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Abstract—In this paper, portfolio optimization using loan is for-
mulated as a chance constrained problem in which the borrowing
money from a loan can be invested in risk assets. Then, the chance
constrained problem is transformed into an equivalence problem.
Furthermore, the equivalence problem is proven to be a convex
optimization problem and solved efficiently by using an interior
point method. Experimental results show that the use of the loan
depends on acceptable risk and improves the efficient frontier.
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I. INTRODUCTION

Portfolio optimization is the process of determining the best
proportion of investment in different assets according to some
objective. Portfolio optimization requires knowledge about the
returns of assets. Thereby, the objective typically maximizes
factors such as expected return, and minimizes costs like
financial risk. Since portfolio optimization is one of the most
challenging problems in the field of finance, a large number of
works about portfolio optimization have been reported. In these
works, according to some precondition, portfolio optimization
is formulated as an optimization problem. Then, an appropriate
method is used to solve the optimization problem [1].

Optimization methods of mathematical programming have
been used to solve portfolio optimization problems based
on Markowitz’s model [2]. Evolutionary Algorithms (EAs)
have been also used to solve portfolio optimization problems
recently. Cardinality constraints limit a portfolio to have a
specified number of assets. Genetic Algorithm (GA), Tabu
Search (TS), and Simulated Annealing (SA) have been ap-
plied, respectively, to a portfolio optimization problem that
includes cardinality constraints [3]. An extended GA has been
proposed to solve a portfolio optimization problem considering
the costs for selling and buying assets to change portfolio
structures in multiple periods [4]. An Artificial Bee Colony
(ABC) algorithm [5] has been proposed for solving a portfolio
optimization problem based on the efficient frontier model
[3]. Furthermore, in order to predict the future returns of
assets from market data for portfolio optimization, an Artificial
Intelligence (AI) method based on deep learning has been
reported [6].

In our prior work [7], portfolio optimization using bank
deposit and loan is formulated as a chance constrained problem
in which a non-risk asset called bank deposit is included in
the portfolio and the borrowing money called bank loan can
be invested in risk assets. The chance constrained problem
is transformed into an equivalence problem. The equivalence
problem is proven to be a multimodal optimization problem
having multiple optimal solutions. Therefore, an Adaptive

Differential Evolution using Directed mutation (ADED) is
proposed to solve the equivalence problem effectively.

In this paper, the effect of the loan is studied intensively.
Portfolio optimization using loan is formulated as a chance
constrained problem in which borrowing money from a loan
can be invested in risk assets. Then, the chance constrained
problem is transformed into an equivalence problem. The
equivalence problem is analyzed mathematically. As a result, it
is proven that the equivalence problem is a convex optimization
problem. Besides, the condition of borrowing money from a
loan up to the limit is revealed. An interior point method
[8] is used to solve the portfolio optimization problem using
loan because the interior point method is effective for convex
optimization problems. Experimental results show that the use
of the loan depends on acceptable risk and loan interest. If the
loan is used properly, the efficient frontier is improved.

The remainder of this paper is organized as follows. Section
II defines the portfolio considered in this paper. Besides, the
basic models of portfolio optimization are explained. Section
III formulates the portfolio optimization problem using loan.
Section IV analyzes the optimization problem mathematically.
Section V presents and discusses the results of experiments.
Section VI concludes this paper and mentions future work.

II. PORTFOLIO OPTIMIZATION

A. Definition of Portfolio
We invest money in n assets. Let xi ∈ �, i = 1, · · · , n

be the proportion of i-asset normalized by owned capital. A
portfolio is defined as x = (x1, · · · , xn). Since x ∈ �n is a
long-only portfolio of single-period, it is constrained as

x1 + x2 + · · ·+ xn = 1 (1)

where 0 ≤ xi, i = 1, · · · , n.

The unit investment in the i-asset provides return ξi ∈ �
over a single period operation [3]. Each ξi ∈ � is modeled by
a random variable following a normal distribution as

ξi ∼ Normal(μi, σ
2
i ). (2)

Let ρij be the correlation coefficient between ξi and ξj ,
i �= j. The mean μi and the standard deviation σi in (2), ρij
are estimated statistically from historical data.

From (2), the vector of random returns ξ = (ξ1, · · · , ξn)
obeys a multivariable normal distribution as

ξ ∼ Normal(μ, C) (3)

where the mean is given as μ = (μ1, · · · , μn) ∈ �n.
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The covariance matrix C in (3) is derived as follows. First
of all, the matrix D is defined by using σi in (2) as

D =

⎛
⎜⎜⎝

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

⎞
⎟⎟⎠ . (4)

From the correlation coefficient ρij between asset returns
ξi and ξj , the coefficient matrix R is also defined as

R =

⎛
⎜⎜⎝

1 ρ12 · · · ρ1n
ρ21 1 · · · ρ2n

...
...

. . .
...

ρn1 ρn2 · · · 1

⎞
⎟⎟⎠ . (5)

From D in (4) and R in (5), C in (3) is obtained as

C = DRD. (6)

The return of a portfolio x ∈ �n is defined as

r(x, ξ) =

n∑
i=1

ξi xi = ξ xT . (7)

From the reproductive property of normal distribution [9],
the return in (7) also obeys a normal distribution as

r(x, ξ) ∼ Normal(μr(x), σ
2(x)) (8)

where the mean and the variance are given as

μr(x) =

n∑
i=1

μi xi = μxT (9)

σ2(x) = xC xT . (10)

B. Models for Portfolio Optimization

By using the portfolio x ∈ �n stated above, we explain
basic models used to formulate portfolio optimization.

1) Markowitz’s Model [10]: The risk of the portfolio is
evaluated by the variance σ2(x) in (10). The risk is minimized
keeping an expected return μr(x) larger than γ ∈ � as⎡

⎢⎢⎣
min σ2(x) = xC xT

sub. to μr(x) = μxT ≥ γ,
x1 + x2 + · · ·+ xn = 1,
0 ≤ xi, i = 1, · · · , n.

(11)

2) Efficient frontier Model [3]: By using the risk aversion
indicator λ ∈ [0, 1], Markowitz’s model is modified as⎡

⎣ min λσ2(x)− (1− λ)μr(x)

sub. to x1 + x2 + · · ·+ xn = 1,
0 ≤ xi, i = 1, · · · , n.

(12)

By changing the value of 0 ≤ λ ≤ 1, we can obtain the
efficient frontier, which is a continuous curve illustrating the
tradeoff between expected return and risk (variance).

3) Roy’s Model [11]: The risk of portfolio is evaluated
by the probability that the return r(x, ξ) in (7) falls below
a desired value γ ∈ �. For minimizing the risk α, portfolio
optimization is formulated as a chance constrained problem:⎡

⎢⎢⎣
min α

sub. to Pr(r(x, ξ) ≤ γ) ≤ α,
x1 + x2 + · · ·+ xn = 1,
0 ≤ xi, i = 1, · · · , n.

(13)

4) Kataoka’s Model [12]: Contrary to Roy’s model in (13),
the desired value γ ∈ � of the return r(x, ξ) is maximized
for a given risk α ∈ (0, 0.5). Thereby, portfolio optimization
is also formulated as a chance constrained problem:⎡

⎢⎢⎣
max γ

sub. to Pr(r(x, ξ) ≤ γ) ≤ α,
x1 + x2 + · · ·+ xn = 1,
0 ≤ xi, i = 1, · · · , n.

(14)

III. PROBLEM FORMULATION

The Portfolio Optimization Problem using Loan (POPL) is
an extended version of Kataoka’s Model shown in (14).

A. Portfolio including Loan

The money borrowed from a loan is invested in risk assets.
Let x0 ∈ � be the proportion of the loan used for a portfolio
x ∈ �n. Let m ∈ �, m > 0 be the upper limit of the loan,
which is specified by a multiple of owned capital. If the loan
is not used, the proportion of the loan is x0 = 0. On the other
hand, if the loan is used up to the limit, the proportion of the
loan is x0 = −m. Therefore, the constraints of POPL are(

x0 + x1 + x2 + · · ·+ xn = 1,

−m ≤ x0 ≤ 0, 0 ≤ xi, i = 1, · · · , n. (15)

From the first constraint in (15), the proportion of the loan
x0 ∈ � used for a portfolio x ∈ �n can be evaluated as

x0 = 1− 1lxT (16)

where 1l ∈ �n is a vector defined as 1l = (1, · · · , 1).
Let L ∈ � be the interest rate of the loan. The interest rate

L ∈ �, L ≥ 0 is a constant value. Considering the loan, the
return r(x, ξ) of a portfolio x ∈ �n in (7) is revised as

g(x, ξ) = r(x, ξ) + Lx0

= ξ xT + L (1− 1lxT )

= (ξ − L 1l)xT + L.

(17)

From the reproductive property of normal distribution [9],
the return in (17) also obeys a normal distribution as

g(x, ξ) ∼ Normal(μg(x), σ
2(x)) (18)

where the mean is given as

μg(x) = (μ− L 1l)xT + L. (19)

The variance σ2(x) in (18) is also given by (10).
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Figure 1. Feasible region of POPL in (23).

B. Portfolio Optimization using Loan
As stated above, POPL is formulated as an extended

version of Kataoka’s Model in (14). A risk α ∈ (0, 0.5) is
given in advance. From (15) and (17), POPL is also formulated
as a chance constrained problem:⎡

⎢⎢⎢⎢⎣

max γ

sub. to Pr(g(x, ξ) ≤ γ) ≤ α,
x1 + x2 + · · ·+ xn = 1lxT ≤ m+ 1,
x1 + x2 + · · ·+ xn = 1lxT ≥ 1,
0 ≤ xi, i = 1, · · · , n

(20)

where the proportion of the loan x0 ∈ [−m, 0] is eliminated
from the constraints in (15) by using the equation in (16).

C. Equivalence Problem
It is hard to solve the chance constrained problem that

contains probabilistic constraints [13]. Therefore, we transform
the above POPL in (20) into an equivalence problem.

Since the return g(x, ξ) follows the normal distribution in
(18), we can standardize the chance constraint in (20) as

Pr

(
g(x, ξ)− μg(x)

σ(x)
≤ γ − μg(x)

σ(x)

)
≤ α. (21)

The probability in (21) can be written as

Φ

(
γ − μg(x)

σ(x)

)
≤ α (22)

where Φ : � → [0, 1] denotes the Cumulative Distribution
Function (CDF) of the standard normal distribution.

From (22), we can derive the equivalence problem of the
chance constrained problem in (20) as⎡

⎢⎢⎣
max γ(x) = μg(x) + Φ−1(α)σ(x)

sub. to x1 + x2 + · · ·+ xn = 1lxT ≤ m+ 1,
x1 + x2 + · · ·+ xn = 1lxT ≥ 1,
0 ≤ xi, i = 1, · · · , n.

(23)

Since the equivalence problem in (23) is a deterministic
one, we do not need to evaluate the chance constraint in (20).
The optimization problem in (23) is also called POPL.

Figure 1 illustrates the feasible region of POPL for the
case of n = 2. The feasible region is shown by the gray area

between two hyper-planes. If a portfolio x ∈ �n does not use
the loan as x0 = 0, it exists on the lower plane: 1lxT = 1. On
the other hand, if a portfolio x ∈ �n uses the loan up to the
limit as x0 = −m, it exists on the upper plane: 1lxT = m+1.

IV. PROBLEM ANALYSIS

We analyze POPL in (23) mathematically.

Lemma 1: The standard deviation σ(x) in (10) is convex.

Proof: Since the covariance matrix C in (6) is positive
semi-definite, it is decomposed with y = xA ∈ �n as

σ(x) =
√
xC xT =

√
xAAT xT =

√
y yT . (24)

From (24), σ(x) is a norm. Therefore, for any θ ∈ [0, 1]
and x̂ ∈ �n, x̂ �= x, the triangle inequality holds as

σ(θx+ (1− θ) x̂) ≤ σ(θx) + σ((1− θ) x̂). (25)

The right side of (25) can be transformed as

σ(θx) =
√
θ y (θ y)T = θ

√
y yT = θ σ(x). (26)

From (25) and (26), we have

σ(θx+ (1− θ) x̂) ≤ θ σ(x) + (1− θ)σ(x̂). (27)

From (27), σ(x) in (10) is a convex function.

Theorem 1: The objective function γ(x) of POPL in (23)
is concave. In other words, −γ(x) is convex.

Proof: From (19) and γ(x) in (23), we have

θ γ(x) + (1− θ) γ(x̂)− γ(θx+ (1− θ) x̂)

= Φ−1(α)×
(θ σ(x) + (1− θ)σ(x̂)− σ(θx+ (1− θ) x̂)).

(28)

From Lemma 1 and Φ−1(α) < 0 for α ∈ (0, 0.5), the
right side of (28) is negative. Therefore, we have

γ(θx+ (1− θ) x̂) ≥ θ γ(x) + (1− θ) γ(x̂). (29)

From (29), γ(x) in (23) is a concave function.

Since all constraints of POPL in (23) are linear, the feasible
region of POPL is convex. Therefore, from Theorem 1, POPL
in (23) is a convex optimization problem [14].

Theorem 2: Let x� ∈ �n be a local optimum solution of
a convex optimization problem. Then, the solution x� ∈ �n

is a global optimum solution for the optimization problem.

Proof: See arguments in [14].

The gradient of γ(x) in (23) can be derived as

∇γ(x) = (μ− L 1l) + Φ−1(α)
xC√
xC xT

. (30)

According to Karush-Kuhn-Tucker (KKT) conditions [14],
the optimum solution (portfolio) x� ∈ �n of POPL in (23)
satisfies either of the following two conditions.

• ∇γ(x�) = 0 holds.

• Some constraints in (23) are active with x� ∈ �n.

Theorem 3: A portfolio x ∈ �n of POPL borrows money
from the loan up to the limit such as x0 = −m if

γ(x) > L. (31)
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Figure 2. Illustration of Theorem 3.

Proof: Let us consider a new portfolio x̂ = κx, κ > 1.
The portfolio x̂ ∈ �n borrows much money than x as

x̂0 = 1− 1l x̂T = 1− κ 1lxT

< 1− 1lxT = x0 ≤ 0
(32)

where x̂0 ∈ � is the proportion of the loan for the new
portfolio x̂ ∈ �n, while x0 ∈ � is the proportion of the loan
for the current portfolio x ∈ �n.

The objective function value of x ∈ �n is

γ(x) = μg(x) + Φ−1(α)σ(x)

= (μ− L 1l)xT + L+Φ−1(α)σ(x).
(33)

The objective function value of x̂ ∈ �n is

γ(x̂) = μg(x̂) + Φ−1(α)σ(x̂)

= κ (μ− L 1l)xT + L+ κΦ−1(α)σ(x).
(34)

From (33) and (34), the gap between them is

ε = γ(x̂)− γ(x) = (κ− 1) (γ(x)− L). (35)

From (35) and κ > 1, if the condition in (31) is satisfied,
the new portfolio x̂ is better than the current one x as

ε = γ(x̂)− γ(x) > 0. (36)

Since the value of ε increases in proportion to the value of
κ, the portfolio x ∈ �n that satisfies the condition in (31) is
improved by borrowing money as much as possible.

Figure 2 illustrates the two portfolios in Theorem 3 for the
case of n = 2. The portfolio x̂ ∈ �2 on the upper hyper-plane
is better than any portfolios x ∈ �2 within the feasible region
of POPL (gray area) if the condition in (31) is satisfied.

V. NUMERICAL EXPERIMENT

In order to solve POPL in (23), the interior point method
provided by MATLAB [15] is employed. The information of
the gradient ∇γ(x) ∈ �n in (30) is used effectively by the
interior point method for improving its performance. As stated
above, the optimality of the obtained solution is verified.

Figure 3. Efficient frontier (port0, m = 2).

Figure 4. Proportion of the loan x0 (port0, m = 2).

Figure 5. Efficient frontier (port0, m = 3).

Figure 6. Proportion of the loan x0 (port0, m = 3).
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TABLE I. MEAN AND VARIANCE OF ASSET RETURN (PORT0).

ξi ξ1 ξ2 ξ3 ξ4
μi 0.05 0.06 0.07 0.08
σ2
i 0.102 0.202 0.152 0.252

TABLE II. CORRELATION BETWEEN ASSET RETURNS (PORT0).

ρij ξ1 ξ2 ξ3 ξ4
ξ1 1.0 −0.7 0.1 −0.4
ξ2 −0.7 1.0 −0.5 0.2
ξ3 0.1 −0.5 0.1 −0.3
ξ4 −0.4 0.2 −0.3 1.0

TABLE III. INDEX OF DATA SET AND NUMBER OF ASSETS.

Data set Index n
port1 Hang Seng 31
port2 DAX 85
port3 FTSE 89
port4 S&P 98

A. Case Study 1
An instance of POPL called port0 is given by Table I and

Table II. The port0 consists of n = 4 assets. Table I shows
the mean and variance of asset returns ξi ∈ �, n = 1, · · · , n.
Table II shows the correlation coefficient between them.

We evaluate the effect of the interest rate of the loan L on
the return γ(x) of POPL. Figure 3 shows the efficient frontier,
or the trade-off between the return γ(x) ∈ � and the risk
α ∈ (0, 0.5), when the upper limit of the loan is given as
m = 2. Three different interest rates of the loan, L = 0.03,
0.04, and 0.05, are compared in Figure 3. “None” denotes the
efficient frontier when the loan is not used. Figure 4 shows the
proportion of the loan x0 ∈ [−m, 0] for each portfolio shown
in Figure 3. In the case of “None”, x0 = 0 always holds.

From Figure 3, the efficient frontier is improved by using
the loan. Specifically, the smaller the interest rate of the loan
is, the higher the return. Besides, the portfolio x taking a high
risk uses the loan even if the interest rate of the loan is high.

From Figure 4, as we have proven in Theorem 3, the loan
is always used up to the limit (x0 = −m) when it is used.

Figure 5 shows the efficient frontier when the upper limit
of the loan is given as m = 3. Figure 6 shows the proportion
of the loan x0 ∈ [−m, 0] for each portfolio in Figure 5.

From Figure 3 and Figure 5, we can confirm that the
efficient frontier is improved by borrowing more money from
the loan. From Figure 4 and Figure 6, the loan is always used
up to the limit (x0 = −m) regardless of the value of m.

B. Case Study 2
Instances of POPL are defined by using the data sets called

port1 to port4, which are available from OR-Library [16]. Each
of the data sets contains the means, variances, and a coefficient
matrix of n asset returns. They are evaluated for real-life data
sets, or historical data sets about asset returns. Table III shows
the capital market indices and their numbers of assets. By using
port1 to port4, we construct the models of asset returns as
shown in (3) for the instances of POPL.

For all the instances of POPL, the upper limit of the loan
is given as m = 3. Thereby, three different interest rates of

Figure 7. Efficient frontier (port1, m = 3).

Figure 8. Proportion of the loan x0 (port1, m = 3).

Figure 9. Efficient frontier (port2, m = 3).

Figure 10. Proportion of the loan x0 (port2, m = 3).
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Figure 11. Efficient frontier (port3, m = 3).

Figure 12. Efficient frontier (port4, m = 3).

the loan, namely L = 0.01, L = 0.02, and L = 0.03, are
examined in each of the instances of POPL.

Figure 7 and Figure 8 show the results of the experiment
conducted on port1. Figure 7 shows the efficient frontier, or
the trade-off between the return and the risk, while Figure 8
shows the proportion of the loan for each portfolio shown in
Figure 7. As stated above, “None” denotes the result when the
loan is not used. Similarly, Figure 9 and Figure 10 show the
results of the experiment conducted on port2. Figure 9 shows
the efficient frontier, while Figure 10 shows the proportion of
the loan for each portfolio shown in Figure 9.

Figure 11 shows the efficient frontier obtained for port3.
Figure 12 also shows the efficient frontier obtained for port4.
The proportions of the loan for the portfolios shown in Figure
11 and Figure 12 are omitted for want of space. However,
the results of the experiments conducted on port1 to port4 are
almost the same as the result of the experiment on port0.

From Figure 7 to Figure 12, we can confirm that the use
of the loan works well for improving the efficient frontier.
Especially, the lower interest rate of the loan provides higher
return and benefits borrowers. On the other hand, the higher
interest rate of the loan does not benefit lenders because such
a loan is not used. Of course, the higher interest rate of the
loan does not benefit borrowers, either. Furthermore, as we
have proven by Theorem 3, we can see that the loan is always
used up to the limit when it is used. From the results of
the experiments, the loan seems to be used up to the limit
immediately when the condition in (31) is satisfied.

VI. CONCLUSION

Portfolio optimization using loan is formulated as POPL.
The emphasis of our work is on the theoretical characterization
of POPL. From the analysis of POPL in (23), it is proven
that POPL is a convex optimization problem. Furthermore, the
condition of borrowing money from the loan up to the limit
is revealed. Through numerical experiments, it can also be
confirmed that the risk α ∈ (0, 0.5) and the interest rate of
loan L play an important role in the decision whether the loan
is used or not. If the money borrowed from the loan is invested
in assets, the efficient frontier is improved by higher return.

For future work, we will think about a suitable interest rate
of the loan that benefits both borrowers and lenders. Besides,
we would like to include cardinality constraints in POPL.
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