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Abstract—This paper describes a novel acceleration technique of
the Two-Phase Quasi-Newton method using momentum terms
for optimization problems. The performance of the proposed
algorithm is evaluated on an unconstrained optimization problem
in neural network training. The results show that the proposed
algorithm has a much faster convergence than the conventional
Two-Phase Quasi-Newton method.
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I. INTRODUCTION

From the past to the recent years, much research has been
conducted to improve the accuracy and speed of optimization
for various problems. Neural Network (NN) training has a high
performance when it comes to an unconstrained optimization
problem. However, this ability highly depends on the training
algorithm used in NNs. In this research, we aimed at construct-
ing a training algorithm with higher performance and higher
speed. Many algorithms have been proposed for this research
task. In this paper, we consider the optimization problem of

min
w∈Rn

E(w), (1)

where w and E(w) denote the parameter and the objective
function, respectively. Optimization problems have been solved
with high precision by algorithms based on quadratic con-
vergence characteristics, such as Newton or Quasi-Newton
(QN) methods. This is because a solution can be obtained
fast and with higher accuracy than algorithms with first-order
convergence characteristics [1].

In recent years, for further acceleration and accurate opti-
mization, the Two-Phase Newton method, which is based on
third-order approximation, has been proposed [2]. However,
this method requires a Hessian of (1) and matrix solutions
for each iteration. Therefore, the Two-Phase Newton method
takes time to derive a solution. To deal with this problem, the
Two-Phase Quasi-Newton (Two-Phase QN) method has been
proposed, in which the inverse Hessian is approximated by the
gradient of (1) using an iterative formula [3]. This method is
more effective for the unconstrained optimization problems,
such as (1), than conventional algorithms. On the other hand,
the acceleration of the standard QN with momentum terms
was proposed as Nesterov’s Accelerated Quasi-Newton (NAQ)
method [4]. NAQ succeeded in drastically reducing the number
of iterations and computational time compared to QN.

In this research, a new Quasi-Newton algorithm based on
the third-order approximation is proposed for the accelera-
tion of Two-Phase QN incorporating the momentum terms
in the same way as NAQ. This method is referred to as
Two-Phase Nesterov’s Accelerated Quasi-Newton (Two-Phase
NAQ) method. In this paper, the performance of the proposed

algorithm is demonstrated through computer simulations using
NN training for a simple unconstrained optimization problem
and compared with the conventional method.

The contents of this paper are structured as follows: Section
II introduces the conventional algorithms, such as Two-Phase
Newton and Two-Phase QN. Section III proposes the novel
algorithm, Two-Phase NAQ, which is the acceleration method
of Two-Phase QN by introducing the momentum term. Section
IV provides simulation results to demonstrate the validity of
the proposed Two-Phase NAQ. Section V concludes this paper
and describes future works.

II. TWO-PHASE QUASI-NEWTON METHOD

The Two-Phase Newton method for optimization utilizes
the gradient and Hessian of the objective function to result
in the third-order approximation [2]. The iterative formulae
of Two-Phase Newton are defined using the two-phase update
scheme of the parameters (2) and (3).

zk = wk − αk

[
H (wk)

]−1∇E(wk), (2)

wk+1 = wk − αk

[
(1/2)

(
H (wk) + H (zk)

)]−1∇E(wk).
(3)

where ∇E(wk) and H (wk) are the gradient and the Hessian
of (1). αk and αk are the stepsizes at wk and zk along
the directions [H (wk)]

−1∇E(wk) and [(1/2)(H (wk) +
H (zk))]

−1∇E(wk), respectively. Two-Phase Newton needs
to calculate the Hessian and its inverse. Therefore, Two-
Phase QN was proposed to reduce these computational costs
by the approximation of the inverse Hessian using Broyden-
Fletcher-Goldfarb-Shanno (BFGS) formulae [3] of QN. Ac-
tually, H(zk) which is the approximated inverse Hessian of
H (zk)

−1, is obtained by

H(zk) =
(
I− sky

T
k

yT
k sk

)
Hk

(
I− yks

T
k

yT
k sk

)
+

sks
T
k

yT
k sk

, (4)

where sk = zk − wk and yk = ∇E(zk) − ∇E(wk). As a
result, the iteration formulae of Two-Phase QN is shown as
(5) and (6) based on [3].

zk = wk − αkHk∇E(wk), (5)

wk+1 = wk − αkHk+1∇E(wk), (6)

where Hk+1 is calculated by

Hk+1 = λHk + (1− λ)H(zk). (7)
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III. PROPOSED ALGORITHM - TWO-PHASE NESTEROV’S
ACCELERATED QUASI-NEWTON METHOD

In this section, the Two-Phase NAQ is proposed. Two-
Phase QN is accelerated by using the momentum acceleration
technique in the same way as NAQ. Specifically, Two-Phase
NAQ is derived by the third-order approximation of (1) around
wk+µkvk, whereas (1) was approximated around wk in Two-
Phase QN [3]. The proposed method drastically improves the
convergence speed of Two-Phase QN using the gradient vector
at wk+µkvk of ∇E(wk+µkvk) called Nesterov’s accelerated
gradient vector [4]. The iterative formulae of the proposed
Two-Phase NAQ are defined as

ẑk = wk + µkvk − αkĤk∇E(wk + µkvk), (8)

wk+1 = wk + µkvk − αkĤk+1∇E(wk + µkvk), (9)

where, µkvk is the momentum term, in which vk = wk −
wk−1 and µk is the momentum coefficient. In (8), ẑk denotes
the middle-step suggested by the two-phase technique, in
order to accelerate using the third-order approximation. (9) is
considered as Two-Phase Newton method with the momentum
term. The Ĥk matrix is iteratively updated by

Ĥk+1 = λĤk + (1− λ)Ĥ(ẑk), (10)

Here, Ĥ(ẑk) is iteratively approximated by (11).

Ĥ(ẑk) =
(
I− pkq

T
k

qT
k pk

)
Ĥk

(
I− qkp

T
k

qT
k pk

)
+

pkp
T
k

qT
k pk

. (11)

where, pk = ẑk−(wk+µkvk) and qk = ∇E(ẑk)−∇E(wk+
µkvk). In this paper, the momentum coefficient µk is set to
the adaptive scheme suggested in [4]. The algorithm of Two-
Phase NAQ is illustrated in Figure 1. In this research, λ is set
to 0.5.

IV. SIMULATION RESULTS

Computer simulations are conducted to demonstrate the
validity of the proposed Two-Phase NAQ for optimization
problems. In this simulation, NN training is considered as
an example for optimization problems. The function (12) is
approximated using a feedforward NN with one hidden layer
[4][5].

f(x) = 1 + (x+ 2x2)sin(−x2). (12)

The input and output are x and f(x), respectively. The sample
dataset includes 400 training and 10,000 test points. The
training and the test datasets are generated with 0.02 intervals
and the random sampling in x ∈ [−4, 4), respectively. The
trained network has a hidden layer with 7 neurons. Therefore,
the structure of the NN is 1-7-1. Each hidden neuron has
a sigmoid function as the activation. In this research, the
Mean Squared Error (MSE) is considered as the objective
function of (1) for the training of the NN. 10 independent
runs with w initialized by uniform random numbers in the
range [−0.5, 0.5] are conducted. The trained NN is estimated
by the average, best and worst of Etrain(w) and Etest(w),
with the average of computational time (s) and the average
of iteration count (k). The termination conditions are set to
ϵ = 1.0×10−6 and kmax = 30, 000. The performance of Two-
Phase NAQ is compared with the conventional Two-Phase QN
[3]. The stepsizes αk and αk for each algorithm are determined
according to Armijo’s conditions [4]. The simulation results of

1. k = 1;
2. Initialize wk= random[−0.5, 0.5], Ĥk and Ĥ(ẑk) = I (unit
matrix) and vk = 0;
3. While(||∇E(wk)|| > ϵ and k < kmax)

(a) Update µk;
(b) Calculate ∇E(wk + µkvk);
(c) Update ẑk using (8);
(d) Calculate ∇E(ẑk);
(e) Update Ĥk+1 using (10) and (11);
(f) Update wk+1 using (9);
(i) k = k + 1;

4. return wk;

Figure 1. Algorithm of the proposed Two-Phase NAQ.

(12) are summarized in Table I. The table shows that the pro-
posed Two-Phase NAQ converges faster than Two-Phase QN
without loss of optimization properties. That is, the iteration
counts and time of Two-Phase NAQ are much smaller than
Two-Phase QN. At the same time, both algorithms here have
comparable results for Etrain(w) and Etest(w). The effect of
increasing speed by Two-Phase NAQ is shown in Figure 2.
Figure 2 shows the best training errors E(w) for the iteration
count (k) of Two-Phase QN and Two-Phase NAQ, which are
Etrain(w) = 0.67 × 10−3 and Etrain(w) = 0.31 × 10−3,
respectively. From this figure, it is shown that the errors of
Two-Phase NAQ drastically decrease in the early stages of
the training compared to Two-Phase QN. Furthermore, the
calculation times per iteration of Two-Phase QN and Two-
Phase NAQ are 0.25×10−3 and 0.27×10−3 (s), respectively.
As a result, it is confirmed that the total simulation time of
Two-Phase NAQ is faster than Two-Phase QN. This result is
obvious from the following consideration. The summary of
the computational cost is illustrated in Table II. The cost of
function and gradient evaluations can be considered to be nd,
where n is the number of training samples involved and d
is the number of parameters. The Two-Phase NAQ and Two-
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Figure 2. Plot of training error vs iteration count.
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TABLE I. SUMMARY OF SIMULATION RESULTS OF (12).

Algorithm
Etrain(w)(×10−3) Time Iteration Etest(w)(×10−3)

Ave / Best / Worst (sec) counts Ave / Best / Worst
Two-Phase QN 6.85 / 0.67 / 18.64 4.49 17,200 6.66 / 0.66 / 18.12
Two-PhaseNAQ 5.67 / 0.31 / 18.61 0.80 2,854 5.56 / 0.31 / 18.08

TABLE II. SUMMARY OF THE COMPUTATIONAL COST.

Algorithm Computational Cost
Two-Phase QN 2nd+ 2d2 + 2ζnd

Two-PhaseNAQ 2nd+ 2d2 + 2ζnd
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Figure 3. Plot of comparison between the test and the Two-Phase NAQ NN’s
model.

Phase QN compute the gradient twice per iteration. In both
algorithms, the step length is determined by the line search
method which involves ζ function evaluations until the search
conditions are satisfied. As a result, it can be considered that
the Two-Phase QN and the proposed Two-Phase NAQ require
the same computational cost. For measuring the accuracy of
modeling, the output of the neural model trained by Two-Phase
NAQ with Etest(w) = 0.31× 10−3 is compared with the test
data in Figure 3. Figure 3 shows a good match between the
neural model and the test data.

V. CONCLUSION

In this research, we proposed a novel optimization al-
gorithm, which was referred to as Two-Phase Nesterov’s
Accelerated Quasi-Newton (Two-Phase NAQ) method. The
proposed algorithm was developed based on the third-order
approximation method incorporating a momentum acceleration
technique. The effectiveness of the proposed Two-Phase NAQ
was demonstrated through computer simulations compared
with the conventional Two-Phase QN for the training of NNs.
From the simulation results, it can be concluded that the
proposed method succeeded in surpassing the acceleration of
Two-Phase QN without increasing the computational cost.

In the future, the convergence properties and further im-
provements of the proposed algorithm will be studied. Also,
the validity of the proposed algorithm for large-scale and com-
plicated real-world optimization problems, such as microwave
circuit modeling [4], will be demonstrated.
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