eKNOW 2020 : The Twelfth International Conference on Information, Process, and Knowledge Management

Swarm Intelligence for Solving a Traveling Salesman Problem

Isabel Kuehner

German Aerospace Center (DLR) Oberpfaffenhofen
Institute of Communications and Navigation
Wessling, Germany
Baden-Wuerttemberg Cooperative State University
Mannheim, Germany
Email: isabel.kuehner@dlr.de

Abstract—Learning from the social behavior of animals, like
bees or ants, opens the field for Swarm Intelligence (SI) al-
gorithms. They can be applied to solve optimization problems,
like the Traveling Salesman Problem (TSP). For SI algorithms,
each member of the swarm benefits from the whole swarm and
the whole swarm benefits from each individual member. The
members communicate either directly or indirectly with each
other in order to find an optimal solution. This paper presents an
overview of three state-of-the-art SI algorithms, namely, the Ant
Colony Optimization (ACO), the Particle Swarm Optimization
(PSO), and the Bee Colony Optimization (BCO) for solving a
TSP. All three algorithms have been implemented and tested.
They have been evaluated with respect to the balance between
exploration and exploitation.

Keywords—Swarm Intelligence; Traveling Salesman Problem;
Ant Colony Optimization; Particle Swarm Optimization; Bee Colony
Optimization.

I. INTRODUCTION

Many animal species work and live together in swarms.
Insects find their optimal way to a food source by commu-
nicating with each other and working together. This observed
behavior can be applied to optimization problems, e.g., the
Traveling Salesman Problem (TSP). Algorithms have been
developed, which simulate the swarm behavior of animals.
Such algorithms are categorized as Swarm Intelligence (SI)
algorithms.

All SI algorithms have in common that they have to create a
balance between exploration and exploitation [1]. Exploration
means finding new solutions for a problem. For the TSP,
this is realized by creating new paths. Exploitation means the
use of currently good solutions, i.e., the use of the best path
known at the moment. If the swarm focuses on exploitation, it
converges quickly towards a non-optimal solution. Therefore,
both aspects, exploration and exploitation need to be balanced
[1].

Insects in particular, such as ants, have a great influence on
the development of SI algorithms. Their social interactions are
a role model for an algorithm called Ant Colony Optimization
(ACO) [2]. This algorithm is based on the food searching
process of ants by leaving a pheromone trail on their path.
Another widespread algorithm in the field of SI is the Particle

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-765-8

Swarm Optimization (PSO). It is based on observations of
bird flocks and the social interaction between each member
of the flock [3]. The third algorithm presented throughout the
paper, the Bee Colony Optimization (BCO) algorithm [4], has
its origin in the foraging behavior of bees. Honeybees fan out
searching for food and communicate their discoveries to the
other bees after returning to the hive by means of dancing.
All three algorithms have in common that each member of
the swarm calculates a solution for the problem. This solution
is then compared to the whole swarm or to the direct neighbors
of the member. The comparison is either done directly or
with indirect communication. The bees’ waggle dance is an
example for direct communication, whereas ants communicate
indirectly by leaving pheromone trails.

The aim of this paper is to introduce the topic of SI, to
present the three aforementioned techniques, and to evaluate
if they are applicable to solve discrete optimization problems,
e.g., the TSP. Furthermore, the importance of exploration and
exploitation is highlighted and evaluated. The TSP describes
a salesman who wants to visit a specific number of cities
and tries to find the shortest way to connect those cities. He
wants to visit every city only once. The city where he starts
is, moreover, his destination. Throughout this paper, cities are
called nodes and the connections between cities are referred
to as edges. The edges have different lengths.

All three algorithms have been implemented and tested for
the TSP. The experimental results only give an idea how the
problem can be solved by the SI algorithms. Those examples
are not optimized and better solutions may be possible. In
contrast to [5], the experiments focus on the balance between
exploration and exploitation. For the evaluation of perfor-
mance and time efficiency, see [5].

The paper is structured as follows. The ACO algorithm
is explained in Section II. Section III focuses on the PSO
algorithm. In Section IV, the BCO is presented. The results
obtained when applying each of the presented algorithms to a
TSP are shown in Section V. The work is concluded in Section
VL

49

eKNOW 2020 : The Twelfth International Conference on Information, Process, and Knowledge Management

II. ANT COLONY OPTIMIZATION (ACO)

The ACO algorithm is based on the food searching process
of ants. While moving, each ant leaves a pheromone trail on its
path [6]. Ants communicate indirectly with the other members
of the swarm, as information is mediated by the environment.
This form of communications is known as stigmergy com-
munication [7]. In the beginning, each individual ant chooses
its way randomly. When there are, for instance, two possible
ways to a potential food source, one shorter than the other,
both paths have the same probability to be chosen. The ants
selecting the short path reach the food source earlier than the
others. The ants leave pheromones on their path to the food
source. They take pieces of the food and bring them back to
the nest. If there is much food to gather at the food source and
it is good food, the ants leave a trail with more pheromones on
their way back [6]. The ants, which chose the long path in the
beginning reach the food source later. When returning to the
nest, they prefer the path with more pheromones, which is the
shorter path. The pheromones on the paths evaporate partly
to avoid a convergence of the swarm towards local minima
[8]. Nevertheless, the pheromone value on the shorter path is
higher than on the longer one. As a result, all ants decide to
take the short way in the end [6].

This simplified food searching process is simulated by the
ACO algorithm. In the following, this algorithm is explained
for an TSP application. For this application, the path is
represented by a sequence of nodes, which are connected by
edges. The symbols used in the equations are listed in Table
L.

TABLE I. SYMBOLS USED IN THE FORMULAS EXPLAINED IN SECTION II

symbol used meaning
s next node
r current node
U next possible node
k ant
J(r) all nodes that have not been visited yet by ant k
7(r,u) pheromone value of an edge between r and u
n(r,u) inverse of distance between r and u
B parameter to manipulate the proportion between
distance and pheromone value (3 > 0)
q random number between [0...1]
qo0 proportion between exploration and exploitation
0<gq@<D
S random variable connected to the random-
proportional rule
pi(r, s) probability to choose node s as next node
P pheromone decay parameter for local update
O<p<D
) initial pheromone value
a pheromone decay parameter for global update
O<a<l

In the beginning, all edges have the same pheromone value,
and each ant chooses its first tour randomly [9].
The ACO is divided into four steps:

1) all ants are planning their tour according to the
pheromone value on the path,
2) ants leave pheromones on the path,

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-765-8

3) the pheromone value of the global-best path is updated,
4) the pheromone values on all edges partly evaporate.

Those steps are explained in the following and are visualized
in Figure 1.

1) Path Planning: Each ant of the swarm plans its path
according to the State Transition Rule

arg max,,c 5, {[r(r,u)] - [o(r, w))?),
s = if ¢ < qo (exploitation) ;M
S, otherwise (biased exploration)

where r is the current node of the ant k, s is the next node,
and ¢ is calculated randomly [9]. Is ¢ smaller than or equal
to qo, the ant chooses exploitation. Otherwise exploration is
chosen. In the case of exploitation, the ant chooses the best
path according to the value of pheromones on the edge 7(r, u)
and the length of the distance between the current node r and
a possible node u (n(r, u)). The balance between distance and
pheromone value is regulated by 3. For all u € Ji (., i.e.,
all remaining nodes that have not been visited yet, 7(r,u) -
n(r,u)? is calculated and the maximum is chosen [9].

If biased exploration is chosen, the next node is selected
with the random-proportional rule

7(r,s)-n(r,s)”
> T(ru)n(ru)f

wETg (1

if ue Jk(,«)
pr(r,s) = ;@

0, otherwise

where S represents the result of this random-proportional rule
[9]. Equation (2) calculates the probability for each node to be
chosen based on the pheromone values on the edges and their
length. Short edges with high pheromone values are preferred.
For exploration, 7(r, s)-1(r, s)? is calculated as well [9]. This
results in a weighted value, which includes the pheromone
value on the path as well as the length of the path. For this
reason, the exploration is referred to as biased exploration [2].
The term is divided by the sum of all 7(r, w) - n(r, u)”?, where
u is a possible node that has not been visited yet [9].

After all ants have chosen their tour and have returned to
the initial node, the pheromone values are updated.

2) Local Update Rule: While the ants take their tour, they
leave pheromones on the path. In analogy to real ants, the
values depend on the quality and quantity of the food they
encountered. The more and the better the food, the more
pheromones they leave [6]. The pheromone value of each edge,
which is part of an ant’s tour, is updated according to

T(Ta S) =p- AT(Ta S) ’ (3)
with 0 < p < 1 [9]. The value of A7(r,s) depends on the
implementation [9]. One option is to set it to a const

AT(r,s) =10. 4)

There are other approaches, e.g., using Reinforcement Learn-
ing to determine A7(r,s) [9]. For the sake of simplicity, the
initial pheromone value in (4) is used to update the pheromone
values on the ant’s path.

50

eKNOW 2020 : The Twelfth International Conference on Information, Process, and Knowledge Management

Pheromone values
on edges

Exploitation

Path planning
based on

Initialization

Random-proportinal
rule

Local update Global update Evaporation

Figure 1. Steps of the ACO algorithm

3) Global Update Rule: After each ant of the swarm has
completed its path and updated the pheromone values on the
edges it has visited, the global update is performed. Extra
pheromones are spread on the globally best tour, i.e., the
shortest tour found so far. The shortest tour is identified and
the pheromone values of each edge belonging to the globally
best path is updated by

T(Tv S) = - AT(Ta 5) ’ @)

where « is a predefined parameter between 0 and 1 [9].

4) Evaporation: To avoid rapid convergence, parts of the
pheromone values evaporate in each iteration. Moreover, this
offers the possibility to explore new areas [6]. For each edge,
which is updated, the updating rules are modified, so parts
of the pheromones evaporate [9]. The global update rule is
modified and results in

T(r,s)=1—a) 7(r,s) + a-A7(r,s). (6)
An evaporation factor is added to the local update as well,

7(r,s) =1 —p)-7(r,s) +p- A7(r,s). @)

The previously explained steps are iterated for a defined
number of iterations.

Besides the TSP application, the ACO has been used in
swarm robotics, e.g., for Unmanned Aerial Vehicles (UAVs)
[10], or path planning on mobile robots in [11] and [12].
Additionally, the ACO has been applied to load balancing for
peer-to-peer networks [13] or fuzzy logic controller [14]. Some
variants published over the past few years are summarized in
Table II.

III. PARTICLE SWARM OPTIMIZATION (PSO)

In contrast to the ACO, which is based on the social
behavior of ants, the PSO has its origin in the observation of
bird flocks. Imagine a bird flock or a fish school that is moving.
Although, there can be hundreds of individuals, the movement
of the whole swarm seems as they are one. To achieve this
behavior, the individual elements of the swarm interact with
their direct neighbors to reach a collective movement. To
imitate the aforementioned behavior, the PSO algorithm was
developed. The symbols used in equations throughout this
section are explained in Table III.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-765-8

TABLE II. ACO VARIANTS

Ref.
[13]
[14]

Variant
Inverted ACO (IACO)

ACO Variants Subset
Evaluation (AVSE)

Summary

inverts effect of pheromones

finds best solution by
comparing solutions of different
ACO variants

Improved ACO
(ICMPACO)

divides problem into [15]
sub-problems and introduces

roles for the ants

Voronoi-based ACO
(V-ACO) (V-ACO)

ACO combined with Voronoi
partition with tournament
selection method

[16]

Adaptive Continuous [17]
Ant Colony
Optimization (AACOR)
Improved Continuous
Ant Colony

Optimization (IACOR)

adaption of evaporation rate
based on relative diversity

success-based random-walk
selection (Brownian motion and
Lévy flight)

[18]

TABLE III. SYMBOLS USED IN THE FORMULAS EXPLAINED IN SECTION

11T
symbol used meaning
Vi velocity of particle ¢
c1, c2 acceleration coefficients
R1, Ro vector containing random values between [0...1]

pPi personal best position of particle ¢

X4 position of particle 7

Py best position of particles in neighborhood

To reach a swarm-like behavior, each individual of the
swarm, in the field of PSO called particle, determines the
best position with the best fitness. Therefore, it takes its
own experience and its neighbors best positions into account.
Fitness specifies how good a solution is. The PSO was first
mentioned in [3] in the field of simulating bird flocks. For
the algorithm presented by the authors, the particles change
their position by modifying their velocity in each iteration.
The PSO is based on an Adaptive Culture Model mentioned
in [19]. It consists of three principles:

« evaluate: the ability to determine if something is good or
bad.

o compare: the ability to compare own results with neigh-
bors.

o imitate: the ability to imitate the behavior of superior
neighbors .

51

eKNOW 2020 : The Twelfth International Conference on Information, Process, and Knowledge Management

Exchange solution
with neighbors

Initialization

Calculate new
velocity

Update personal
best solution

Update global best
solution

Figure 2. Steps of the PSO algorithm

The steps of the PSO algorithm follow the principles of the
Adaptive Culture Model (Figure 2).

In each iteration, all particles of the swarm evaluate their
own position. They have a "memory” to store all positions and
are able to compare the current position to those stored in the
past. The individual particle wants to return to a position that
used to be better than the current position [3]. Each particle
exchanges its position and their corresponding fitness with its
neighbors. The neighborhood can either be the whole swarm,
or is limited to a predefined number of nearest members of the
swarm [19]. The particle’s velocity is then updated according
to its own results and its neighbors best positions. The velocity
update is calculated by

Vi(t+1) = vi(t)+c1- Ri®@(pi—xi(t))+c2- Ro®@ (pg —%4(t)) ,
(3

where ® indicates a point-wise vector multiplication. The
velocity update can be divided into three parts [6]:

e momentum part
e cognitive part
¢ social part

The momentum part v;(¢) specifies the velocity of the particle
1 of the last iteration. Consequently, the particle stays on track.
The cognitive part c; - R ® (p; —x;(t)) represents the particle’s
memory, where p; refers to the best position of particle 4, x; (t)
is the current position of 4, ¢ is a acceleration coefficient, and
R a vector containing random numbers between 0 and 1. The
particle tends to go back to better positions it visited in the
past. The social part is added by c2-Ro® (pg—x;(t)). Here, co
is a acceleration coefficient, Ry refers to vector with a random
numbers in the interval [0..1], and pg is the best position of
a particle in the neighborhood. The social part integrates the
neighbors best positions and determines how much the particle
is influenced by its neighbors’ [6].

Equation (8) is designed for continuous problems, which
needs to be adapted to discrete problems, e.g., the TSP.
Therefore, the PSO uses permutations. Swap Sequences (SSs)
are introduced, which replace velocities. One SS consists of
multiple Swap Operators (SOs). A SO contains the information
on which nodes are swapped [20]. As an example, a path
(a,c,d, e, b) is defined that has been chosen by a particle and
an SS ((1,3),(5,2)). The swaps of all SOs (e.g., (1,3)) are
performed from left to right. The SO defines the indexes of the
elements in the list which are swapped. So, after processing
the first SO, the path changes to (d, ¢, a, e, b). Then, the second
swap is performed and the path results in (d, b, a, e, ¢) [20].

For the TSP, the SS of each particle is updated every
iteration according to (8). The difference between the current

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-765-8

path of a particle and its personal best path is calculated by
an SS. The algorithm searches for all swaps that are needed
to transform the current path into the personal best path. The
same procedure is followed for the current path and the global
best solution. The terms ¢; - R; and cs - Ra, respectively, can
be replaced by c; and c,. Both variables are random values
between 0 and 1 which determine the probability and the
tendency to take the personal or global best solution [20].

After updating the velocity, i.e., the SS, the new path x; (¢t +
1) is calculated by

where x;(t) is the path and v;(¢ + 1) the velocity [21]. When
SSs are utilized, the old path is permuted to compute the new
path. Having the new path, the local update is conducted. If
the distance of the new path is shorter than the distance of
the personal best solution, the personal best path is updated.
Furthermore, the new path is compared to the best path on a
global level and the global best path is updated if x;(t+ 1) is
a better solution. The steps of the PSO are iterated multiple
times, so the swarm is able to converge towards a collective
solution.

The PSO has a wide range of applications, e.g., tuning of a
Proportional-Integral-Derivative (PID) controller [22], or cloud
computing [23]. Some variants, which have been published
during the last years, are presented in Table IV.

TABLE IV. PSO VARIANTS

Variant Summary Reference
Adaptive Learning PSO employ Adaptive Learning [24]
(ALPSO) strategy
Repository and Mutation introduces repositories for [25]
based PSO (RMPSO) global best and personal best

solutions
Decomposition assigns sub-swarms to [26]

Cooperative PSO
(DCPSO); Merging
Cooperative PSO
(MCPSO)

sub-problems
(divide-and-conquer)

IV. BEE COLONY OPTIMIZATION (BCO)

Another algorithm mentioned in the field of SI is the BCO.
This algorithm is based on foraging behavior like the ACO
[27]. In contrast to ants, honeybees communicate directly with
the other members of the swarm. They transmit information
without any physical interaction [7]. After the bees have been
searching for food, they return to their hive. They dance in
order to communicate the location of a food source. With the

52

eKNOW 2020 : The Twelfth International Conference on Information, Process, and Knowledge Management

honeybee’s dance, they try to convince the other bees to choose
the food source they are advertising [27]. Out of this behavior,
an algorithm was designed to solve optimization problems like
the TSP. This section focuses on the presentation of the BCO,
following the steps of the algorithm visualized in Figure 3.

Each iteration of the algorithm is divided into multiple
stages. During each stage, the bees build a partial solution
and the following steps are conducted:

1) forward pass,
2) backward pass.

For the TSP application, the number of stages depends on the
number of nodes m added to the partial solution during each
iteration.

1) Forward Pass: During the forward pass, all bees go out
of the hive and each bee builds its own partial solution. For
the TSP application, a part of the path is created by adding
m nodes [4]. In this implementation, the partial solutions are
calculated randomly. After building their partial solution, the
bees return to the hive. Then, the backward pass is performed.

2) Backward Pass: For the backward pass, the bees have
two options [27]. They can either

« abandon their partial solution (exploitation) or
o dance and advertise their solution to the others (explo-
ration).

If a bee decides to abandon its solution, it exploits the solution
of another bee. The shorter the distance of the other bee’s
partial solution, the more likely the bee chooses this partial
solution. After it has made a decision for a partial path, this
part is added to the bee’s own path [4]. For the TSP, every
bee is allowed to visit every city only once. Consequently, it is
crucial to check whether the chosen partial solution includes
cities that have already been visited. If this is the case, for the
implementation presented in this paper, the honeybee returns
to its own partial solution.

After conducting forward and backward pass for all stages,
a full path has been created. As a next step, the global best
path is updated [27]. Therefore, the lengths of the paths of all
bees are compared. The global best path is taken into account
for the following backward passes and partial solutions of the
global best path can also be chosen by the bees. After the
global best path has been updated, one iteration is finished.
To reach a convergence of the swarm, the steps of the BCO
algorithms are iterated for a predefined number of iterations.

Variants of the BCO, e.g., have been employed for a swarm
of autonomous drones [28] or path planning [29]. Especially,
variants of the Artificial Bee Colony (ABC), which was first
introduced in [30], have been published during the past few
years. Some of those variants are summarized in Table V. In
contrast to the BCO algorithm, the ABC divides the member
of the swarm into different groups which perform different
tasks.

All three algorithms have been implemented for the TSP
and the following section presents the results obtained in
experiments for all three algorithms.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-765-8

TABLE V. BCO VARIANTS

Variant Summary Reference
Arrhenius Arrhenius position update equation [31]
aABC (aABC) (aABC) combined with Arrhenius

equation
Lévy Flight ABC search strategy inspired by [32]
(LFABC) Lévy flight search
ABC with reinforcement vector for [33]
Reinforcement Learning solution update
(R-ABC)
Lbest Gbest ABC take local best and global best [34]
(LGABCO) solutions into account

V. EXPERIMENTAL RESULTS OF THE SI ALGORITHMS FOR
THE TSP

The experiments conducted for the three algorithms pre-
sented above have a similar setup. Ten nodes are placed ran-
domly on a grid. Those nodes represent the cities for all three
algorithms. The distances between the nodes are different.
Each algorithm is supposed to find a path which connects
all nodes while traveling a minimum distance. The number of
iterations has been limited to 200 for each algorithm. Each
algorithm has been tested 100 times.

The algorithms have been implemented in Python. Goal of
this paper was to test, if it is possible to solve the TSP with
each of the algorithms. Therefore, the algorithms have not been
implemented with respect to time efficiency and performance.
In contrast to [5], the experiments focus on the importance
of exploration and exploitation for each algorithm. For the
evaluation of performance, see [5].

Table VI summarizes the parameter configuration used for
the experiments.

TABLE VI. PARAMETERS USED FOR EXPERIMENTS

ACO PSO BCO
parameter value parameter value parameter value
iterations 200 iterations 200 iterations 200
population 100 population 50 population 100
B 0.7 c1 0.6 m 3
q0 0.8 c2 0.4
p 0.7
0 10.0
« 0.9

For each algorithm, the average length of the path that has
been chosen by the swarm is evaluated. As the experiments
were repeated 100 times for each algorithm, the path length
is averaged over all repetitions. Figure 4 includes the experi-
mental results of all three algorithms. The ACO is visualized
in blue, the BCO in red, the PSO in green and the optimal
solution in black.

For the ACO algorithm, the swarm consists of 100 ants.
In Figure 5, the ants only focus on exploitation. They always
choose the path with the highest pheromone value. This leads
to a fast convergence of the swarm, but it converges to a
local minimum. The swarm agrees on a non-optimal path.

53

eKNOW 2020 : The Twelfth International Conference on Information, Process, and Knowledge Management

Solution
completely
build?

Initialization

FalsePp]

Forward pass

Update global best

Backward pass .
P solution

True

Figure 3. Steps of the BCO algorithm

ACO (100 elements)
PSO (50 elements)
BCO (100 elements)

Optimal solution

0 50 100 130 200
Number of [terations

Figure 4. Average length of path by solving the TSP with the ACO (blue),
the BCO (red) and the PSO (green)

Figure 4 (blue) shows that better results are obtained if a
balance between exploration and exploitation is created. It
takes more time until the swarm converges to a solution.
However, the swarm’s solution is better than the one found
by focusing only on exploitation. This experiment shows that
the balance between exploration and exploitation is important
for SI algorithms.

o o o
2 = &

Length of Path

o
=

48

0 50 100 150 200

Number of Iterations

Figure 5. Proportion between exploration and exploitation is go = 1.0. The
ants choose exploitation with a probability of 100%

The results of the PSO algorithm in Figure 4 (green)
are obtained with a swarm of 50 particles. The path length

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-765-8

decreases with the number of iterations. The number of total
iterations was limited, so the algorithm may have performed
better if more iterations would have been allowed. The average
path length is decreasing constantly due to an effective balance
between exploration and exploitation. The experiments have
shown that a large number of particles in the swarm leads to
worse results when solving a TSP with PSO.

It is the other way around for the BCO. The more honeybees
form the swarm, the better are the experimental results. In Fig-
ure 4, the swarm consists of 100 bees and is visualized in red.
The advantage of this algorithm is the number of parameters.
The user only has to define the size of the partial solutions.
The disadvantage, as seen in the graph, is the convergence of
the swarm. In contrast to the other algorithms, the length of
the paths found decreases rapidly, but in comparison to the
other algorithms, towards a non-optimal solution. This means
exploitation predominates over exploration.

The experiments have shown that the TSP can be solved by
all of the three algorithms. The balance between exploration
and exploitation is important. Each algorithm has its advan-
tages and disadvantages. To make a decision which algorithm
is used, the number of elements in the swarm plays a role.
Moreover, the number of parameters can be an advantage
and a disadvantage. On the one hand, tuning takes a lot of
time, on the other hand parameters make it possible to apply
the algorithm for specific problems. For the TSP application
presented in the paper, the ACO algorithm performs best.
It includes a weighting of the solutions created by all ants
for all iterations. The PSO and the BCO, in contrast, only
remember the best solution found. According to the no-free-
lunch theorem, it is not possible to favor one of the algorithms
over the others for all problems [35]. It is necessary to evaluate
each technique for the given application and make the decision
which technique to use, based on the problem.

VI. CONCLUSION AND FUTURE WORK

All three state-of-the-art SI algorithms are capable to solve
a TSP. As PSO was designed for continuous problems, it
takes more effort to implement it for discrete problems and the
initial algorithm needs to be modified. The other algorithms
can be implemented in a straight-forward way for the TSP. For
the TSP, ACO performs best, but it depends on the problem,
if the algorithms are suitable. Furthermore, exploration and
exploitation need to be balanced.

54

eKNOW 2020 : The Twelfth International Conference on Information, Process, and Knowledge Management

This paper serves as an introduction to SI algorithms.
Future work will focus on other applications for SI algorithms.
SI algorithms will be implemented and evaluated for board
games, in particular for Halma (Chinese Checkers). In this
game, each player has 10 or 15 game characters, depending
on the number of players. The game characters represent the
swarm. For each move, only one game character is allowed to
move and the size of the swarm is relatively small. As a result,
a combination of the ACO and a modified BCO algorithm is
thinkable. The local path of each game character is planned by
applying the ACO algorithm. When it is a player’s turn, only
one game character is allowed to move. The decision which
character is chosen is made by the BCO algorithm.

The presented algorithms can also be applied to robotic
swarms. For this application, the algorithms can be combined
to assign different routes to drones for a disaster management
mission.

ACKNOWLEDGEMENT

This paper has been written during a cooperative study
program at the Baden-Wuerttemberg Cooperative State Uni-
versity Mannheim and the German Aerospace Center (DLR)
Oberpfaffenhofen at the Institute of Communications and
Navigation.

[1]

[2]

[3

[t

[4]

[5

=

[6

=

[7

—

[8]
[9]

[10]

(11]

Copyright (c) IARIA, 2020.

REFERENCES

M. Beekman, G. A. Sword, and S. J. Simpson, “Biological foundations
of swarm intelligence,” in Swarm Intelligence: Introduction and
Applications, C. Blum and D. Merkle, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 3—41. [Online]. Available:
https://doi.org/10.1007/978-3-540-74089-6_1

M. Dorigo, G. D. Caro, and L. M. Gambardella, “Ant algorithms for
discrete optimization,” Artificial life, vol. 5, no. 2, pp. 137-172, 1999.
J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95 - International Conference on Neural Networks, vol. 4,
11 1995, pp. 1942-1948.

D. Teodorovié¢, “Bee colony optimization (bco),” in Innovations in
Swarm Intelligence, C. P. Lim, L. C. Jain, and S. Dehuri, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 39-60. [Online].
Available: https://doi.org/10.1007/978-3-642-04225-6_3

J. Odili, M. N. M. Kahar, A. Noraziah, and S. F. Kamarulzaman, “A
comparative evaluation of swarm intelligence techniques for solving
combinatorial optimization problems,” International Journal of Ad-
vanced Robotic Systems, vol. 14, no. 3, p. 1729881417705969, 2017.
C. Blum and X. Li, “Swarm intelligence in optimization,” in Swarm
Intelligence: Introduction and Applications, C. Blum and D. Merkle,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 43-85.
[Online]. Available: https://doi.org/10.1007/978-3-540-74089-6_2

V. Trianni, Evolutionary swarm robotics: evolving self-organising be-
haviours in groups of autonomous robots. Springer, 2008, vol. 108.
M. Dorigo and T. Stiitzle, Ant Colony Optimization. Cambridge : MIT
Press, 2004.

M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE Transac-
tions on evolutionary computation, vol. 1, no. 1, pp. 53-66, 1997.

Z. Ziyang, Z. Ping, X. Yixuan, and J. Yuxuan, “Distributed intelligent
self-organized mission planning of multi-uav for dynamic targets coop-
erative search-attack,” Chinese Journal of Aeronautics, vol. 32, no. 12,
pp. 2706-2716, 2019.

Y. Liu, J. Ma, S. Zang, and Y. Min, “Dynamic path planning of
mobile robot based on improved ant colony optimization algorithm,”
in Proceedings of the 2019 8th International Conference on Networks,
Communication and Computing, 2019, pp. 248-252.

ISBN: 978-1-61208-765-8

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Uriol and A. Moran, “Mobile robot path planning in complex
environments using ant colony optimization algorithm,” in 2017 3rd
international conference on control, automation and robotics (ICCAR).
IEEE, 2017, pp. 15-21.

S. Asghari and N. J. Navimipour, “Resource discovery in the peer to peer
networks using an inverted ant colony optimization algorithm,” Peer-to-
Peer Networking and Applications, vol. 12, no. 1, pp. 129-142, 2019.
O. Castillo, E. Lizarraga, J. Soria, P. Melin, and F. Valdez, “New
approach using ant colony optimization with ant set partition for fuzzy
control design applied to the ball and beam system,” Information
Sciences, vol. 294, pp. 203-215, 2015.

W. Deng, J. Xu, and H. Zhao, “An improved ant colony optimization
algorithm based on hybrid strategies for scheduling problem,” IEEE
access, vol. 7, pp. 20281-20292, 2019.

C. Xiong, D. Chen, D. Lu, Z. Zeng, and L. Lian, “Path planning
of multiple autonomous marine vehicles for adaptive sampling using
voronoi-based ant colony optimization,” Robotics and Autonomous
Systems, vol. 115, pp. 90 — 103, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889018304469
M. Omran and R. Polakova, “A memetic and adaptive continuous
ant colony optimization algorithm,” in International Conference on
Theory and Application of Soft Computing, Computing with Words and
Perceptions. Springer, 2019, pp. 158-166.

M. G. Omran and S. Al-Sharhan, “Improved continuous ant colony opti-
mization algorithms for real-world engineering optimization problems,”
Engineering Applications of Artificial Intelligence, vol. 85, pp. 818-829,
2019.

J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelligence, ser. The
Morgan Kaufmann series in evolutionary computation. San Francisco
[u.a.] Morgan Kaufmann, 2009.

K.-P. Wang, L. Huang, C.-G. Zhou, and W. Pang, “Particle swarm
optimization for traveling salesman problem,” in Proceedings of the 2003
International Conference on Machine Learning and Cybernetics (IEEE
Cat. No.03EX693), vol. 3, 11 2003, pp. 1583-1585.

I. Khan, S. Pal, and M. K. Maiti, “A modified particle swarm optimiza-
tion algorithm for solving traveling salesman problem with imprecise
cost matrix,” in 2018 4th International Conference on Recent Advances
in Information Technology (RAIT). 1EEE, 2018, pp. 1-8.

S. Momani, R. El-Khazali, and 1. M. Batiha, “Tuning pid and piAd\
controllers using particle swarm optimization algorithm via el-khazali’s
approach,” vol. 2172, no. 1, p. 050003, 2019.

A. Naseri and N. J. Navimipour, “A new agent-based method for qos-
aware cloud service composition using particle swarm optimization
algorithm,” Journal of Ambient Intelligence and Humanized Computing,
vol. 10, no. 5, pp. 1851-1864, 2019.

F. Wang, H. Zhang, K. Li, Z. Lin, J. Yang, and X.-
L. Shen, “A hybrid particle swarm optimization algorithm
using adaptive learning strategy,” [Information Sciences, vol.
436-437, pp. 162 - 177, 2018. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0020025518300380

B. Jana, S. Mitra, and S. Acharyya, “Repository and mutation based
particle swarm optimization (rmpso): A new pso variant applied to
reconstruction of gene regulatory network,” Applied Soft Computing,
vol. 74, pp. 330-355, 2019.

J. Douglas, A. Engelbrecht, and B. Ombuki-Berman, ‘“Merging and
decomposition variants of cooperative particle swarm optimization: New
algorithms for large scale optimization problems,” in Proceedings of the
2nd International Conference on Intelligent Systems, Metaheuristics &
Swarm Intelligence, 2018, pp. 70-77.

K. Diwold, M. Beekman, and M. Middendorf, “Honeybee optimisation
— an overview and a new bee inspired optimisation scheme,”
in Handbook of Swarm Intelligence: Concepts, Principles and
Applications, B. K. Panigrahi, Y. Shi, and M.-H. Lim, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 295-327. [Online].
Available: https://doi.org/10.1007/978-3-642-17390-5_13

A. Viseras, T. Wiedemann, C. Manf, V. Karolj, D. Shutin, and
J. M. Gomez, “Beehive inspired information gathering with a swarm
of autonomous drones,” Sensors, October 2019. [Online]. Available:
https://elib.dlr.de/129660/

Z. Li, Z. Zhang, H. Liu, and L. Yang, “A new path planning method
based on concave polygon convex decomposition and artificial bee
colony algorithm,” International Journal of Advanced Robotic Systems,
2020. [Online]. Available: https://doi.org/10.1177/1729881419894787

55

eKNOW 2020 : The Twelfth International Conference on Information, Process, and Knowledge Management

(30]

(311

[32]

[33]

[34]

[35]

D. Karaboga, “An idea based on honey bee swarm for numerical opti-
mization, technical report - tr06,” Technical Report, Erciyes University,
01 2005.

S. Kumar, A. Nayyar, and R. Kumari, “Arrhenius artificial bee colony
algorithm,” in International conference on innovative computing and
communications. Springer, 2019, pp. 187-195.

H. Sharma, J. C. Bansal, K. Arya, and X.-S. Yang, “Lévy flight artificial
bee colony algorithm,” International Journal of Systems Science, vol. 47,
no. 11, pp. 2652-2670, 2016.

S. Fairee, S. Prom-On, and B. Sirinaovakul, “Reinforcement learning
for solution updating in artificial bee colony,” PloS one, vol. 13, no. 7,
2018.

H. Sharma, S. Sharma, and S. Kumar, “Lbest gbest artificial bee colony
algorithm,” in 2016 International conference on advances in computing,
communications and informatics (ICACCI). 1EEE, 2016, pp. 893-898.
D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE transactions on evolutionary computation, vol. 1,
no. 1, pp. 67-82, 1997.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-765-8

56

