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Abstract—We consider a semi-supervised clustering problem,
where selected pairs of data points are labeled by an expert
as must-links or cannot-links. Basically, must-link constraints
indicate that two points should be grouped together, while those
with cannot-link constraints should be grouped separately. We
present a clustering algorithm, which creates a partition con-
sistent with pairwise constraints by maximizing the probability
of correct assignments. Moreover, unlabeled data are used by
maximizing their prediction confidence. Preliminary experimental
studies show that the proposed method gives accurate results on
sample data sets. Moreover, its kernelization allows to discover
clustering patterns of arbitrary shapes.

Keywords–semi-supervised clustering; pairwise constraints; dis-
criminative model.

I. INTRODUCTION

Clustering is one of core branches of machine learning
and data analysis, which aims to find homogeneous groups in
data. Since cluster analysis is purely unsupervised technique,
its results may be unsatisfactory for a given problem. Semi-
supervised clustering allows to include side information (expert
knowledge) about class labels into clustering to obtain more
appropriate effects for the user [1]. Pairwise constraints (rela-
tions) are a typical form of additional class information used in
semi-supervised clustering. They indicate whether two points
belong to the same (must-link) or different groups (cannot-
link). The aim of semi-supervised clustering is to use pairwise
constraints in order to produce more accurate results [2][3].

To meet the user expectations revealed in pairwise con-
straints, we follow a discriminative approach, which is usually
applied in classification, but is rarely used in clustering.
Discriminative model is more natural and effective for semi-
supervised task than typical generative approaches, such as k-
means or Gaussian mixture model (GMM), because it directly
focuses on the underlying classification problem. We formulate
a clustering model, which maximizes the probability that
pairwise relations are preserved. Unlabeled data are handled by
maximizing their prediction confidence, which agrees with a
typical paradigm of semi-supervised learning (cluster assump-
tion) stating that decision boundary should fall in low density
region.

Our method is easy to implement and can be optimized
with use of a gradient approach. Moreover, it can be kernelized
so that to fit arbitrary clustering structures, see Figure 1 for
the illustration. Preliminary experimental results show that our
method is promising and allows to obtain competitive results
to the state-of-the-art models.
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Figure 1. Sample results of our method on two moons data set (b);

must-links (solid black line) and cannot-link (dashed cyan) are shown in (a).

II. MODEL

We consider a data set X ⊂ RD, such that N = |X|,
where every element x ∈ X belongs to one of K unknown
classes. By X = X × X we denote the set of all pairs in
X . Partial information about class labels is revealed in the
form of pairwise constraints, which cover selected pairs of
data points L ⊂ X . Pairwise constraints indicate whether two
points originate from the same or different classes, thus L can
be split into the sets of must-link and cannot-link constraints
given by [1]:

M = {(x, y) ∈ L : x and y belong to the same class},
C = {(x, y) ∈ L : x and y belong to the different classes}.

Our clustering model follows a discriminative approach in
which the assignments of data points to clusters are directly
modeled by posterior probabilities. Let pk(x) = p(k|x) be
a posterior probability that a data point x ∈ X is assigned
to k-th cluster, where k = 1, . . . ,K. Once these conditional
probabilities are defined, we get a partition of X , in which
a point x ∈ X is assigned to this group that maximizes its
posterior probability. More precisely, we get a partition of X
into C1, . . . , Ck ⊂ X , where

Ck = {x ∈ X : pk(x) = max
j

pj(x)}.

We assumed that posterior probabilities are given by a logistic
function:

pk(x) = pk(x;V) ∝ exp(〈vk, x〉+ bk), (1)

where the set of parameters V = (v, b) consists of weight
vectors v = (v1, . . . , vK) and bias values b = (b1, . . . , bK).

Our model focuses on maximizing a probability that pair-
wise constraints are satisfied. Let us first observe that the
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probability that a clustering model assigns two points x, y ∈ X
to the same cluster equals:

pM(x, y) =

K∑
k=1

pk(x)pk(y). (2)

Consequently, the probability that x, y ∈ X are classified to
different groups is given by:

pC(x, y) = 1− pM(x, y). (3)

To meet the expert knowledge, we maximize both terms over
all pairwise relations.

In addition to pairwise constraints, we usually have the
access to a large number of unlabeled data. Since there is no
information about their classes, we cannot simply maximize
their correct assignments. However, we can encourage the
model to give the most confident answers about their classes.
Let us consider a function

K∑
k=1

pk(x)
2, for every x ∈ X , (4)

which attains a maximal value, if the prediction confidence is
maximal, i.e., pl(x) = 1 for specific l and pk(x) = 0, for all
k 6= l. On the other hand, if all classes are equally probable
then its value is minimal. Thus, to maximize a prediction
confidence of the model, we maximize (4) over unlabeled data.

Our clustering objective function gathers (2), (3) and (4)
over all data points. Its maximization can be implemented
with use of gradient approach. Moreover, due to the form of
posterior probabilities (1) one can introduce kernel functions
to detect arbitrary shapes of clusters.

III. EXPERIMENTS

We examined our method on two standard data sets re-
trieved from UCI repository [4]: Letter (1000 examples, 16
features, 5 classes) and Seeds (210 examples, 7 features, 3
classes). To acquire pairwise relations, we randomly selected
a pair of points (x, y) and label it as must-link if both x, y
belong to the same cluster or as cannot-link, otherwise. We
vary the number of constraints from 0.1N to 0.5N with a
0.1N increment. The results were evaluated using adjusted
rand index (ARI) [5]. ARI attains a maximal value 1 for a
partition identical with a ground-truth, while for a random
grouping gives score 0.

We compared our method with five state-of-the-art tech-
niques:

• another discriminative framework proposed in [6],
referred to as DCPR (discriminative clustering with
pairwise constraints).

• recent semi-supervised spectral clustering [7], referred
to as spec

• constrained GMM proposed in [2] (GMM)
• two metric learning algorithms: diag [8] and itml [9]

The results presented in Figure 2 show that our method
usually obtained very high scores. Its performance gradually
increases as the number of constraints grows. It can be
observed that itml and DCPR also gave high resemblance with
reference grouping, while the performance of GMM, spec and
diag were usually worse.
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(b) Seeds
Figure 2. Adjusted rand index of examined methods two data sets retrieved

from UCI repository.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a new approach to clustering
with pairwise constraints and demonstrated its usefulness on
two data sets. In future, we plan to extend this model to handle
unlabeled data in a more efficient way. In particular, we plan
to use the information about data points’ neighborhoods. We
would also like to use different types of expert knowledge such
partial labeling or relative constraints. Moreover, we will apply
the proposed approach in real life problems.
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