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Abstract—Explanations can increase user satisfaction with rec-
ommender systems. While it is relatively easy to explain the rec-
ommendations of a content-based or an item-based collaborative
recommender system, user-based collaborative recommendations
are harder to explain. In this work, we adopt an approach
from the literature that generates explanation rules for user-
based collaborative-filtering recommendations. These rules are
item-based: for example, “If you liked Toy Story then you might
also like Finding Nemo”. We modify the approach by proposing
two new, alternative measures of explanation rule quality. We
evaluate the two new measures in a user study and show that users
prefer explanation rules whose antecedents are both accurate and
unique with respect to the recommended item.

Keywords–Recommender systems; Explanations; Collaborative
filtering.

I. INTRODUCTION

An explanation of a recommendation is any content, addi-
tional to the recommendation itself, that is presented to the user
with the goal of increasing (among other things) transparency,
trust in the system, and decision-making effectiveness [1]. The
problem that we examine in this work is how to produce
effective explanations (ones that help the user make a good
decision) for recommendations made by user-based collabora-
tive filtering (CF) recommender systems.

User-based CF recommender systems were among the
first recommenders, and they remain important, e.g., as part
of larger ensembles of recommenders. They find the active
user’s nearest-neighbours and use the neighbours’ ratings to
predict the active user’s rating for items that are in the
neighbours’ profiles but not in the active user’s profile. It is
relatively easy to explain the recommendations of content-
based recommenders, e.g., by displaying meta-descriptions
(such as features or tags) that the active user’s profile and
the recommended item have in common [1]. Item-based CF
recommendations are also amenable to explanation, e.g., by
displaying items in the user’s profile that are similar to the
recommended item [2]. User-based CF recommendations, on
the other hand, are harder to explain. Displaying the identities
of the active user’s neighbours is unlikely to be effective (and
may not be ethical) because, when these systems are deployed
at scale, the user will not know the neighbours; displaying their
profiles is unlikely to be effective too, since even the parts of
their profiles they have in common with the active user will
be too large to be readily comprehended.

This paper adopts the approach of Bridge & Dunleavy [3],
who proposed an explanation generation algorithm for user-
based CF recommendations. The algorithm produces explana-
tions in the form of explanation rules: for example, “If you
liked Toy Story then you might also like Finding Nemo”. The
antecedent of an explanation rule (in this case, Toy Story)
characterizes a subset of the active user’s tastes that are
predictive of the recommended item, which appears in the
consequent of the rule (in this case Finding Nemo). In this
paper, we refer to such explanations as being in an item-based
style [4]. They are a familiar style of explanation, since they
are used by amazon.com [2].

However, the Bridge & Dunleavy algorithm has a popu-
larity bias (see next section). For this reason, in this paper
we propose two new, alternative measures of explanation rule
quality that can be used in the algorithm’s objective function.
The remainder of the paper is structured as follows: Section
II describes Bridge & Dunleavy’s rule generation algorithm.
Section III proposes two new, alternative measures of quality
for use in the algorithm. Section IV extends the way in which
candidate opinions are obtained from neighbours’ profiles.
Section V presents both offline experiments and a user study.
Section VI reviews related work.

II. GENERATING EXPLANATION RULES

The algorithm for generating explanation rules presented
in [3] constructs explanations in a way that is similar to
the mining of association rules (ARs) [5]. Unlike in AR
mining, the literals constituting explanation rules represent
item opinions rather than just the items. Given a set of items
I , an item opinion is represented by a tuple (i, opinion), such
that i ∈ I and opinion ∈ {dislike,neutral , like}. We will
often write just i in place of (i, opinion) allowing context to
make clear which is intended. Since most CF datasets contain
item ratings on a 1− 5 scale, Bridge & Dunleavy convert the
numerical ratings into opinions using a rating threshold, with
items rated lower than 3.0 considered disliked by a user, items
rated as 3.0 assigned a neutral opinion, and items rated higher
than 3.0 considered liked.

Having discretized item ratings into item opinions, an
explanation rule R for a user u and a recommended item y
is built to contain a set of item opinions in its antecedent and
a single (positive) opinion of the recommended item y in its
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Data: user profiles U , active user u, recommended item
y, explanation partner v

Result: an explanation rule for y

R← if then (y, like);
Cs← candidates(u, v);
while Cs 6= {} do

Rs← the set of all new rules formed by adding
singly each candidate opinion in Cs to the
antecedent of R;
R∗ ← arg max

R∗∈Rs
fobj(R

∗);

if fobj(R∗) ≤ fobj(R) then
return R;

R← R∗;
Remove from Cs the candidate opinion that was

used to create R;
end
return R;

Figure 1. Creating an explanation rule

consequent: R : X ⇒ (y, like), where X = {(i, opinion) :
i ∈ I \ y}.

Rule generation is based on identifying an explanation
partner – the most similar neighbour of the active user u
who rated the recommended item positively. Subsequently, the
explanation rule is built from the item opinions shared by the
active user and the explanation partner. Items for which the
active user u and the explanation partner v share the same
opinion are called candidate opinions:

candidates(u, v) =

{(i, opin) : (i, opin) ∈ profileu ∧ (i, opin) ∈ profilev} (1)

where, e.g., profileu is the set of all of user u’s item opinions.
Having identified the set of candidate opinions, the rule’s

antecedent is constructed in a greedy fashion — at each
iteration, the candidate opinion which maximizes an objective
function is added to the antecedent (see Figure 1).

Bridge & Dunleavy used accuracy as the objective function
fobj :

acc(X ⇒ y) =
|{u ∈ U : X ⊂ profileu ∧ y ∈ profileu}|

|{u ∈ U : X ⊂ profileu}|
(2)

where U is the set of all users. A rule’s accuracy is equivalent
to the confidence metric used in AR mining [6].

Bridge & Dunleavy resolved ties (equally accurate rules)
using coverage, defined as the probability of observing the
antecedent of the rule in a user’s profile (equivalent to the
support metric in AR mining):

cov(X ⇒ y) =
|{u ∈ U : X ⊆ profileu}|

|U |
(3)

In this work, we extend Bridge & Dunleavy’s approach
with two contributions. First, we observe that the objective
function fobj can be implemented using measures other than
accuracy and coverage. We propose and evaluate two new,
alternative measures. Second, we extend the candidate opinions
from those of a single explanation partner to those of a set

of the active user’s neighbours. In the next two sections we
describe the two contributions in greater detail.

III. PROPOSED RULE UTILITY METRICS

While accuracy and coverage offer an intuitive way of
measuring the strength of the explanation rules, they are biased
toward popular items. For instance, the movie Star Wars
is frequently rated and therefore co-occurs in user profiles
with many other (not necessarily related) movies. Relying on
accuracy and coverage may lead to explanations that are trivial
or irrelevant with respect to the recommended item, e.g., “If
you liked Star Wars then you might like Fargo”.

Intuitively, an item opinion in an explanation rule is good
the more it is unique with respect to the recommended item.
In other words, we are looking for measures that promote
antecedent items that are accurate (i.e., result in high accu-
racy) with respect to the consequent item, but also penalize
antecedent items that achieve high accuracy with (many) other
consequent items.

Within AR mining, there has similarly been a quest for
measures of AR interestingness, beyond confidence and sup-
port, including measures of lift and conviction [6]. However,
these measures in general try to counter-act the tendency of the
accuracy measure to favour rules with popular consequents.
Hence, these measures do not achieve what we want to
achieve. In our case, the consequent is a given: it is the item
recommended by the user-based CF system. Our goal is to
build explanation rules using measures that counter-act the
tendency of the accuracy measure to favour popular items in
antecedents.

To the best of our knowledge, the uniqueness property that
we seek does not correspond to any of the existing measures of
AR interestingness. We experimented with a number of these
existing measures and others, such as selecting a rule whose
antecedents were similar to its consequent. But none of these
resulted in the selection of distinctive (‘unique’) antecedents.
We therefore propose two new, alternative measures — one
that discounts a rule’s accuracy by the antecedent’s popularity
and the other that discounts its accuracy by the antecedent’s
explanatory power.

A. Popularity-discounted accuracy
Our popularity-discounted accuracy (pda) measure is de-

signed to balance the accuracy of a rule and the popularity of
its antecedent. Specifically, we discount the rule’s accuracy by
the number of items that could potentially be explained by the
antecedent, i.e., the number of items in the dataset (other than
the recommended item) that co-occur with the antecedent in
at least one user’s profile:

pda(X ⇒ y) =

acc(X ⇒ y)

|{j ∈ I \X ∪ {y} : ∃u ∈ U,X ⊂ profileu ∧ j ∈ profileu}|+ 1
(4)

Initial analysis of explanations generated using pda as the
objective function in Figure 1 revealed that the explanation
rules tended to contain more items in their antecedents com-
pared to the original approach (which, for two datasets, was
reported to contain no more than 3 items in the antecedent [3]).
Therefore, to restrict the lengths of the rules, we included an

66Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-542-5

eKNOW 2017 : The Ninth International Conference on Information, Process, and Knowledge Management



additional constraint in the algorithm: the rule R is returned
if either fobj(R

∗) ≤ fobj(R) or if acc(R∗) ≤ acc(R); see
Figure 2. This additional constraint ensures the quality of the
rules and restricts their lengths so that they are closer to those
of the original approach.

B. Uniqueness-discounted accuracy
Our uniqueness-discounted accuracy (uda) metric is simi-

lar to the popularity-discounted accuracy, but instead of count-
ing the number of all potential explanations that could be
generated from the antecedent, it counts the items that the
antecedent can explain better (i.e., with a higher accuracy)
than the target item y:

uda(X ⇒ y) =

acc(X ⇒ y)

|{j ∈ I \X ∪ {y} : acc(X ⇒ j) > acc(X ⇒ y)}|+ 1
(5)

Again we included the additional constraint on the rule’s
accuracy in the algorithm to avoid generating longer rules.

IV. EXTENDED CANDIDATE OPINIONS

In Figure 1, the candidate opinions (the set Cs) are taken
from the profile of a single explanation partner — the most
similar neighbour of the active user who liked the recom-
mended item. However, user-based CF recommender systems
generate item predictions using a larger number of nearest-
neighbours.

To reflect this in the explanation generation process, we
evaluate a variant of the algorithm where the candidate opin-
ions are obtained from the profiles of all the active user’s
nearest-neighbours (where the size of this set is given by the
underlying user-based CF recommender system).

In recommendation, the contribution of a neighbour to
item predictions is weighted by the neighbour’s similarity
to the active user. We mirror this in the revised explanation
generation algorithm by weighting each candidate opinion by
the neighbour’s similarity:

R∗ ← arg max
R∗∈Rs

fobj(R
∗) · sim(u, v) (6)

where u is the active user and v is the neighbour whose
profile contains the candidate opinion used to obtain R∗. If the
candidate opinion is contained in more than one neighbours’
profiles, the highest sim(u, v) is used.

The changes that we have proposed in this section and the
previous one are summarized in Figure 2.

V. EXPERIMENTS

Our main goal is to compare the effectiveness of the two
new measures (pda and uda) against the original accuracy-
based approach (acc). Each measure can be used by taking
candidate opinions either from a single explanation partner
(designated ep) or from the set of neighbours (designated nn),
as in Section IV, resulting in a total of six alternatives: acc+ep,
pda+ep, uda+ep, acc+nn , pda+nn and uda+nn .

For extended candidate opinions, all experiments were
conducted using a neighbourhood of 150 users. Furthermore,
in all experiments, we used only the positive item opinions

Data: user profiles U , active user u, recommended item
y, nearest neighbours NN

Result: an explanation rule for y

R← if then (y, like);
Cs←

⋃
v∈NN candidates(u, v);

while Cs 6= {} do
Rs← the set of all new rules formed by adding

singly each candidate opinion in Cs to the
antecedent of R;
R∗ ← arg max

R∗∈Rs
fobj(R

∗) · sim(u, v);

if fobj(R∗) ≤ fobj(R) ∨ acc(R∗) ≤ acc(R) then
return R;

R← R∗;
Remove from Cs the candidate opinion that was

used to create R;
end
return R;

Figure 2. Creating an explanation rule: revised

as candidates for rule generation (i.e., opinions of the form
(i, like)). The positive opinions were identified by selecting
items having a rating higher than 3.0. We leave the exploration
of alternative rating thresholds and the possible use of negative
and neutral item opinions for future work.

Explanation rules can only be evaluated using feedback
from real users, since, to the best of our knowledge, there
are no offline metrics that can quantify the “goodness” of
an explanation. However, comparing six alternatives in a user
study would result in a high cognitive load for the participants.
Therefore, as a first step in the evaluation procedure, we per-
formed offline experiments in an effort to reduce the number
of approaches to be evaluated in a user study.

A. Offline experiments
In the offline experiments, we used the MovieLens 1M

dataset [7]. For each user, we split her rating data into train and
test items. Then, we randomly selected one highly rated item
(i.e., an item with a rating of 5.0) for explanation generation.
(In other words, we are explaining an item that we know the
user likes.) The evaluation was performed using a 5-fold cross-
validation, where each fold contains 20% of user ratings as a
test set. The same set of test items was used to evaluate the
six different approaches.

The quality of the explanation rules was measured using a
number of metrics all of which provide a single value per-rule.
Those metrics that are defined at the level of individual items
(i.e., novelty and similarity) were aggregated into a rule-level
score using three different strategies — taking the minimum,
maximum, and average value as the rule score. The full set of
metrics is as follows:

• The overlap with the original accuracy-based algo-
rithm. The overlap value is computed as the number
of antecedent items in the generated rule that are also
present in the original (accuracy-based) version of the
same rule, normalized by the length of the evaluated
rule;

• The accuracy and coverage metrics (see 2,3);
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• The rule length, defined as the number of item opin-
ions in the rule’s antecedent;

• The minimum, maximum, and average novelty of the
items in the rule’s antecedent, where the novelty of
item i is −log2P (i) where P (i) = |{u : i ∈
profileu}|/|U |, and U is the set of all users in the
dataset;

• The minimum, maximum, and average similarity of
the items in the rule’s antecedent to the item in the
consequent, where similarity(i, y) =

|Li∩Ly|
|Li∪Ly| and Li

and Ly are sets of text labels describing items i and
y respectively. In addition to the movie descriptors
included in the MovieLens dataset (a vocabulary of
18 genres, 1.65 genres per movie on average), we
scraped IMDb plot keywords for each movie and kept
those labels that appeared in the profiles of at least 10
movies. This resulted in an average of 60 labels per
movie.

The metrics were computed for each explanation rule and
then averaged over all test cases.

We recognise that these evaluation metrics are mere proxies
for what we regard as good explanations, but we believe that
they can nevertheless help us to reduce the six alternatives
down to a few for use in a user study.

B. Results of offline experiments
The results are shown in Figure 3, which shows the metrics

computed over approximately 27,600 data points (across the 5
cross-validation folds).

The lengths of the rules for all approaches is below 4 on
average. But there are rules that are longer than those reported
by Bridge & Dunleavy: they reported a maximum length of 3
[3], but the difference may be because they used a different
version of the dataset (MovieLens 100k), as well as the other
changes described in earlier parts of this paper.

Our results indicate that, pda+ep and uda+ep, which use a
single explanation partner, produce rules similar to the original
acc+ep (an average overlap of 75%). The average overlap
between pda+ep and uda+ep themselves (not shown in the
figure), is 59%. Methods that use extended candidate opinions
(acc+nn , pda+nn and uda+nn) have a smaller overlap with
the original acc+ep and also with each other (an average of
50% between acc+nn and each of pda+nn and uda+nn).

Rules computed from extended candidate opinions (nn
approaches) achieve higher average accuracy, but lower cover-
age compared to the approaches that use a single explanation
partner (ep). The larger set of candidate opinions from which
to choose allows the algorithms to identify item opinion
patterns that are more accurate but less frequent and therefore
potentially more interesting to the user.

The pda approaches produce rules with the highest novelty.
This is not surprising, since pda favours rules with less popular
items. Also, as expected, the extended candidate opinions
approaches (nn) tend to generate rules with more novel items.
The two combined, pda+nn , gives highest novelty.

With regard to rule antecedent similarity to the recom-
mended item, extended candidate opinion approaches (nn)
achieve a slightly higher similarity compared to the single
explanation partner approaches (ep).

Overall, the higher accuracy and novelty achieved by the
nn approaches lead us to believe that the use of extended
candidate opinions is beneficial for the rule generation and we
focus our user study on acc+nn , pda+nn and uda+nn .

C. User study
The three explanation generation approaches identified as

the most promising during the offline evaluation stage were
subsequently compared in a user study. For this user study, we
employed the 10M version of the MovieLens dataset, rather
than the 1M version used in the offline experiments, since it
contains movies that are more recent, which are more likely to
be recognized by the study participants [7]. To further increase
the chances of user familiarity with the recommended item, we
filtered the test sets (below) to include only movies produced
in the year 2000 or later and having at least 100 ratings in the
training set. It is important to note that we only applied the
filtering to test sets, not the items appearing in antecedents of
explanation rules.

Each user’s item ratings were split into a train set (80%),
from which antecedents can be picked, and a test set (20%),
which was filtered (above) and from which one highly-rated
test item (i.e., an item which we know the user likes) was
picked and treated as the item to be recommended to the
user. We did this for each of 100 randomly-chosen users,
giving us 100 recommendations. For each recommendation,
we generated three explanation rules (acc+nn , pda+nn and
uda+nn). If the antecedents of the three explanation rules did
not differ pairwise by at least one item, then we picked a
different highly-rated item from the test set and generated its
explanations. This ensures that we have no redundant survey
questions, where participants are asked to judge identical
explanations.

The 100 recommendations (each with three explanation
rules) were partitioned across 5 questionnaires, containing 20
recommendations each. For each of the 20 recommendations,
the questionnaires showed the recommended movie and the
three explanation rules. The order in which the explanation
rules were displayed was determined at random, e.g., some-
times acc+nn was the first of the three, sometimes the second
and sometimes the last. The questionnaire asked participants
to mark all explanations that they found helpful in choosing
the movie recommendation. If they did not know the rec-
ommended movie or if unknown movies in the explanations
prevented them from making a fair comparison, they were
asked to mark an explicit option (“None of the explanations
are helpful”). Hence, for each recommendation, participants
can mark zero, one, two or three of the explanations as helpful.

From July to September of 2016, 50 volunteers (mostly
students and researchers from Ireland and Brazil) took part
in the study. Each participant responded to exactly one ques-
tionnaire through a dedicated web site, 10 volunteers per
questionnaire. In order to help participants, all questionnaires
had introductory guidelines for the experiment and links to
synopses of the movies. The participants were also free to
gather more information about the movies from any source of
their choice, such as YouTube or IMDb.

D. Results of user study
Table I summarizes the responses. The maximum possible

in each cell is 200: for each of the 20 recommendations up to
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Figure 3. Offline experiments: results

TABLE I. USER STUDY: RESULTS

Q1 Q2 Q3 Q4 Q5 Total
acc+nn 67 58 57 66 82 330
pda+nn 69 57 43 55 71 295
uda+nn 72 85 95 80 101 433
None 45 63 50 49 24 231

10 people could have found them helpful. Hence the maximum
possible across the questionnaires (Q1 to Q5) is 1000.

As can be seen, uda+nn produced by far the most helpful
explanations. Our other new measure, pda , was not successful:
pda+nn produced the least helpful explanations. In particu-
lar, uda+nn explanations were selected 1.3 more times than
acc+nn and nearly 1.5 more times than pda+nn . Using 99%
level two-tailed Student’s t-tests, we observed that, in this
study, i) acc+nn and pda+nn are not statistically different
(p-value = 0.333); ii) acc+nn and uda+nn are statistically
different (p-value = 0.017); and iii) pda+nn and uda+nn are
statistically different (p-value = 0.005). From this, we conclude
it is not statistically correct to claim that acc+nn is superior
to pda+nn , but uda+nn is superior to both.

VI. RELATED WORK

Several papers consider the role of explanations in rec-
ommender systems. They agree that providing explanations
can lead to greater user satisfaction and to acceptance of a
recommended item. Justifying why an item is recommended
is often welcomed by users [1] [8] [9]. Herlocker et al.
report that the benefits include education, acceptance, user
involvement and justification [8]. In a similar fashion, Tintarev
& Masthoff outline six motivations for explanations in recom-
mender systems: transparency, trust, scrutability, effectiveness
and efficiency, persuasiveness and satisfaction [9].

Vig et al. [4] divide explanations into three main kinds:
user-based (such as showing the user a histogram of their
neighbours’ ratings, e.g., [8]) item-based (as used in this paper
and in amazon.com [2]), and feature-based (such as using
attribute-value pairs [10], item content (e.g., from news items)
[11], user-generated tags [4] [12], or features and opinions
mined from user reviews [13] [14]). Some systems combine

the different types of explanations; for example, Symeonidis
et al. combine feature-based with item-based [15].

Herlocker et al. conducted a user survey to test the per-
suasiveness of twenty-one different styles of user-based and
feature-based explanation [8]. Similarly, Gedikli et al.’s study
tested, among other things, the efficiency and effectiveness of
ten different styles of explanation [12]: seven of them drawn
from [8], plus a user-based pie-chart and two new forms
of feature-based explanation using user-generated tags. For
Herlocker et al., histograms of user ratings were the most
persuasive; Gedikli et al. found their tag explanations to most
increase satisfaction. Neither study included explanations in
the item-based style.

Bilgic & Mooney ran a user study to compare item-
based explanations (which they refer to as influence-style
explanations) with user-based and feature-based explanations
[16]. In their study, a user is shown a recommendation with
an explanation, and she is asked to rate the item before and
after consumption. Bilgic & Mooney found that user-based
explanations cause users to over-estimate the quality of items;
the other two forms of explanation were found to result in
significantly more accurate estimations of final ratings.

One issue that is often ignored is the transparency [1] or
fidelity [3] of the explanation, i.e., the extent to which the
explanation reveals the logic of the recommender. (Gedikli et
al. refer to this as objective transparency to contrast it with
perceived transparency, i.e., whether the user thinks that the
logic has been revealed [12].) A lot of the work in this area
is characterized by explanations that are divorced from the
recommender. By contrast, we believe that one advantage of
the Bridge & Dunleavy scheme that we have adopted in this
paper is that it does have some fidelity to the operation of the
underlying user-based CF recommender: both the recommen-
dations and the explanations are based on opinions shared by
the active user and her nearest-neighbours.

VII. CONCLUSION

We have built on the work of Bridge & Dunleavy, which
generates explanation rules in the item-based style for items
recommended by user-based CF recommender systems [3]. In
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particular, we have proposed two new, alternative measures
of explanation rule quality for use in the algorithm’s objec-
tive function, pda and uda . These new measures attempt to
overcome the tendency of the original accuracy and coverage
measure to favour popular items. We also proposed extending
the set of candidate opinions from which explanation rule
antecedents are constructed: instead of using opinions from
a single explanation partner, we modify the algorithm to allow
it to use opinions from the active user’s nearest neighbours.

We evaluated our proposed modifications in both an offline
experiment and a user study. The offline experiment indicated
the benefits of using the extended set of candidate opinions
(from the nearest neighbours), resulting in rules that are
both more accurate and contain more items that are novel.
The online study showed that users found that explanation
rules which were generated using the uda measure were far
more helpful than those produced using pda and Bridge &
Dunleavy’s accuracy and coverage measure.
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