
A Versioning and Commenting Approach for Enhancing Group Efficiency in
Collaborative Web-Based Business Process Modeling Tools

Justus Holler
University of Muenster

ERCIS
Muenster, Germany

justus.holler@ercis.uni-muenster.de

Abstract—Business process modeling interpreted as a
collaborative act requires resource intense communication and
coordination between domain and modeling experts.
Therefore, modern web-based business process modeling tools
need to provide a shared workspace. Tool users can check and
validate the progress of the business process modeling project
and coordinate their work. This paper proposes a concept for
workspace awareness, which combines version management
with a commenting functionality in order to increase the
groups modeling efficiency. The process model versions in the
workspace from draft to final are documented with the help of
a history-in-parent approach. Comments for each model
version and comments within the models allow the tool users to
collaborate asynchronously, which decreases the need for
several workshop and interview iterations for process
recording and refinement.

Keywords-Business Process Modeling Tool; Versioning;
Comments; Awareness; Modeling Efficiency.

I. INTRODUCTION AND MOTIVATION
Business Process Management (BPM) deals with

managing, transforming and improving organizational
operations [1]. One key part is the modeling of these
operations in business process models. They are of high
interest for public and private organizations as means to stay
competitive and attractive in fast changing markets. A
variety of methods, modeling languages and tools are used in
these endeavors and there is research regarding the suitability
of modeling languages for different purposes [2][3]. In every
case, a modeling project basically depends on two parties.
Firstly, the department worker who holds the knowledge of
the organizational domain. Secondly, the modeling expert
with particular sharp analytical and modeling skills who
facilitates model creation [4-9].

Projects in this field are typically resource intense. This
applies on the one hand to the time the department workers
have to invest into the workshops or interviews and on the
other hand to the budget for the (external) modeling expert
who moderates the workshops or interviews and designs and
refines the models afterwards [10][11]. Subsequently, the
designed models have to be semantically validated by the
department workers [6][7] and finalized in an iterative
manner.

In order to reduce errors and to enhance the holistic
understanding of the business processes within the scope of
the project, it is at least beneficial if not necessary to include
several department workers or domain experts into the
business process modeling project [12][13]. Involving
department workers in the process of modeling is reasonable
as they accept [12][14] and understand the processes more
thoroughly which fosters their critical evaluation and leads to
potential process improvements [15]. Furthermore, the risk is
reduced that the designed processes are not accepted by the
department, which would lead to resource intense re-
modeling or a failed project.

In its core, a business process management project with
the deliverable of a documented process landscape is based
on communication. Project participants contribute to a
project outcome no single one of them could solely have
accomplished. The necessary integration of the relevant
project members can be done with the help of collaborative
business process modeling tools [9][14]. In such tools,
collaboration is possible but also coordination is necessary as
the project participants have to distribute their tasks and
synchronize their working objects [16–18] in a common
context. Within this context awareness information helps to
inform about the task status of other project members tasks
and therefore reduces the coordination effort [19][20].

Hence, it is worthwhile to identify and foster drivers for
improved integration and communication of the project
members. The overall goal of this paper is to increase the
project groups’ efficiency in designing, reviewing and
finalizing the models in the business process landscape.
Therefore, this paper proposes a concept for workspace
awareness in web-based business process modeling tools.
This is done by the combination of a model versioning
approach and an integrated commenting function.

Section 2 examines the need for versions in business
process modeling projects and the role of comments as
means for communication and coordination in information
systems. The third Section explains the reasonable
combination of model versioning and comments for
improving awareness and presents the history-in-parent
versioning approach and how it can be applied for a web-
based process modeling tool. Section 4 discusses the
conceptual design of the management and visualization of
the commenting function based on the versioning approach

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

and Section 5 concludes the paper and gives an outlook for
future research.

II. VERSIONS AND COMMENTS IN BUSINESS PROCESS
MODELING TOOLS

In the context of modeling, it is difficult to define the
quality of process models. Models can only be more or less
useful with respect to their purpose [21]. In order to reach a
status of usefulness – a final model – it needs the discussion
of the good-willing and knowledgeable [22]. Moreover, once
this status is reached, it has to be taken into account that
organizations, markets and requirements change and that the
process models have to be adjusted or re-evaluated on a
continuous basis. In professional life in process modeling
projects, this is done with IT support. For example, with a
web-based process modeling tool which supports the project
members in creation, modification, validation and
communication of the process models in a collaborative
manner. The project members access the models in an online
repository in parallel and will either only view the model or
also modify their content. The synchronous modification
bares the risk of known issues like lost updates or
inconsistencies within the models if not appropriate
techniques are applied to reduce or prevent the risks. In
theory this risk can be managed by displaying the models in
real-time but it is questionable if this can be achieved and
guaranteed in practical settings with tool users working
distributed regarding time and place. Hence, (theoretical)
modeling tools with the support for synchronous modeling
are not applied in practice [23] and an analysis regarding
twelve commercial available modeling tools showed that
none of them supported real-time modeling [10].

Modeling in professional life is done in an asynchronous
manner. The modeling experts design versions of the model,
while the domain experts contribute business knowledge and
validate the model versions either in workshops or directly
within the tool. In team settings with several domain and
modeling experts, there will be discussion regarding the most
reasonable model and hence, the need for different versions
of one process model. It takes several distinctive versions to
reach the final, correct and useful state of one model.

For each new version from draft to the final model of the
whole process landscape the reason why the new version was
created, e.g., the input by the domain expert has to be saved.
Hence, the necessity for textual descriptions or additional
documents arises. This meta-information helps to understand
what has changed or why something should be changed in a
new version of the model. Therefore, comments enhance the
understanding of the model users collaborating in one
(virtual) workspace regarding the reasons for model changes
and reduce the coordination effort [19].

III. WORKSPACE AWARENESS WITH COMMENTS AND
VERSION MANAGEMENT

People who work together in one room can easily
recognize who is dealing with which part of the project. In a
distributed or virtual setting, this is not possible. It needs
additional information for efficient coordination of work

items. Awareness information addresses the “what” and
“where” [19]. In the case of comments, the comment itself is
the answer to the “what” while the link to the commented
object answers the “where”. Comments within process
models therefore are particular well-suited regarding
awareness, as their information automatically sets a context
and the context for the process model element does not have
to be set by a user explicitly. In groupware, awareness is a
long known research field [24] and in the area of software
engineering comments are used because of their awareness
effects and are the basis for code awareness or code
repository mining [25–27]. Although it is expected that the
benefits of the above mentioned collaborative tasks can be
transferred to the other collaborative tasks [20][28], there is
no particular research in the area of collaborative process
modeling with a focus on comments. Only [29] considers the
commenting function as possible interface between domain
and modeling experts. They can use comments directly in the
process model (review comments) as known from software
like Adobe Reader or Microsoft Word which allow a precise
validation and correction and a dialogue between the users
[20]. Domain experts can add information, which was not
recorded during the interview or workshop. If the modeling
expert creates new versions based on the input and wants to
communicate the background for the new version, a
management system has to be in place allowing comments
(version comments) as meta-information for the specific
versions.

A. Version Management Systems
The main purpose of version management systems in

software engineering is the management of different versions
of textual documents (source code) and their consolidation
[30]. The most important version management systems like
Concurrent Versions System (CVS), Subversion (SVN) and
Git incorporate textual descriptions for the specific version
or code which is a feature regularly used by software
developers [27][31]. The developer does not have to analyze
the source code in detail and still can estimate the impact of
the changes for his or her work. The same applies to users of
web-based business process modeling tools. Domain and
modeling experts are aware of the changes made to one
model version (version comment) or to a specific model
element (review comment) by reading the textual
description.

A hurdle to overcome for the application of version
management concepts in web-based business process
modeling tools is the document format in which process
models are stored. Unlike source code in software
engineering, process models cannot be compared on the
basis of lines of text. Business process models are typically
not stored in text files but in a binary format or in the best
case in a serialized XML format [32]. Hence, process
modeling tools which have an integrated version
management functionality usually depend on their
proprietary format [10].

The “History-in-Parent” version management approach
[33] is proposed here which can directly be applied on a
database level. Thus, there is no need for a serialization of

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

the process models. The pre-condition for this approach is
that the business process landscape can be represented as tree
structure with the process framework as root node and the
main and detail processes with their respective process
elements as child nodes [34]. In principle, the level of
abstraction layers is arbitrary but for readability reasons this
paper limits the levels of abstraction to three. As only the
history (old versions) is stored, the displayed process is
always the most recent version of the model, which leads to
good processing time in accessing the model in a web-based
context. Also the processing time for executing basic
functions as creating, modifying or deleting process elements
(nodes) or restoring an old version is nearly optimal [33].

In Figure 1, an example structure is shown with a process
framework (root node of the tree structure and 1st abstraction
layer) after four modeling steps (t = 4) with links to a “1st
main process” and “2nd main process” (both child nodes of
the process framework). The “1st main process” is further
detailed by a “1st detail process” and “2nd detail process”.
Hence, the “1st main process” is the parent node for the two
detail processes. For each layer of parent nodes (two in this
example), a table is maintained, which stores the historic
connections of the parent node to its child nodes. The
“historic tables” are represented in Figure 1 as smaller circles
in the same color and line style as the respective level of
abstraction. The naming of the history nodes in the figures
follows on every layer the same principle: The first part of
the identifier represents the ID of the parent node (in the
example the “Process framework” or “1st main process”
with the ID 1). The second part of the identifier after the dot
represents the time when the connections form parent to
child nodes were valid.

Tree structure

Process
framework

(ID = 1)

1st main
process
(ID = 1)

2nd main
process
(ID = 2)

1st detail
process
(ID = 1)

2nd detail
process
(ID = 2)

Instantiation example

1.1

1.3

t = 4

Figure 1. Tree structure and instantiation example of nodes.

Table 1 and Table 2 show the relevant data base tables for
the main processes layer of the example. In Table 2, the
historic information of the yellow history node can be found
in the last row. For readability, the history table for the
detail processes which would be analog to Table 2 is not

printed and the visualization of technical attributes like
primary and foreign keys are omitted in these and all
following tables. Also, non-relevant history nodes are not
displayed in the figures.

TABLE I. MAIN PROCESSES DATA BASE TABLE

Name Node-ID Parent-ID
1st main process 1 1
2nd main process 2 1

TABLE II. HISTORY TABLE ON THE PROCESS FRAMEWORK LEVEL

Framework-ID Child nodes Validity
1 NULL 0
1 1 1

B. Creating, Modifying, Deleting and Restoring Process
Elements
A version management approach in a modeling tool has

to track all relevant changes made to a model by the basic
operations create, modify or delete. Furthermore, restoring
old model versions has to be supported. In the following, the
necessary steps for each of these operations are explained
and an example is given in the next subsection.

Saving the links between parent node and its child nodes
in the respective history table is the first step for all
operations. Three attributes are of relevance: the ID from the
parent node k, the IDs of the child nodes, which were linked
to k and the version number (validity) before the change took
place.

In case a node o is modified, its parent node is saved as
described in the previous paragraph. Then, node o is copied
as new node k with the same parent ID but the modified
values (e.g., new identifier). The ID of the new node k is
(auto-)incremented by the database system. Now, the parent
node ID of o is set to NULL because o has no valid
connection to a parent node in the most recent version of the
model. Then o is saved and all links to o from o’s child
nodes have to be changed to links to k.

If a new node k is created, first the parent node of k is
saved so the old links are saved for the validity t – 1 and then
the new node k can be created and is linked to the parent as
new process element in the most recent model version.

The procedure of deleting a node k is done with the
following steps: at first the parent node of k is saved, than
the attribute parent node from k is set to NULL and k is
saved. Finally, for all child nodes the links to k are set to
NULL because k does not exist anymore in the most recent
version of the process landscape.

Restoring a model version x is always done relatively to a
node in the process landscape. The node (v) which shall be
set back to version x is treated as root of a sub tree. This tree
is then restored with the connections valid for the specified
version (x): first, the parent node of v is saved (if existing)
and afterwards v itself is saved. In a recursive step the
original o of v valid for the time x has to be identified.
Therefore, in the history table of v the most recent node h has

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

to be selected where v is not listed as child node. Three cases
are possible: If no node h is found, then, there was no change
to v since version x. If h is found and the next historic child
node h+1 in the table has the same amount of child nodes as
h, than the original o can be derived by the comparison of the
child nodes from h and h+1. In case h+1 has only one more
child node, than v is not the result of a modification but the
original itself and the recursion can stop. After going through
the recursion at least twice the value for the parent node of v
is copied to o and the parent node of v is set NULL, which
makes v to the new original. All child nodes of v have to be
saved and their parent node attribute is set to NULL. Now,
search for the newest historic node h of v in the historic table
of the same level like v which version is smaller or identical
to x and set the value for the parent node of all in h listed
child nodes to v. For clarification of the above mentioned
steps, all operations are used in the following modeling
scenario.

C. Modeling an Example Process Landscape
In the first step (t = 0), a new process framework “Whole

sale” is created (Figure 2).

Whole sale
(ID = 1)

t = 0

1.0

Figure 2. Process landscape (t = 0).

After creating the main processes contracting (t = 1),
purchasing (t = 2) and receiving (t = 3) and the detail
processes maintain article master data (t = 4), maintain
supplier master data (t = 5) and maintain supplier contracts
(t = 6) the process landscape in its tree representation looks
like depicted in Figure 3 with the process element nodes and
the respective history nodes.

Whole sale
(ID = 1)

Contracting
(ID = 1)

Purchasing
(ID = 2)

Receiving
(ID = 3)

Maintain
article

master data
(ID = 1)

Maintain
supplier

master data
(ID = 2)

1.2

1.1

1.0

Maintain
supplier

contracts
(ID = 3)

t = 6

1.5

1.4

1.3

Figure 3. Process landscape after adding main and detail processes (t = 6).

Now the main process element “Contracting” is renamed
to “Contrac management”. The renamed element is linked to
the parent node while the node with the old name
(“Contracting”) has no link to a parent node anymore (Figure
4, t = 7).

Whole sale
(ID = 1)

Contracting
(ID = 1)

Purchasing
(ID = 2)

Receiving
(ID = 3)

Maintain
article

master data
(ID = 1)

Maintain
supplier

master data
(ID = 2)

1.6

Maintain
supplier

contracts
(ID = 3)

t = 7

1.6

Figure 4. Process landscape after renaming Contracting (t = 7).

TABLE III. MAIN PROCESSES AFTER CHANGING “CONTRACTING” TO
“CONTRAC MANAGEMENT” (T = 7)

Name ID Framework-ID
Contracting 1 NULL
Purchasing 2 1
Receiving 3 1
Contrac management 4 1

Due to the name change a new entry in the table of the

main processes (Table 3) is added (ID = 4) with a new
connection to the old parent of “Contracting”. The old
connection, which was valid for t = 6 is stored in the history
table (Table 4).

TABLE IV. HISTORY TABLE ON FRAMEWORK LEVEL AFTER CHANGING
“CONTRACTING” (T = 7)

ID Child nodes Validity
1 NULL 0
1 1 1
1 1,2 2
1 1,2,3 6

Table 5 lists all detail processes including the ID of their

parent nodes. In t = 7, the parent node ID for the detail
processes is the same as they all have the same parent node
which has changed from ID 1 (“Contracting”) to ID 4
(“Contrac Management”).

TABLE V. DETAIL PROCESSES DATA BASE TABLE (T = 7)

Name ID Main proc.-ID
Maintain article master data 1 4
Maintain supplier master data 2 4
Maintain supplier contracts 3 4

The version information regarding the old parent ID is

stored in the historic table on the main process level as this is
the parent-level of the detail processes (Table 6).

TABLE VI. HISTORIC TABLE OF THE MAIN PROCESSES (T = 7)

Main proc.-ID Child nodes Validity
1 NULL 3
1 1 4
1 1, 2 5
1 1, 2, 3 6

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

The project manager decides that “Receiving” is not in
scope anymore and deletes it (t = 8). Furthermore, the
domain expert wants the modeler to correct the typo in
“Contrac management” (t = 9) and to consider the business
case of canceling a contract. Because this procedure does not
fit into the existing “Maintain supplier contracts” the
modeler decides to add a new detail process (t = 10, Figure
5).

Whole sale
(ID = 1)

Contracting
(ID = 1)

Purchasing
(ID = 2)

Receiving
(ID = 3)

Maintain
article

master data
(ID = 1)

Maintain
supplier

master data
(ID = 2)

1.7

1.6

4.9

Maintain
supplier

contracts
(ID = 3)

t = 10

1.6

Cancel
supplier
contract
(ID = 4)

Figure 5. Process landscape after deleting “Receiving”, correcting
“Contract management” and adding “Cancel supplier contract” (t = 10).

In Table 7 the main processes information is stored after
deleting the process “Receiving” (Framework-ID = NULL)
and correcting the typo in “Contract management”.

The deletion of “Receiving” leads to a new entry in the
history table (Table 8), where the link from Framework-
ID = 1 to its Child node ID = 3 is not listed anymore.

TABLE VII. TABLE OF MAIN PROCESSES AFTER DELETING “RECEIVING”
AND CORRECTING THE TYPO (T = 10)

Name ID Framework-ID
Contracting 1 NULL
Purchasing 2 1
Receiving 3 NULL
Contrac Management 4 NULL
Contract management 5 1

TABLE VIII. HISTORY TABLE AFTER DELETING “RECEIVING” (T = 10)

Framework-ID Child nodes Validity
1 NULL 0
1 1 1
1 1, 2 2
1 1, 2, 3 6
1 2, 3, 4 7
1 2, 4 8

In Table 9 the detail processes valid for t = 10 are listed

with the newly added process “Cancel supplier contract”.
The version information are stored in the history table
(Table 10) on main process level (parent level of detail
processes). The newest validity entry 9, as this refers to the
typo correction. The most recent version with the just added
detail process is – as always – not stored in this table.

TABLE IX. TABLE OF DETAIL PROCESSES AFTER ADDING “CANCEL
SUPPLIER CONTRACT” (T = 10)

Name ID Main proc.-ID
Maintain article master data 1 5
Maintain supplier master data 2 5
Maintain supplier contracts 3 5
Cancel supplier contract 4 5

TABLE X. HISTORIC TABLE OF MAIN PROCESSES (T = 10)

Main proc.-ID Child nodes Validity
1 NULL 3
1 1 4
1 1, 2 5
1 1, 2, 3 6
3 NULL 7
4 1, 2, 3 8
5 1, 2, 3 9

Whole sale
(ID = 1)

Contracting
(ID = 1)

Purchasing
(ID = 2)

Receiving
(ID = 3)

Maintain
article

master data
(ID = 1)

Maintain
supplier

master data
(ID = 2)

1.10

1.7

5.10

Maintain
supplier

contracts
(ID = 3)

t = 11

Cancel
supplier
contract
(ID = 4)

3.10

Figure 6. Process landscape after the status of t = 6 is restored.

In the final presentation of the process landscape (t = 11),
the project team decides to restore the version of the process
framework which was valid in t = 6. The resulting tree with
“Whole sale” as root (Figure 6) is the same as it was in
Figure 3.

IV. CONCEPTUAL DESIGN OF THE COMMENT
FUNCTIONALITY

The described version management approach from the
last section is one technical necessity for the project team to
model the process landscape collaboratively. The other
important part is the addition of comments at appropriate
places. In the sense of [35] the comments are the messages
which are send from a transmitter (domain expert) over a
channel (modeling tool) to a receiver (modeling expert) and
vice versa. This form of communication enables the good-
willing and knowledgeable experts [22] to coordinate their
activities and efficiently collaborate.

In the following the concept for storing the comments
from the technical perspective is described and the
possibilities of communicating their message via the
modeling tool.

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

A. Storing the Comments in the Data Base
All comments regarding the process landscape are stored

in one comment table (Figure 7, [36]). The link to the
specific model (element) is done via: a comment-ID
identifies the specific comment, an element-ID sets the link
to the process element or process which is commented (the
process element table is omitted for readability reasons), an
author-ID, an addressee-ID can be linked to a specific user,
an attachment attribute allows a link to additional
information, a timestamp allows to sort the comments, a type
indicates if it is a version, review or change request comment
and the attribute comment contains the textual comment
itself. The hierarchical relationship of the comment entity
(comment hierarchy) allows users to write comments in
relation to another comment and therefore create answers or
threads.

comment

comment
hierachy

(0,m)
(0,1)

comment-ID, #element-ID, #author-ID,
#addressee-ID, #attachment, timestamp,

comment, type

#parent-comment-ID, #comment-ID

user

user comment
relation

(0,m)

(0,n)

role

user role
relation

(1,m)

(0,n) D,P
domain expert

modeling expert

Figure 7. Entity relationship model of comment, user and role table.

Between the comments and the users a n:m-relationship
is proposed. This allows a read / unread functionality for
each user separately as known from e-mail clients.

The process and process element tables are not depicted
in the Entity relationship model (ERM, [36]), but have an
important status attribute. Each instance on framework, main
and detail process level has a status indicating if the element
is in work, a draft, ready for review or final. Depending on
this status, the domain expert can validate the overall
structure (draft), check for semantic correctness (ready for
review) or set the status of the process (element) to final.

These status are coupled with the role concept. As in the
modeling project domain and modeling experts are involved
it has to ensure, that only authorized persons can set the
appropriate status. For example, the modeler can set the “in
work”, “draft” and “ready for review” status while only the
domain expert can set the status to “final” and therefore
validate its semantic correctness from the subjective point of
view and if it is fit for use [21].

B. Communication of the Comments
In order to create workspace awareness for the project

members it is crucial to communicate the committed
changes, their textual descriptions (version and review
comments) and the status of each comment. Hence, the

comments have to be visualized, and managed by the
modeling tool.

In Figure 8 a domain expert views the main process
contract management and has one unread comment regarding
the process step “Maintain supplier master data”. The
amount of unread comments is visualized with the help of a
bubble. It can either relate to comments regarding the
process element itself or it can indicate the amount of
comments underneath the process element. If this bubble or
the process element is right-clicked the user can navigate to
the comments view (Figure 9), switch to the version
management view (Figure 10) or change the process status.
Furthermore, in Figure 8 the domain expert writes a change
request regarding the missing process step “Cancel supplier
contract”.

x

Contract management (main process)

Maintain article
master data

Maintain supplier
master data

Maintain supplier
contracts

New comment (2014-06-02, 10:58, Domain expert user 1)

Please add the detail process „Cancel supplier
contract“, as we do not do that within the
„Maintain supplier contract“ process.

Add commentCancel

 Whole sale Contract management

Change request?

Cancel supplier contract

Open comments
Open version control
Change status

Attach document...

1

Figure 8. Adding a comment and right-click effect (domain expert role,
t = 9).

While viewing the comments in the process model the
user can mark the comment as read and depending on the
comment and the users’ role, it is possible, to “accept” or
“reject” a change request. By this means, a domain expert
can track if the modeling expert already read the comment
and if her change request was accepted and possibly send the
modeling expert a reminder. Furthermore, the read / unread
functionality helps to filter the visible information: all read
and accepted or rejected comments are hidden in the default
visualization of the process model for the specific tool user.
If there is no new comment, there would be no red bubble in
the process model visible. In Figure 9 the bubble indicates
the two new comments. In the comment view the comments
are displayed in a discussion like style and additional
attached documents can easily be accessed by the user [28].

Contract management (comment view)

Maintain supplier
contract

 Cancel supplier contract (new)
Please add the detail process „Cancel supplier contract“, as
we do not do that within the „Maintain supplier contract“
process.

Domain expert user 1, 2014-06-02, 10:58

 Structure okay (new)
The process elements are okay but we need to disucss the
attributs of the single elements.

Domain expert user 3, 2014-05-28, 8:37

Old ARIS models (read)
Please find the old ARIS-process model attached as PDF. They
can be our discussion basis.

Domain expert user 3, 2014-05-22, 7:46

 Whole sale Contract management Maintain supplier master data

ARIS Maintain SupMaData

Maintain supplier
master data

2

Maintain article
master data

Accept Reject

Figure 9. Comment view (modeling expert role, t = 9).

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

In Figure 10 the detail process “Cancel supplier contract”
was added which leads to a new version with an explicit
version comment by the modeling expert 2 user.
Furthermore, the authorized user can restore old versions of
the model from here.

Contract management (version view)

Detail process „Cancel supplier contract“ added
Cancel supplier contract added because of input by domain
expert user 1.

Modeling expert 2, 2014-06-10, 9:46

Detail process „Maintain supplier contract“ added
Modeling expert 1, 2014-05-21, 10:26

Detail process „Maintain supplier master data“ added
Modeling expert 1, 2014-05-21, 10:21

Detail process „Maintain article master data“ added
Modeling expert 1, 2014-05-21, 10:12

 Whole sale Contract management

Restore

Maintain supplier
master data

2

Maintain article
master data

Cancel supplier
contract

Maintain supplier
contract

Restore

Restore

Restore

Figure 10. Version view (modeling expert role, t = 10).

Typically, the management of the comments is done in a
passive manner and relies on the project member to log.
After the user logs in, a dashboard indicates about activities
in the modeling project with a list of recently changed
models and new comments. However, for a domain expert,
working fulltime in the department, this is problematic as
their day to day business does not allow visiting the tool on a
regular basis. Hence, for the efficient collaboration between
the domain and modeling experts, the comments regarding
changes have to be communicated also actively. This is
achieved by sending requests for comments or requests for
validation via e-mail. In addition, reports on a regular basis
summing up all changes and indicating where new
comments were made are a possibility of increasing the
awareness.

V. CONCLUSION AND FUTURE WORK
This paper presented an approach for awareness

enhancement in web-based business process modeling tools.
The basis for this is a version management instantiation of
the history-in-parent approach, which directly works on the
database tables. The model versions can be commented and
the modeling team is informed about the changes. As the
goal of the approach is to foster the efficiency in the
collaborative act of modeling the approach defines active (e-
mail notification) and passive awareness (indicators for
changes in the tool) functionality. Thus, the approach is
striving for supporting domain and modeling experts
likewise by reducing coordination effort, which leads to
savings in time and therefore overall more efficient
modeling.

In future research, this approach will be implemented in a
web-based business process modeling tool for evaluation.
The data base performance over time and feature
completeness will be evaluated. Especially the medium (e.g.,
e-mail, dashboard), frequency (directly vs. summarized) and

mode (active vs. passive) of awareness information will be
evaluated.

Also, the limitations, e.g., the technical limitation
regarding the danger of inconsistencies in case of concurrent
modeling will be addressed. One possibility of addressing
this can be a locking mechanism. The evaluation will show
to which extent this lock hinders the collaborative work, as
restricted to the approach all models underneath the model in
use would be locked for other modelers.

Furthermore, the evaluation in laboratory settings with
students and afterwards in consultancy projects will reveal
the appropriateness of the comments. As no user can be
forced to actively read or write comments, there is a natural
limitation in this approach. It is likely that convenience in
writing the comments like templates or auto-completion,
similar to the popular version management control systems,
will foster comment quality.

REFERENCES
[1] M. Hammer and J. Champy, “Reengineering the Corporation: a

Manifesto for business Revolution,” Bus. Horiz., vol. 36, no. 5, pp.
90–91, 1993.

[2] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede,
and N. Russell, “On the suitability of BPMN for business process
modelling,” in Business Process Management, Springer, 2006, pp.
161–176.

[3] R. S. Aguilar-Savén, “Business process modelling: Review and
framework,” Int. J. Prod. Econ., vol. 90, no. 2, pp. 129–149, Jul.
2004.

[4] M. Pendergast, K. Aytes, and J. D. Lee, “Supporting the group
creation of formal and informal graphics during business process
modeling,” Interact. Comput., vol. 11, no. 4, pp. 355–373, 1999.

[5] D. Dean, R. Orwig, and D. Vogel, “Facilitation methods for
collaborative modeling tools,” Gr. Decis. Negot., vol. 9, no. 2, pp.
109–128, 2000.

[6] P. J. M. Frederiks and T. P. Van der Weide, “Information modeling:
the process and the required competencies of its participants,” Data
Knowl. Eng., vol. 58, no. 1, pp. 4–20, 2006.

[7] M. Weske, Business Process Management. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012.

[8] I. Wilmont, E. Barendsen, S. Hoppenbrouwers, and S. Hengeveld,
“Abstract Reasoning in Collaborative Modeling,” 2012 45th Hawaii
Int. Conf. Syst. Sci., pp. 170–179, Jan. 2012.

[9] P. Rittgen, “Collaborative Modeling - A Design Science Approach,”
in HICSS ’09. 42nd Hawaii International Conference, 2009, pp. 1–10.

[10] K. Riemer, J. Holler, and M. Indulska, “Collaborative Process
Modelling - Tool Analysis and Design Implications,” in 19th
European Conference on Information Systems (ECIS), Paper 39,
2011.

[11] J. Jeston and J. Nelis, Business process management. Routledge,
2014.

[12] D. Dean, R. Orwig, J. Lee, and D. Vogel, “Modeling with a group
modeling tool: group support, model quality, and validation,” in
Twenty-Seventh Hawaii International Conference, 1994, vol. 4, pp.
214–223.

[13] T. Dollmann, C. Houy, P. Fettke, and P. Loos, “Collaborative
Business Process Modeling with CoMoMod - A Toolkit for Model
Integration in Distributed Cooperation Environments,” 2011 IEEE
20th Int. Work. Enabling Technol. Infrastruct. Collab. Enterp., pp.
217–222, Jun. 2011.

[14] P. Rittgen, “Collaborative modeling of business processes: a
comparative case study,” in Proceedings of the 2009 ACM
symposium on Applied Computing, 2009, pp. 225–230.

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

[15] F. M. Santoro, M. R. S. Borges, and J. A. Pino, “CEPE: cooperative
editor for processes elicitation,” in 33rd Hawaii International
Conference on System Sciences, pp. 10 vol 1, 2000.

[16] M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning, and L.
Suchman, “Beyond the Chalkboard: Computer Support for
Collaboration and Problem Solving in Meetings,” Commun. ACM,
vol. 30, no. 1, pp. 32–47, 1987.

[17] S. R. Fusseu, R. E. Kraut, F. J. Lerch, W. L. Scherlis, M. M.
McNally, and J. J. Cadiz, “Coordination, Overload and Team
Performance: Effects of Team Communication Strategies,” in
Proceedings of the 1998 ACM conference on Computer supported
cooperative work, 1998, pp. 275–284.

[18] C. A. Ellis, S. J. Gibbs, and G. L. Rein, “Groupware - Some Issues
and Experiences,” Commun. ACM, vol. 34, no. l, pp. 39–58, 1991.

[19] C. Gutwin, S. Greenberg, and M. Roseman, “Workspace awareness in
real-time distributed groupware: Framework, widgets, and
evaluation,” People Comput. XI, pp. 281–298, 1996.

[20] P. Dourish and V. Bellotti, “Awareness and coordination in shared
workspaces,” 1992, pp. 107–114.

[21] J. Becker, M. Rosemann, and C. von Uthmann, “Guidelines of
Business Process Modeling,” in Business Process Management:
Models, Techniques and Empirical Studies, W. van der Aalst, J.
Desel, and A. Overweis, Eds. Berlin et al.: Springer, 2000, pp. 30–49.

[22] W. Kamlah and P. Lorenzen, Logische Propädeutik: Vorschule des
vernünftigen Redens, 3rd ed. Stuttgart: Metzler, 1996.

[23] J. Mendling, J. Recker, and J. Wolf, “Collaboration Features in
current BPM Tools,” EMISA Forum, vol. 32, no. 1, pp. 48–65, 2012.

[24] T. Gross, “Supporting Effortless Coordination: 25 Years of
Awareness Research,” Comput. Support. Coop. Work, vol. 22, no. 4–
6, pp. 425–474, Jun. 2013.

[25] C. Gutwin, R. Penner, and K. Schneider, “Group awareness in
distributed software development,” in Proceedings of the 2004 ACM

conference on Computer supported cooperative work - CSCW ’04,
2004, pp. 72–81.

[26] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy
of approaches for mining software repositories in the context of
software evolution,” pp. 77–131, 2007.

[27] A. Chen, E. Chou, J. Wong, A. Y. Yao, and A. Michail, “CVSSearch:
searching through source code using CVS comments,” Proc. IEEE
Int. Conf. Softw. Maintenance. ICSM 2001, pp. 364–373, 2001.

[28] C. M. Neuwirth, D. S. Kaufer, R. Chandhok, and J. H. Morris, “Issues
in the Design of Computer Support for and Commenting,” in CSCW
’90, 1990, no. October, pp. 183–195.

[29] G. Decker and M. Weske, “Towards Collaborative Business Process
Modeling,” Cut. IT J., 2009.

[30] W. Tichy, “RCS—a system for version control,” Softw. Pract. Exp.,
vol. 7, no. July 1985, pp. 637–654, 1985.

[31] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An Information
Retrieval Approach For Automatically Constructing Software
Libraries,” IEEE Trans. Softw. Eng., vol. 17, no. 8, pp. 800–813,
1991.

[32] N. Clever, J. Holler, J. Püster, and M. Shitkova, “Growing Trees – A
Versioning Approach for Business Process Models based on Graph
Theory,” in Proceedings of the European Conference on Information
Systems (ECIS) 2013, Paper 157, 2013.

[33] E. J. Choi and Y. R. Kwon, “An efficient method for version control
of a tree data structure,” Softw. Pract. Exp., vol. 27, no. 7, pp. 797–
811, 1997.

[34] R. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM
J. Comput., vol. 1, no. 2, pp. 146–160, Jun. 1972.

[35] C. E. Shannon, “A Mathematical Theory of Communication, Part I,”
Bell Syst. Tech. J., vol. 27, pp. 379–423, 1948.

[36] P. P.-S. Chen, “The Entity-Relationship Unified View of Data Model-
Toward a,” ACM Trans. Database Syst., vol. 1, no. 1, pp. 9–36, 1976.

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-386-5

eKNOW 2015 : The Seventh International Conference on Information, Process, and Knowledge Management

	I. Introduction and Motivation
	II. Versions and Comments in Business Process Modeling Tools
	III. Workspace Awareness with Comments and Version Management
	A. Version Management Systems
	B. Creating, Modifying, Deleting and Restoring Process Elements
	C. Modeling an Example Process Landscape

	IV. Conceptual Design of the Comment Functionality
	A. Storing the Comments in the Data Base
	B. Communication of the Comments

	V. Conclusion and Future Work
	References

