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Abstract—In situations where the pandemic of Coronavirus 
Disease 2019 (COVID-19) has been destroying the daily lives of 
global human community, a model that reliably predicts the 
spread of infection within society would be extremely helpful for 
a variety of purposes. This paper presents an agent-based model 
over temporal networks that are fitted to real mobility data 
reported in Tokyo. The parameters of the model are inferred via 
approximate Bayesian computation to ensure that the model 
represents well the observed infection data. Through the 
simulations using this model, we demonstrate a comparison of 
the effectiveness of different vaccination strategies.  

Keywords-agent-based modeling; activity-driven network; 
approximate Bayesian computation; vaccination strategies; 
vaccine passport. 

I.  INTRODUCTION 
Since early in 2020, the pandemic of COVID-19 has been 

devastating both the daily lives and the economic activities in 
human communities globally. For over a year, many 
governmental authorities have taken strong measures such as 
lockdowns of cities, to restrain the spread of infection of 
Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-
CoV-2) within society. While these measures are effective in 
mitigating the epidemic of infection, their adverse impacts 
toward social and economic activities are significant. It is 
difficult to make political decisions that optimally balance 
reducing the number of infected people and maintaining social 
activity among individuals. Although vaccines can be a 
‘game-changer’ in these circumstances, their supply is 
relatively abundant only in developed countries and has been 
extremely insufficient in developing nations until the middle 
of 2021. A social simulation model that may help predict the 
spread of virus infection under certain conditions would be 
remarkably helpful in this global context. 

Agent-Based Modeling (ABM) is a method which is 
excellent at incorporating the heterogeneity of characteristics 
within agents as well as interactions and feedbacks among 
agents [1]. Because a well-designed ABM can serve as a tool 
to represent nonlinear dynamics emerging from the bottom of 
social system, it allows us to elucidate the mechanisms 
underlying complex macro phenomenon observed in society 
without reducing it to individual micro features. The 

spreading of infectious disease within society is one of the 
phenomena that have received a great deal of attention from 
researchers devoted to this modeling [2]. Many studies have 
already been performed on the COVID-19 pandemic using 
this method for a variety of purposes [3-10]. We have 
developed an agent-based model validated with observed 
infection data to help predict the courses of the COVID-19 
epidemic under various conditions. 

Temporal network is a modeling framework in which we 
explicitly consider the times when edges are active between 
nodes [11].  Because specifying who is connected to whom at 
each time is a significant determinant of how epidemic 
process behave within a society, temporal networks have 
frequently been utilized in models that aim at representing in 
detail the spreading process of infectious disease [12]. The 
present paper focuses on a particular kind of temporal network 
that is called activity-driven network where each node is 
characterized by an activity rate a [13][14]. In activity-driven 
networks, this activity rate a encodes the probability of the 
node to generate links with other nodes at each timestep. 
While the behavioral restrictions have been repeatedly 
imposed on individuals in the pandemic situation, this 
framework of activity-driven network allows us to represent 
the successive changes of people’s real activities in the model. 
To the best of our knowledge, we are the first to have validated 
the modeling of activity-driven networks by fitting agents’ 
activities to actual community mobility data provided by 
Google [15] in order to examine the epidemic of COVID-19 
over temporal networks.  

Since the ABM is an attempt to model complex 
phenomena with a high degree of freedom, it is crucial to 
validate the modeling using observed data so that the 
modeling is considered as reliable. Parameter inference that 
fits the parameters of a model to actual data allows us to 
exploit ABMs for trustworthy analysis. However, ABMs do 
not have explicit forms for their likelihood functions due to 
the intrinsic complexity of ABM [16]. Approximate Bayesian 
Computation (ABC) is a flexible Likelihood-Free Inference 
(LFI) method for posterior and is one of the widely accepted 
approaches to infer the parameters of ABM [17][18]. The 
parameter inference in ABC is to infer the values of 
parameters that yield a simulator’s output that agrees with 
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observed data. The ABC algorithm for parameter inference of 
ABM is typically as follows [16][19],  

1. Sample parameter θi from prior π(θ). 
2. Simulate f(θi) by running simulator f with θi. 
3. Reject θi based on the metrics of comparison between 

f(θi) and the observed data X. 
4. Repeat 1-3 until a sufficiently large number of 

samples are obtained. 
We infer the parameters of our ABM by ABC using the 

observed infection data so that the model is sufficiently 
validated. 

The contributions of this paper are threefold. Firstly, we 
have developed an ABM over activity-driven networks where 
agents’ activities are fitted to actual mobility data, which 
enables us to investigate the effects of governmental 
restrictions imposed on people’s behavior. We also 
incorporate the heterogeneity of immune response to viruses 
among agents, a key factor in the virus spreading process. 
Secondly, we have inferred the posterior distributions of the 
model parameters via approximate Bayesian computation 
using real infection data. Thus, our model with estimated 
parameter values represents the observed data accurately and 
can serve as a reliable tool to predict the spread of infection 
under various conditions. Finally, we have demonstrated 
several promising vaccination strategies through the ‘would-
be’ simulations carried out under virtual conditions, which 
shows a comparison of the effectiveness between those 
strategies. In addition, we investigated the possibility of 
‘vaccine passport’ scenario via simulations that focus on the 
association between social activity and vaccination as well as 
the effects of vaccination on the epidemic.  

The remainder of this paper is constructed as follows. 
Section II describes related work. In Section III, we describe 
our agent-based model in detail. In Section IV, the results of 
simulations by our model are demonstrated using various 
graphs and some implications are derived from the results. In 
Section V, several vaccine strategies are presented and the 
comparison of effectiveness between those strategies is 
provided through simulations. Finally, in Section VI, 
conclusion of this paper and future work are described. 

II. RELATED WORK 
Significant efforts have already been devoted to modeling 

the spreading process of COVID-19 to forecast the epidemic 
of the viruses within community as well as to suggest effective 
measures to prevent the pandemic. Hoertel et al. [3] proposed 
an ABM of the epidemic of COVID-19 in France that is well 
fitted to observed data in order to predict the potential impact 
of certain post-lockdown measures on the spreading of the 
epidemic. Rossetti et al. [4] presented an agent-based 
framework that organizes the population in five statuses and 
incorporates activity-driven networks to simulate the effects 
of public interventions on the unfolding of epidemic. Silva et 
al. [5] developed an ABM of the COVID-19 epidemic to 
assess the social and economic effects of certain scenarios 
with several social-distancing interventions. Aleta et al. [6] 
built a detailed agent-based model of SARS-CoV-2 
transmission in the Boston metropolitan area using mobility 
data to examine the impact of testing, contact tracing, and 

household quarantine on the epidemic. Nishi et al. [7] used 
agent-based simulations of a network-based infection model 
to investigate network intervention strategies for mitigating 
the spread of infection while maintaining economic activities. 
Kano et al. [8] proposed an agent-based model of COVID-19 
that accounts for economic activities and examined the trade-
off between health and economic damage through the 
simulations. Li et al. [9] used large-scale agent-based 
simulations to study the effectiveness of a nationwide vaccine 
campaign under different conditions related to vaccine 
efficacies and other factors. Moghadas et al. [10] developed 
an agent-based model of COVID-19 transmission to compare 
the impact of two different vaccination strategies, i.e., to 
vaccinate more individuals with the first dose and delay the 
second dose, or to continue with the recommended two-dose 
series.  

To the best of our knowledge, few prior studies have 
provided an agent-based model integrated with activity-driven 
networks fitted to both mobility and infection data, which we 
propose in this paper. 

III. MODEL 
We generate an artificial society composed of N agents 

which represent individuals socially associated with others in 
temporal networks, which we describe in detail below. 

A. Agent-based SEIR model 
While the epidemic of virus infection in this society 

spreads over time, each agent belongs to one of four statuses, 
i.e., Susceptible, Exposed, Infectious, or Recovered (SEIR) at 
each timestep t = 1, …, T.  

A susceptible agent linked in a network with an infectious 
agent at timestep t gets infected according to the probability P 
that is obtained by multiplying the transmission rate Tr and 
the susceptibility s of the susceptible agent. P is calculated as, 

 
P = Tr ∙ s.                                   (1)                                         

 
An infected agent does not transmit the viruses to others 
during the incubation period and remains exposed. By the 
probability α, an exposed agent becomes an infectious one 
who may infect others with the viruses. An infectious agent 
recovers by the probability β and acquires continuous 
immunity to COVID-19. A recovered agent no longer 
transmits the viruses to others. 

Since the strength of the immune response to viruses 
varies from person to person [20], our model presumes the 
heterogeneity of susceptibility to viral infection among 
agents. A susceptibility value s is assigned to each agent 
according to the Gaussian distribution, which is supposed 
plausible in this case [20]. 

B. Activity-driven networks fitted to real data 
Activity-driven networks in which agents interact with 

others are created according to the algorithm as follows [14]. 
1. At each time step t, the network starts with N 

disconnected agents. 
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2. Each agent i becomes active with probability ai and 
an active agent creates m links with m other randomly 
selected agents. 

3. At the next time step t + 1, all the links in the network 
are deleted and the process returns to 1.  

As observations in different real-world networks suggest 
[21], the activity value a is heterogeneous within agents and 
approximately follows a power law distribution described as 
 

P(a)=Ba-γ,                                  (2) 
 
where B is a constant and γdenotes a scaling exponent. 

In the present model, the values of activity a of all agents 
are fitted to real mobility data so that activity values change 
over time in accordance with the change of mobility observed 
in real data. The data report the mobility which indicates how 
visitors to or time spent in categorized places change within a 
specific region of a country. Categorized places include ‘retail 
and recreation’, ‘grocery and pharmacy’, ‘parks’, ‘transit 
station’, ‘workplaces’, and ‘residential’. The reported 
mobility is shown as a positive or negative percentage since 
the mobility for the report date is compared with the baseline 
which indicates a normal value for that day of the week [15].  

We have selected three categorized places that are likely 
to be affected by the ‘state of emergency declaration’, i.e., 
‘retail and recreation’, ‘transit station’, and ‘workplaces’, 
because we focus on the period when the declaration was 
enacted. Figure 1 indicates the successive change of mobility 
values observed in the three selected places in Tokyo, Japan 
from February 15th until June 30th (137 days).  

Using the mobility values reported from these three places, 
activity ai,t for agent i at timestep t is calculated as,  

 
ai,t = ai ∙  Mt                                  (3) 

 
where Mt denotes the average of the mobility values reported 
from the three categorized places at timestep t.  

C. Settings and conditions of simulation 
The number of agents N in our model is 100,000, which 

represents approximately one-hundredth of Tokyo’s    
population. One timestep in the model corresponds to one day, 
so the simulation progresses for 137 timesteps, which 
represent the period from February 15th to June 30th. Figure 2 

shows the course of the daily number of positive cases with 
SARS-CoV-2 during the same period in Tokyo [25]. Before 
running simulations, the values of both activity a and 
susceptibility s are allocated to all agents based on the 
distributions described before in this section. The values of the 
parameters to be estimated from the simulation results, i.e., Tr, 
α, and β are initially given by sampling from the prior 
distributions. Table I summarizes the hyperparameters of 
distributions from which the parameter values are sampled. 

A sequence of 137 edge-lists, each of which represents the 
links between agents in the activity-driven network at each 
timestep, is generated in advance following the algorithm 
presented in Section III B. The simulation starts with one 
infectious agent at the first timestep.  

We have encoded all the models using Python Numpy,  
Scikit-learn, and other toolkits. 

IV. RESULTS 
Simulations were carried out 3,500 times in parallel on 30 

CPUs yielding a total of 105,000 results over approximately 
60 hours. A series of numbers showing the course of the 
number of newly infected agents at each timestep was 
obtained as the result of each simulation running with a 
particular set of parameter values.  

We scored the result of each simulation based on the Mean 
Squared Error (MSE) calculated using the observed data in 
Tokyo described in Figure 2. With respect to the observed data, 
we assumed that only 10% of the actual number of daily 
infected individuals was reported officially, i.e., the reporting 
rate is 10% [22]. By using the sets of parameter values taken 
from the top 1,000 simulations scored by MSE (acceptance 
rate = 1%), the posterior distributions of parameters were 
inferred. Figure 3 displays the inferred distributions for 
parameters Tr, α, and β.  

As to β, which is the recovery rate, the inference does not 
appear to have converged sufficiently since the distribution 
seems uniform. However, the mean value of distribution (i.e., 

 
Figure 1.  Change of activity in three categorized places from Feb 15th to 

Jun 30th in Tokyo. 

 
Figure 2. Course of number of daily positive cases from Feb 15th to Jun 

30th in Tokyo. 

TABLE I.  HYPERPARAMETERS OF DISTRIBUTIONS 
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0.25) coincides adequately with the length of infectious period 
that empirical research suggests [23]. The median time of 
infectious period suggested in research is 4.1 days, so it is the 
inverse of the mean value of distribution estimated for 
recovery rate. With respect to α which is the probability of 
becoming infectious, the distribution appears to gradually 
converge around the value 0.27, although the shape of the 
distribution is not evident enough. The mean of the 
distribution could have converged to approximately this 
value, had we carried out far more simulations. The inverse of 
the value 0.27 coincides with the median time of incubation 
period, i.e., 4-5 days, as suggested by empirical research [24]. 
As for Tr, i.e., transmission rate, the distribution seems to 
converge moderately between 0.9 and 1.0, while its shape is 
somewhat ambiguous. If the mean of the prior for Tr had been 
larger and many more simulations had been run, the shape of 
distribution could have been more obvious. 

To validate our model, we compared the simulation results 
with real data, in terms of the 7-day average number and the 
cumulative number of newly infected agents, by calculating 
Pearson correlation coefficient. As for the 7-day average, the 
top 10 simulation results scored by MSE reached 
approximately 0.90 (p<1e-40) in Pearson correlation 
coefficient, as indicated in Figure 4. For the cumulative 
number, the top 10 results evaluated by MSE reached as high 
as 0.993 (p<1e-100) in Pearson correlation coefficient. 
Therefore, we appear to have sufficiently validated our model 
through parameter inference that fits the model to the 
observed data, and we have succeeded in identifying the 
corresponding parameter values. The values identified for 
parameters Tr, α, and β are 0.99, 0.26, and 0.31, respectively. 

With these parameter values identified to represent the 
actual data, we performed additional simulations under 
imaginary conditions. The simulations suggest the results that 
could have been realized when people’s activity had not been 
restricted. Without restriction on people’s activity, the number 
of daily infected cases would have reached over 150,000 and 

more than half of the people could have been infected, leading 
to herd immunity. However, on the other hand, as Figure 5 
shows, the cumulative number of social links in the networks 
fitted to real mobility data is 33% less than that in virtually 
generated activity-driven networks in which the activities of 
agents do not decline. The decrease of links in the networks 
can be considered as the economic and social cost to restrain 
the spread of infection with COVID-19. 

Although it will be extremely difficult to evaluate the 
effectiveness as well as legitimacy for measures like ‘state of 
emergency declaration’, predictions using a well-validated 
simulation model may help do that more rationally. 

V. VACCINE STRATEGIES 
      While vaccines can arguably be a ‘game-changer’ in the 
pandemic, their supply is still inadequate globally. 
Examination of the effectiveness of various vaccine 
strategies using a model well-fitted to the observed data will 
be practically needed in this context. 

A. Comparison between various strategies 
Utilizing virtual activity-driven networks in which agents’ 

activities are not restricted, we demonstrate a comparison of 
the effectiveness of three vaccination strategies through 
simulations of our model with parameter values identified in 
Section IV. 

We examine the following three vaccine strategies: 
1) Random: vaccinating randomly chosen agents at each 

timestep. 
2) Priority for highly susceptible people: preferentially 

vaccinating the most susceptible 30% of agents, e.g., 
elderly, then randomly. 

3) Priority for agents relatively active in networks: 
preferentially vaccinating the most active 30% of 
agents, then randomly.  

 
                                    values                values        values 

Figure 3. Inferred distributions of parameters Tr (left), α (center), and β (right). 

 
Figure 4. Top 10 results (blue, dashed) scored by MSE, observed data (red), 

daily(left), 7-day average(center), cumulative(right). 
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In addition, we run simulations under the following 
different conditions: 

a) Vaccine availability: 1,000 shots (1% of the people) 
or 500 shots (0.5% of the people) at each timestep. 

b) Vaccine efficacy: reducing the viral susceptibility of 
the agents by 80% or 30% (e.g., against variants). 

The availability of vaccines and their efficacy may affect 
the evaluation of the performance of a vaccine strategy, so 
simulations are performed with these different conditions in 
mind. We run simulations over activity-driven networks with 
no governmental restrictions on the agents’ activities. The 
vaccination starts from the 40th timestep in these simulations. 

Figure 6 displays the courses of the number of newly 
infected agents when each of three strategies is performed 
under four different conditions. It is observed that preferential 
vaccination for agents who are more active in the networks is 
the most effective strategy under all conditions. It is also 
apparent that the difference in effectiveness between the three 
strategies is eminent when vaccines are abundant and 
effective. As the speed of vaccination slows down, or the 
effects of vaccines against viruses decline, the three strategies 
differ less evidently in their performance.  

Figure 7 shows the cumulative number of infected agents 
among the highly susceptible group (e.g., elderly) when each 
of the three strategies is undertaken under four different 
conditions. Though it may be counterintuitive, the number of 
infected agents among the highly susceptible ones is lower 
when active agents are prioritized than when highly 
susceptible agents are vaccinated first.  

Taking these observations together, it can be implicated 
that preferentially vaccinating for more active individuals in 
the network is a promising strategy, though it may be 
practically difficult to carry out. 

B. Vaccine passport 
Once people are vaccinated, they will probably be 

enthusiastic to resume their activities they have been forced to 
abandon during the pandemic. ‘Vaccine passport’, which 
allows vaccinated people to restart their business as well as 
leisure activities is practically needed. However, can vaccine 
passport really achieve both restraint of virus spreading and 
stimulation of social activity? It will make sense to give a clue 
to this question by running simulations with a model that 
represents well the observed data.  

Therefore, we compared a vaccine passport scenario with 
other scenarios with respect to the mitigation of infection as 
well as the decrease of social links. We examined the 
following three scenarios. 

1) Vaccine passport: agents are allowed to increase their 
activity by 20% after being vaccinated. 

2) Sustained restriction on activity: agents are forced to 
reduce their activities even after vaccination. 

3) No restriction on activity: no restriction on agents’ 
activities is executed. 

Simulations of our model are carried out over activity-
driven networks where the activities of all agents are initially 
reduced by 5%. The vaccination starts from the 40th timestep. 

In terms of the three scenarios, Figure 8 shows the courses 
of cumulative number of infected agents among the highly 
susceptible group (left) and the comparison of total number of 
social links generated in the networks (right). 

When compared with no restriction scenario, vaccine 
passport scenario reduces the number of infected agents by 
73% while it only loses social links by 4.8%.  Sustained 
restriction scenario reduces the spread of infection more 
efficiently while decreasing social links more significantly. 

 
Figure 6. Comparison of 3 vaccine strategies under 4 different conditions. 

 
Figure 7. Cumulative number of highly susceptible agents who are infected. 
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Based on these observations, it may be suggested that 
vaccine passport definitely helps the activity of society resume 
while mitigating the spread of infection considerably. Thus, 
provided that the vaccine’s efficacy is sufficient as expected 
among individuals and health care system is unlikely to be 
overloaded, vaccine passport could be a promising means to 
improve the situation of COVID-19.  

VI. CONCLUSION AND FUTURE WORK 

We have developed an agent-based model of COVID-
19 infection with activity-driven networks that are fitted to 
actual mobility data. We inferred the parameters of our 
model via approximate Bayesian computation with 
105,000 results of simulations. Through additional 
simulations under certain conditions, we also examined the 
effectiveness of several vaccination strategies and 
suggested promising one. 

In future work, we will attempt to infer posterior of 
parameters more sufficiently by using deep learning [19] 
as summary statistics in approximate Bayesian 
computation. 
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