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Abstract—Two approaches for extending relational database ta-
bles to allow storing uncertain and incomplete information have
been proposed in the past. Grahne in 1984 introduced constraint
tables that allow constraints to be attached to tuples and tables.
Independently, Barbara et al. introduced in 1992 probabilistic
tables that can contain random variables for some of the fields.
In this paper, we combine the two approaches by introducing the
concept of a mixed table: a table that allows storing both random
variables and linear constraints on them.
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I. INTRODUCTION

Most real-world information is incomplete or imprecise.
For example, we may know that someone got good grades in
algebra, but we may not know the precise grade. Similarly,
we may know that a soldier is injured, but we may not know
the extent of the injury. Or we may know that there is a 30%
chance of rain tomorrow. Or maybe we know that there is
a 90% probability that stock prices in the US will go down
tomorrow if the Federal Reserve raises the key interest rate
today. In this paper, we explore how such imprecise and
probabilistic information can be represented in a tabular format
without losing the richness of the data.

Many applications need access to incomplete information.
For example, data mining algorithms can produce rules that
have different levels of confidence. It is common for mobile
sensors to produce conflicting information when operating in
adverse weather conditions. Similarly, polling data is imprecise
by nature. Storing such information in relational tables presents
the advantage of allowing the use of exiting database technol-
ogy, such as efficient querying, transaction control, logging
and recovery, user authentication, and so on.

There is an obvious trade-off between the expressive power
of the data representation and the complexity of query an-
swering. For example, in the presence of Boolean constraints
determining if a tuple belongs to every possible query result
becomes as difficult as SAT [1], which is known to be NP-
complete. Even in the absence of constraints, adding a random
variable to every tuple that denotes the probability of the tuple
existing (i.e., introducing tuple-level uncertainty) can make the
problem of duplicate elimination over intermediate results #P-
hard [2]. Fortunately, in most cases the high complexity is
proportional only to the size of the incomplete information,
which makes the algorithms practical when this size is limited.
When this is not the case, Monte Carlo sampling algorithms
that approximate the probability of a Boolean condition being
true can be applied.

In this paper, we consider tables where random variables
can occur for some of the fields. These are called prob-
abilistic tables (or p-tables for short [3]). In addition, we
allow constraints on these variables. Tables where constraints
can be specified for some of the fields are called constraint
tables (or c–tables for short [4]). We make the representation
model even more expressive by considering bag semantics
and allowing linear conditions over the random variables.
This allows the tables to be closed under common relational
algebra operations, such as projection, selection, join, duplicate
elimination, and grouping and aggregation. We refer to such
tables as mixed tables or m-tables for short. An example of an
m-table is shown in Table I. The global condition field is part
of every m-table. It specifies under what condition there will
be tuples in the table. If the global condition is not satisfied,
then the representation of the table will be empty. We assume
that an empty condition is always true. A local condition is
associated with each tuple. It specified the condition under
which the tuple exists. In the example, either Bob or John
goes to UCLA but not both of them because it is impossible
that x = 1 and x = 2 at the same time. The variables y and
x are random variable, where their distribution is shown in
the lower part of Table I. For example, the random variable
x shows that there is an equal probability that John or Bob
studies in UCLA. Note that, as shown in Table I, every m-
table can be represented using several relational tables (we
will require that the random variables are initially independent
and their distributions are discretized).

TABLE I. THE Student M-TABLE

name school grade local condition
“John” “UCLA” y x = 1
“Bob” “UCLA” “A” x = 2
global condition:

value of y prob.
“A” 0.6
“B” 0.3
“C” 0.1

value of x prob.
1 0.5
2 0.5

In 1992, Rina Dechter wrote a survey paper on constraint
networks [5] that shows how graph networks can be used
to find the solution to a set of constraints. In 1985, Judea
Pearl wrote a paper that introduces the concept of a Bayesian
network for random variables [6]. The two concepts have been
studies separately until Mateescu and Dechter introduced the
concept of a mixed network [7]. This is a network that allows
the specification of both constraints and dependencies between
random variables. Here, we adopt the approach of the last
paper and study how tables with linear constraints and random
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variables can be stored and queried. While c-tables with linear
conditions [1] and p-tables [3] have been extensively studded,
we are not aware of any research that combines the two
concepts in the presence of linear conditions. The advantage
of our approach is that most relational algebra operations are
straightforward to perform and have good running times. One
drawback of our approach is that some of the complexity is
buried in the data representation.

In this paper, we define the precise semantics of an m-table
as a set of relational tables. We then examine the problem
of m-table simplification and deciding when two m-tables
are equivalent, that is, when they represent the same set of
tables. As part of this study, we show why it is impossible
to create a canonical form for an m-table. We also define
different relational algebra operations, such as projection,
selection, inner join, union, monus, and duplicate elimination.
For each operation, we present the formal semantics, show
why this semantics is well justified, and show an algorithm for
performing the operation. The basic idea is that performing a
relational algebra operation on one or more m-tables should
result in an m-table that represents the set of tables that we
will get if we performed the relational algebra operation on
the tables that are represented be the input m-tables. When this
is the case, we will say that the relational algebra operation
is sound and complete. In this paper, we closely follow the
research that was presented in [8]. The novelty is that now we
allow random variables to be part of a table. We also optimize
some of the algorithms and elaborate on how the duplicate
elimination operation can be performed.

In what follows, in Section II we present related research.
Section III shows the formal semantics of m-tables and defines
what does it mean for two m-tables to be equivalent. Section IV
presents our algorithms for performing the different relational
algebra operations on m-tables. Lastly, Section V summarizes
the paper and highlights avenues for future studies.

II. RELATED RESEARCH

We start by presenting relevant research in the area of
incomplete databases. It turns out that the problem of rep-
resenting incomplete information is as old as the relational
model itself [9], [10], [11], [12], [13]. Imielinski and Lipsi
[14] were among the first to propose richer semantics for
incomplete information. Before that, the only option was to
put “null” when the value of a field of a tuple is unknown.
Later, Libkin and Wong [15] extended the research to tuples
with bag semantics. Grahne extensively studied the problem of
representing incomplete information [4], while Reiter [16] and
Yuan et al. [17] explored algorithms for querying tables with
null values. Libkin [18] addressed the problem of querying
incomplete databases, while Buneman et. all [19] showed how
a table can represent one of several possibilities. The most
expressive representation of incomplete information that we
are aware of is [8]. It presents a system that supports bag
semantics with grouping and aggregation.

We next turn our attention to papers on databases with
statistical data. It turns out that probabilistic databases are also
as old as the relational model [20], [21], [22], [23]. Barbara
et al. [24] were the first to show how random variables can
appear inside tables and how the different relational algebra
operations can be performed on such tables. Ge at al. [25] show
a general approach to storing and querying probabilistic objects

that can contain any number of attributes, while Suciu et al.
[2] show a comprehensive overview of the current state-of-the-
art in probabilistic databases. In particular, Jampani et al. [26]
show how to apply a Monte Carlo algorithm to approximate the
distribution of the variables in the result of applying different
relational operations, while other papers [27], [28], [29], [30],
[31] show how these probabilities can be exactly computed.
Note that, unlike most papers that use exclusively the tuple
level uncertainty approach, we combine the tuple and attribute
level uncertainty approaches. Although this approach increases
the complexity of our data representation model, it allows for
more compact representation of information. As a final remark,
note that we allow linear constraints to be associated with
tuples. This is a generalization of the approach of previous
papers that allow lineage to be associated with each tuple [2].

III. INTRODUCING M-TABLES

In this section, we present the syntax and semantics of a
mixed table (a.k.a. m-table) and discuss the questions of m-
table simplification, m-table equivalence, and the existence of
a canonical form for m-tables.

Definition 3.1 (syntax of an m-table): An m-table con-
tains three parts: a bag ot m-tuples, a single global condition,
and the distribution of the random variables. An m-tuple t
with attributes {Ai}ai=1 is a sequence of mappings from Ai to
D(Ai) ∪ Vi (called the main part and denoted as main(t))
plus a local condition (denoted as lc(t)), where i ranges
from 1 to a. D(Ai) is used to represent the domain of the
attribute Ai, while Vi is a set of random variables over
D(Ai). We will allow local and global conditions over the
system 〈R, {>,=,+}〉 ∪ 〈S, {=, 6=}〉, where R is the set of
real numbers and S is the set of all strings. We will use gc(T )
to denote the global condition of the m-table T . Note that
we require that the distribution of the random variables be
discretized so that it can be stored in a tabular format.

We will follow the approach of Imielinski and Lipski [32]
and define the rep function. It shows the set of relational tables
that an m-table represents. The novelty is that we will also add
a probability to each relational table that shows how likely it is
that the particular table contains the correct data. We can think
of each relational table as the interpretation of the m-table (or
its random variables) under some possible world, where the
sum of the probabilities over all possible worlds is equal to one.
Note that, unlike [32], we adopt the closed world assumption.
That is, we assume that tuples that are not part of a table do
not belong to the table. We also apply bag semantics, that is,
we allow duplicate tuples.

Definition 3.2 (semantics of an m-table): An m-table T
represents the following set of relational tables and associated
probabilities.

rep(T ) = {〈v(T ), p(v)〉 : v is such that p(v) > 0} (1)

The function v interprets the variables in T as constants
in the corresponding domains. The expression p(v) denote the
probability that the mapping v occurs, where this probability
can be computed from the probability distribution of the
random variables. If the probability distribution of a random
variable is missing, then we assume uniform distribution. We
next define the function v for m-tuples.
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v(t) =

{
v(main(t)) if v(lc(t)) ∧ v(gc(T ))
∅ otherwise

(2)

In the above formula, t is an m-tuple of the m-table T . The
formula v(main(t)) means that we apply the interpretation v
to all the variables in the main part of the m-tuple t. The
function v is generalized to m-tables as follows, where {| · |}
is used to denote a bag of elements.

v(T ) = {| v(t) : t is such that t ∈ T ∧ v(t) 6= ∅ |} (3)

The above definition differs from the definition in [8]
because now a probability is associated with each of the
relational tables that are represented by an m-table. While it is
certainly possible to extend the definition and define ordering
over m-tables, we leave this topic as an area for future research.

For completeness, we show the four possible representa-
tions of our example Student m-table in Table II. For example,
there is a 15% probability that John is enrolled in UCLA and
has a grade of “B” because there is a 50% probability that he
is enrolled in UCLA and a 30% probability that his grade is
a “B”, where the two probabilities are independent.

TABLE II. THE RESULT OF APPLYING THE rep FUNCTION TO THE Student
TABLE

〈 name school grade
“John” “UCLA” “A” , 0.3〉 〈 name school grade

“John” “UCLA” “B” , 0.15 〉

〈 name school grade
“John” “UCLA” “C” , 0.05 〉 〈 name school grade

“Bob” “UCLA” “A” ,0.5 〉

Note that our definition of an m-table differs from a com-
mon approach in probabilistic databases where a probability of
existence is assigned to each tuple (i.e., tuple level uncertainty
[2]). However, we can compute the probability of existence
of a tuple t by computing the value of p(lc(t) ∧ gc(t)). The
function p computes the probability that is associated with
a linear expression. The function can be computed using a
mixed probability network, where Mateescu et al. propose both
a precise algorithm and approximate Monte Carlo sampling
algorithm for computing the probability [7]. We can apply this
algorithm because the distribution of the random variables is
discretized. The precise algorithm creates a graphical model
where a node is created for every random variable and random
variables that are correlated (i.e., are part of the same linear
constraint) are connected with edges. It then examines how
the distribution of one random variable affects the distribution
of the connected in the graph random variables. The sampling
algorithm approximates the probability of a linear condition
being true by simply generating random interpretations accord-
ing to the probability distribution of the random variables and
calculating the percent of time that the linear condition is true.
The Monte Carlo algorithm should be applied whenever it is
unfeasible to apply the precise algorithm.

A. M-table Simplification and Equivalence
We start this subsection with an algorithm that simplifies

a linear condition. The simplify algorithm is presented in
Figure 1. It can be used to simplify the local conditions
and global condition of an m-tuple. The algorithm converts

the condition in disjunctive normal form and then normalizes
each conjunction using the normalize algorithm from [33].
The algorithm has the property that it will convert each of
the conjunctions into a canonical form. However, as we have
shown in [1], a canonical form for a general linear constraint
does not exist. Informally, the reason is that there are different
ways to describe a linear point set as the union of polyhedras.
The algorithm takes exponential time relative to the size of
the condition, which is not necessarily a big concern because
in practice most conditions are relatively small. Depending on
the performance requirments, the algorithm can use the exact
or approximate algorithm for calculating the p function.

Algorithm 1 simplify(θ)

1: if p(θ) = 0 then
2: return false
3: end if
4: if p(θ) = 1 then
5: return true
6: end if
7: θ1 ∨ . . . ∨ θn ← θ, where {θi}ni=1 are conjunctions
8: for i← 1 to n do
9: θi ← normalize(θi)

10: end for
11: for i← 1 to n do
12: if θi ≡ true or p(θi) = 1 then
13: return true
14: end if
15: end for
16: θ ←false
17: for i← 1 to n do
18: if θi 6≡ false and p(θi) > 0 then
19: θ ← θ ∨ θi
20: end if
21: end for
22: return θ

Figure 1. The algorithm for simplifying a linear condition.

Since a canonical form for m-tables does not exist, we
can only simplify an m-table to make it more compact. The
simplification algorithm is shown in Figure 2, where its main
property is its correctness. That is, it does not change the set
of relational tables that the input m-table represents.

The algorithm is identical to the algorithm from [1], where
the only difference is that the simplify function considers the
distribution of the random variables. The algorithm unifies
tuples that are unifiable, which compacts the input m-table.
Two m-tuples are unifiable when we know that exactly one
of them can appear in any representation. For example, the
two tuples in the example Student table are unifiable. Formal
definition follows.

Definition 3.3 (m-tuple unification): The m-tuples t1 and
t2 of the m-table T are unifiable exactly when the expression
lc(t1) ∧ lc(t2) ∧ gc(T ) is not satisfiable.

The m-table simplification algorithm needs to consider all
pairs of m-tuples and therefore will run in quadratic time
relative to the size of the m-table. An example of applying the
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Algorithm 2 simplify(T )

1: if simplify(gc(T )) ≡ false or p(gc(T )) = 0 then
2: return empty table
3: end if
4: for all t ∈ T do
5: if simplify(lc(t) ∧ gc(t)) ≡ false then
6: remove t from T
7: end if
8: end for
9: while ∃{t1, t2}, s.t. unifiable(t1, t2) do

10: remove t1 and t2 from T
11: crate a new m-tuple t
12: X← {x1, . . . xn}, a set of new variables
13: main(t)← {x1, . . . , xn}
14: lc(t) ← (X = main(t1) ∧ lc(t1)) ∨ (X = main(t2) ∧

lc(t2))
15: add t to T
16: end while
17: for all t ∈ T do
18: lc(t)← simplify(lc(t) ∧ gc(T ))
19: if lc(t) ≡ false then
20: remove t from T
21: else
22: while main(t) contains a variable x and

simplify(lc(t)⇒ (x = c)) ≡ true do
23: replace x with the constant c in main(t)
24: end while
25: end if
26: end for
27: gc(T )← empty
28: return T

Figure 2. The algorithm for simplifying a mixed table.

simplify function to the Student table is shown in Table III.
Note that the m-table can be further simplified by removing
the random variable x and the conditions x = 1 and x = 2.
However, this involves a more evolved linear expression sim-
plification algorithm, such as the one presented in [8].

TABLE III. THE RESULT OF simplify(Student)

name school grade local condition

n “UCLA” g
(x = 1 ∧ n = “John” ∧ g = y)∨
(x = 2 ∧ n = “Bob” ∧ g = “A”)

value of y prob.
“A” 0.6
“B” 0.3
“C” 0.1

value of x prob.
1 0.5
2 0.5

We will say that two m-tables are equivalent when they
represent the same set of relational tables. A formal definition
follows.

Definition 3.4 (m-table equivalence): Two m-tables T1
and T2 are equivalent when rep(T1) ≡ rep(T2). We will
write T1 ' T2 to denote that two m-tables are equivalent.

The following theorem shows that the m-table simplifica-
tion algorithm does not change the meaning of an m-table.

Theorem 3.1: For any m-table T , T ' simplify(T ).

Lastly, the following theorem shows a practical way to
check for the equivalence of two m-tables.

Theorem 3.2: T1 ' T2 exactly when simplify(T1−T2) =
∅ and simplify(T2 − T1) = ∅, where “−” is the monus
relational algebra operation, which is defined in the next
section.

IV. RELATIONAL ALGEBRA OPERATIONS

It is expected that the different relational algebra operations
will have “nice” properties. In particular, we want the result of
applying a relational algebra operation on one or more m-tables
to be an m-table. We also expect the result of the operation
to be consistent with the semantic of the input m-tables (see
Definition 3.2). Precise definition of these properties follows.
Note that we will say that the tables {Ti}ni=1 are allowable
for the relational algebra operation q when q({Ti}ni=1) is well
defined. For example, union is allowed only on tables that have
identical attributes.

Definition 4.1 (closed RA operation): A relational algebra
operation q with arity n is closed if an only if the result of
applying q to any allowable m-tables {Ti}ni=1 is an m-table,
that is, q(T1, . . . , Tn) is always an m-table.

Definition 4.2 (sound RA operation): A relational algebra
operation q is sound when it produces only correct answers.
Formally, rep(q(T1, . . . , Tn)) ⊆ q(rep(T1, . . . , Tn)) for any
allowable tables {Ti}ni=1.

Note that we will some times abuse notation and use
q(rep(T1, . . . , Tk)) to define the result of applying the op-
eration q to each table in the set {rep(Ti)}ki=1.

Definition 4.3 (complete RA operation): A relational alge-
bra operation q is complete exactly when all correct an-
swers appear in the result, that is q(rep(T1, . . . , Tn)) ⊆
rep(q(T1, . . . , Tn)) for any allowable m-tables {Ti}ni=1.

In order for a relational algebra to be well defined, it is
required that all operations are closed, sound, and complete.
We next define relational algebra over m-tables that is well
defined, where the definition of completeness for the monus
operation will have to be slightly adjusted.

A. Projection

In this subsection, we will define duplicate preserving
projection, which we will denote as πd. The more common
duplicate eliminating projection can be achieved by applying
the duplicate elimination operation to the result.

The algorithm is shown Figure 3, where the algorithm
simply selects the desired fields. The following theorem is not
hard to prove and it is based on a similar theorem in [1].

Theorem 4.1: The projection operation is well-defined and
the result can be computed in time that is linear to the size of
the input table.

Table IV shows the result of applying the duplicate pre-
serving projection operation on the name and school fields of
the example Student table. Note that the local condition field
does not need to be included in the list of projected fields
because it cannot be projected out.
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Algorithm 3 Evaluating πdA(T )

1: S ← T
2: for all A ∈ attr(S) and A /∈ A do
3: if x is a random variable that appears only in A then
4: remove the probability table for x
5: end if
6: end for
7: for all t ∈ S do
8: remove attributes outside the set A
9: end for

10: return S

Figure 3. The algorithm for computing the projection over a mixed table.

TABLE IV. THE RESULT OF πd
name,school (Student)

name school local condition
”John” “UCLA” x = 1
”Bob” “UCLA” x = 2
global condition:

value of x prob.
1 0.5
2 0.5

B. Selection

Figure 4 shows how to apply the selection relational
algebra operation to an m-table. It first replaces variables with
constants where appropriate inside the main body of the table.
It then adds the selection condition to all the local conditions.
As a last step, the local conditions are simplified. Tuples that
have a local condition that is false are removed. Similarly,
tuples that have a local condition that is a tautology are left
with empty local conditions. The following theorem is not hard
to prove and it is based on a similar theorem in [1].

Theorem 4.2: The selection operation is well-defined and
the result can be computed in time that is linear to the size
of the input table plus the time to simplify the new local
conditions.

Table V shows the result of applying
σgrade=“A”(Student). The algorithm first substitutes
the value for the attribute grade of the first tuple with “A”
because we only keep tuples if the grade is “A”. Then the
selection condition is added to the local conditions. Note that
the condition that is added to the second tuple is “A”=“A”,
which is a tautology and is therefore removed by the simplify
algorithm.

TABLE V. RESULT OF σgrade=“A”(Student)

name school grade l. condition
”John” “UCLA” “A” y = “A”∧x = 1
”Bob” “UCLA” “A” x = 2
g.condition:

value of y prob.
“A” 0.6
“B” 0.3
“C” 0.1

value of x prob.
1 0.5
2 0.5

Algorithm 4 Evaluating σθ(T )

1: S ← T
2: for all Ai such that θ has the form (Ai = value ∧ . . .)

and t.Ai = p do
3: t[Ai]←value
4: if p does not appear anywhere else then
5: remove the probability table for p
6: end if
7: end for
8: for all t ∈ S do
9: ψ(t) ← a substitution that substitutes every variable Ai

with t[Ai] (the value for the attribute Ai in t)
10: lc(t)← simplify(lc(t) ∧ θψ(t))
11: if lc(t) ≡ true then
12: make local condition of t empty
13: end if
14: if lc(t) ≡ false then
15: remove t from S
16: end if
17: end for
18: return S

Figure 4. The algorithm for computing selection over mixed table.

C. Natural Join
The algorithm for natural join is shown in Figure 5, where

the algorithms for theta join and outer join are similar.

Algorithm 5 Evaluating T1(A,B) ./ T2(B,C)

1: T ← empty m-table with the attributes of A ∪ B ∪ C
2: for all t1 ∈ T1 do
3: for all t2 ∈ T2 do
4: if simplify(t1[B] = t2[B]) 6≡ false then
5: t← new tuple with attributes of T
6: main(t)← 〈t1, πdC(t2)〉
7: lc(t)← simplify(lc(t1) ∧ lc(t2) ∧ t1[B] = t2[B])
8: add t to T
9: end if

10: end for
11: end for
12: gc(T )← gc(T1) ∧ gc(T2 )
13: return T

Figure 5. The algorithm for natural join of mixed tables.

The above algorithm simply joins tuples from the two m-
tables that are joinable. Two tuples are joinable when the local
condition of the new tuple is satisfiable. When two tuples are
joined, the new local condition is the conjunction of the join
condition and the local conditions of the two tuples. As a final
step, the global conditions of the two tables are merged using
conjunction. The following theorem is not hard to prove and
it is based on a similar theorem in [1].

Theorem 4.3: The natural join operation is well-defined
and the result can be computed in time that is proportional
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to multiplying the sizes of the two tables times the time to
perofrm the new linear condition simplification.

As is the case in relational databases, a join can be
optimized using indexes. We leave the details as a topic
for future research. Consider the University mixed table in
Table VI. Table VII shows the result of the natural join of the
Student and University tables. Note that the second tuple of
the University table cannot join with any of the tuples in the
Student table. Conversely, the first tuple of the University
table joins with the two tuples in the Student table when
z = “UCLA”. In the tuple-level uncertainty model, one
can compute that the marginal probability of the first tuple
in the result (i.e., the probability of the tuple existing in a
representation) is 0.5 ∗ 0.6 = 0.3. However, our model does
not explicitly store the marginal probabilities of the resulting
tuples.

TABLE VI. THE University M-TABLE

school local condition
z

Cal Poly
global condition:

value of z prob.
“UCLA” 0.6

“Univeristy of California Los Angeles” 0.4

TABLE VII. THE RESULT OF Student ./ University

name school grade local condition
“John” “UCLA” y x = 1 ∧ z = “UCLA”
“Bob” “UCLA” “A” x = 2 ∧ z = “UCLA”
global condition:

value of y prob.
“A” 0.6
“B” 0.3
“C” 0.1

value of x prob.
1 0.5
2 0.5

value of z prob.
“UCLA” 0.6

“Univeristy of California Los Angeles” 0.4

D. Union
Performing the duplicate preserving union of two m-tables

is straightforward. Figure 6 shows the algorithm that simply
merges the tuples of the two tables. The new global condition
is the conjunction of the global conditions of the input tables.

Algorithm 6 Evaluating T1 ∪d T2
1: T ← empty m-table that has the attributes of T1
2: for all t1 ∈ T1 do
3: add t1 to T
4: end for
5: for all t2 ∈ T2 do
6: add t2 to T
7: end for
8: gc(T )← gc(T1) ∧ gc(T2)
9: return T

Figure 6. The algorithm for duplicate-preserving union of mixed tables.

The following theorem is not hard to prove and it is based
on a similar theorem in [1]. Note that the m-table simplification

algorithm can be applied to the resulting table in order to make
it more compact, but this is not a requirement.

Theorem 4.4: The duplicate preserving union operation is
well-defined and the result can be computed in time that is
linear in the size of the input tables.

As an example, Table VIII shows the result of applying the
duplicate preserving union on two copies of the Student table.
The new table denotes that either we have two Bobs, or we
have two Johns in UCLA, but not both.

TABLE VIII. THE RESULT OF Student ∪d Student

name school grade local condition
“John” “UCLA” y x = 1
“Bob” “UCLA” “A” x = 2
“John” “UCLA” y x = 1
“Bob” “UCLA” “A” x = 2
global condition:

value of y prob.
“A” 0.6
“B” 0.3
“C” 0.1

value of x prob.
1 0.5
2 0.5

E. Monus
The duplicate-preserving monus operation is defined as

follows T1−d T2 = {|t[k] | t ∈ T1∧k = max (0, card(t, T1)−
card(t, T2))|}. The card function returns the cardinality (a.k.a.
number of appearances) of the tuple in the table, while t[k]
denotes that the tuple t appears k times in the result. As
expected, t[0] means that the tuple does not appear in the result.

We will define the algorithm that performs the monus
operation using two two-dimensional arrays. Let X[i, j] be the
condition that must be true for the ith tuple in T1 to delete the
jth tuple in T2. This condition is true under an interpretation
that makes the main parts of the tuples the same and makes
the local conditions of the two tuples and global conditions of
the two tables true. Let Y [i][j] be equal to 1 when the ith in T1
is deleted by the jth tuple in T2 and be equal to 0 otherwise.
We will use Y to enforce the restriction that every tuple in
T2 can delete at most one tuple in T1. Figure 7 shows the
algorithm for performing the monus operation. The algorithm
is an optimized version of the algorithm from [8]. Note that
we do not specify the probability distributions of the two two-
dimensional arrays of random variables and therefore uniform
distribution is assumed.

The algorithm first removes tuples from T2 that cannot
delete tuples from T1. It next copies tuples from T1 that cannot
be deleted by tuples from T2 to the resulting set. As a final
step, all the remaining tuples from T1 are added to the result.
For each of these tuples, a local condition is added that they
will be part of the result only if they are not deleted by one
of the tuples in T2, where an interpretation of Y fixes which
tuples in T1 are deleted by which tuples in T2.

The following theorem is not hard to prove and it is based
on a similar theorem in [1].

Theorem 4.5: The monus operation is closed, sound, and
it supports a version of completeness. Specifically, we need to
modify the completeness condition as follows: (Rep(T1) −
Rep(T2)) ∪ {∅} ⊆ Rep(T1 − T2). The complexity of the
operation is linear relative to the product of the sizes of the
two tables plus the time to perform the new local condition
simplification.
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Algorithm 7 Evaluating T1 −d T2
1: V1 ← T1
2: V2 ← T2
3: R← empty table that has the attributes of T1
4: for all t1 ∈ V1 do
5: if there is no tuple t2 in V2 such that

simplify(main(t1) = main(t2) ∧ lc(t1) ∧ gc(t1) ∧
lc(t2) ∧ gc(t2)) then

6: add t1 to R
7: remove t1 from V1
8: end if
9: end for

10: for all t2 ∈ V2 do
11: if there is no tuple t1 in V1 such that

simplify(main(t1) = main(t2) ∧ lc(t1) ∧ gc(t1) ∧
lc(t2) ∧ gc(t2)) then

12: remove t2 from V2
13: end if
14: end for
15: i← 0
16: for all t1 ∈ T1 do
17: j ← 0
18: for all t2 ∈ T2 do
19: X[i][j]← simplify(main(t1) = main(t2)∧ lc(t1)∧

gc(t1) ∧ lc(t2) ∧ gc(t2))
20: j ← j + 1
21: end for
22: i← i+ 1
23: end for
24: n← number of tuples in V1
25: m← number of tuples in V2
26: i← 0
27: for all t ∈ V1 do
28: lc(t)← lc(t) ∧ ¬(

m∨
j=1

(X[i, j] ∧ Y [i, j] = 1))

29: i← i+ 1
30: end for
31: gc(R) ←

m∧
j=1

(
n∨
i=1

(Y [1, j] = . . . = Y [i − 1, j] = Y [i +

1, j] = . . . = Y [n, j] = 0 ∧ Y [i, j] = 1))
32: return R ∪d V1

Figure 7. The algorithm for subtracting mixed tables.

We had to modify the definition of completeness because
we allow the empty set (a.k.a. ∅) to be a possible representa-
tion of an m-table. We believe that this is intrinsic problem
associated with monus under the closed world assumption.
Table IX shows the result of applying the monus operation
on the m-tables simplify(Student) and Student. Applying the
simplify algorithm to the new table will produce the empty set.

F. Duplicate Elimination
The duplicate elimination algorithm simply checks for pairs

of m-tuples that have main parts that are unifiable and local
conditions that are not excluding. The algorithm then adds the
restriction to the output table that states that if the two tuples
indeed have the same main part under some interpretation, then

TABLE IX. THE RESULT OF Student−d simplify(Student)

name school grade local condition

“John” “UCLA” y

x = 1 ∧ ¬(“John” = n ∧ y = g∧
((x = 1 ∧ n = “John” ∧ g = y)∨
(x = 2 ∧ n = “Bob” ∧ g = “A”))

∧Y [1, 1] = 1)

“Bob” “UCLA” “A”

x = 2 ∧ ¬(“Bob” = n ∧ g = “A”∧
((x = 1 ∧ n = “John” ∧ g = y)∨
(x = 2 ∧ n = “Bob” ∧ g = “A”))

∧Y [2, 1] = 1)
global condition: (Y [1, 1] = 1 ∧ Y [2, 1] = 0) ∨ (Y [1, 1] = 0 ∧ Y [2, 1] = 1)

value of y prob.
“A” 0.6
“B” 0.3
“C” 0.1

value of x prob.
1 0.5
2 0.5

the local condition of only of the tuples can be satisfied. The
formal definition of unifiable main parts is presented next.

Definition 4.4 (unifiable main parts): Two tuples have
main parts that are unifiable if these main parts can become
equivalent under some possible interpretation. We will write
unifiable(main(t1),main(t2)) when this is the case.

Details are shown in Figure 8, where we use δ to denote
the duplicate elimination operation. The following theorem is
not hard to prove.

Algorithm 8 Evaluating δ(T )

1: V ← T
2: for all t1, t2 ∈ V do
3: if unifiable(main(t1),main(t2)) and simplify(lc(t1) ≡

(t2)) 6≡ false then
4: introduce a new variable x
5: lc(t1) ← lc(t1) ∧ ((main(t1) = main(t2)) ⇒ (x =

1))
6: lc(t2) ← lc(t2) ∧ ((main(t1) = main(t2)) ⇒ (x =

2))
7: end if
8: end for
9: for all new variable x do

10: Add a table for the distribution of x. The possible values
are 1 and 2 with probability 0.5 each.

11: end for
12: return V

Figure 8. The algorithm for duplicate elimination.

Theorem 4.6: The duplicate eliminating operation is
closed, sound, and complete. The complexity of the operation
is quadratic relative to the size of the table plus the time to
execute the calls to the simplify function.

As an example, consider applying the duplicate eliminating
operation on the table from Table VIII. The result is shown in
Table X. We can apply the simplify function to the result to
get back the Student table.

V. CONCLUSION AND FUTURE RESEARCH

We introduced the concept of a mixed table. This is a table
that allows both random variables and linear constraints on
them to be stored. To the best of our knowledge, we are the first
paper to do so. We presented the semantics of a mixed table as
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TABLE X. THE RESULT OF δ(Student ∪d Student)

name school grade local condition
“John” “UCLA” y x = 1 ∧ z = 1
“Bob” “UCLA” “A” x = 2 ∧ w = 1
“John” “UCLA” y x = 1 ∧ z = 2
“Bob” “UCLA” “A” x = 2 ∧ w = 2

value of y prob.
“A” 0.6
“B” 0.3
“C” 0.1

value of x prob.
1 0.5
2 0.5

value of z prob.
1 0.5
2 0.5

value of w prob.
1 0.5
2 0.5

a set of relational tables, where a probability is associated with
each representation. We extended the bag relational algebra
from [8] to m-tables and showed that the new relational algebra
is closed, sound, and complete. In summary, we believe that
this paper can serve as a blueprint for a system for storing and
querying m-tables.

As part of future research, we need to show how the differ-
ent relational algebra operations can be performed efficiently.
For example, indexes on the data can be used to execute the
selection and join relational operations efficiently. We also
need to follow the model from [8] and introduce algorithms
for performing grouping and aggregation over m-tables.
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