0.955 0.956 0.955 0.956

DeBERTa+BiGRU 0.962 0.963 0.962 0.962

GPTJ+BiGRU 0.971 0.971 0.971 0.971

CONVNET

BERT+ConvNet 0.972 0.972 0.972 0.972

XLNet+ConvNet 0.947 0.948 0.946 0.947

DeBERTa+ConvNet 0.958 0.960 0.957 0.959

GPTJ+ConvNet 0.959 0.959 0.959 0.959

AVERAGE 0.969 0.970 0.969 0.970
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