
Distributed Cognition in Software Engineering

A Mapping Study

Mathieu Lavallée, Pierre N. Robillard, Samuel Paul

Département de génie informatique et logiciel

Polytechnique Montréal

Montreal, Canada

{mathieu.lavallee, pierre.robillard, samuel.s-paul}@polymtl.ca

Abstract—This paper presents a mapping of the current

research in distributed cognition in software engineering, using

the systematic literature review approach. The result of the

review shows that the literature focuses on the situational

awareness of the software development team, mostly through

the identification of team experts and the dissemination of task

details. Research on cognitive support tools are mostly

speculative, with little validation of the recommendations

provided. Research on the impact of spatial disposition on

team cognition is emerging, along with research on the impacts

of certain emotional states. Very few papers are however

concerned on the impacts of project, process and

organizational constraints on team problem solving.

Keywords; Distributed cognition; software development

team; literature review; team meta-cognition; team situation

awareness; team problem solving

I. INTRODUCTION

The concept of distributed cognition was first introduced
in 1995 by Edwin Hutchins et al. [1] to explain how an
individual can resolve problems through means beyond his
internal cognitive processes. Distributed cognition observes
how problems are resolved through the cognitive system
around one or more minds.

The observation of distributed cognition can be applied
to one individual in his/her environment. In that case, the
researcher observes how the person interacts with tools
around him (work documents, written notes, software, etc.).

Distributed cognition becomes especially interesting
when applied to the study of teamwork. The observation of
distributed cognition in team settings shows how information
is transferred within the team and how solutions are created,
judged and transformed by teammates.

The objective of this mapping study is to categorize the

main answers given by the literature, along with potentially

interesting future research avenues.

The selection process used for the literature review is

presented in Section II. Section III presents an overview of

the selected papers. Section IV presents a discussion of the

conclusions of the selected papers as they relate to the

concept of distributed cognition. Finally, Section V presents

the overall conclusions of the review and introduces future

research avenues.

II. METHODOLOGY

As a mapping study [4], this review is based on a
lightweight version of the systematic literature review
process described in the works of Barbara Kitchenham et al.
[2, 3]. This section describes how the databases were
searched in order to find the relevant papers and the criteria
used for the paper selection and finally how the mapping and
the conclusions were obtained.

A. Databases and Search String

The objective of the search is to find the published
papers relevant to the subject of distributed cognition
research in software engineering. The search was limited to
the "Compendex" and "Inspec" databases of the
"Engineering Village". The resulting search string, shown in
Figure 1, returned 171 papers.

("software development" OR "development process" OR "software

design" OR "software process" OR "software implementation")

AND
("distributed knowledge" OR "collaborative decision" OR "distributed

decision" OR "distributed cognition" OR "collaborative problem

solving" OR "collaborative knowledge" OR "team knowledge" OR
"distributed problem solving" OR "team cognition" OR "team decision"

OR "team understanding" OR "team problem solving" OR

"collaborative understanding")

Figure 1. Final search string.

B. Selection Process

The selection process adds three more steps to the initial
search, which are based on the title, the abstract, and the full
text. The selection from the titles is limited to the removal
of duplicate papers and conference proceedings
introductions. The selection from the abstracts kept papers
containing both software and cognition concepts in their
abstracts. The selection from the full text removed low
quality papers. The quality was evaluated through the
identification of context descriptions and data collection
methodologies. Papers without these elements were
removed. Some theoretical papers were kept, based on the
apparent validity of the model presented.

The selection process retained 24 papers. The documents
produced by the process are available on request.

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

C. Data Synthesis Process

To perform an accurate synthesis based on our extracted
data, we need to manage various types of qualitative data.
From the thirteen synthesis approaches described by Cruzes
and Dyba [5], we chose the Grounded Theory approach,
because it is designed to work with a wide spectrum of
qualitative data. We limited ourselves to the three following
steps from the Anselm L. Strauss [6] works:

 Associate one keyword to each extracted
conclusion,

 Regroup the keywords into concepts,

 Describe how the conclusions complete or
contradict each other.

For a more thorough description of the application of
Grounded Theory to the software engineering domain, the
reader is invited to read the works of O'Connor et al [7, 8]
and Lavallée et al [9].

III. RESULTS

This section present the results of the mapping study,
where the selected papers are identified by the letter 'S', as
described in Appendix A.

A. Study Methodology

Table I shows that most of the selected papers describe
empirical and academic research, with a single paper whose
context is labeled "Open".

Industrial context studies describe real software
development projects performed in professional
organizations. Academic context observes the work of
students performing a formative task. The open context
refers to a study performed on an open source development
project. This open source community can include both
professionals and academics. Note that some papers are
purely theoretical and therefore do not present any study
context.

Table II presents the many approaches used for data
collection in the various selected papers. Some papers used
multiple data collection approaches, therefore the total does
not add up to 24.

TABLE I. RESEARCH CONTEXT OF THE SELECTED PAPERS

Context # Papers

Industrial 17
[S1], [S2], [S3], [S4], [S5], [S9], [S10], [S13],

[S16], [S18], [S20], [S21], [S23], [S24].

Academic 10 [S8], [S11], [S12], [S15], [S17], [S19].

Open 1 [S22]

The survey questionnaire is mainly used to confirm or

refute the conclusions obtained with other types of data,
although some papers base their conclusions on the survey
questionnaire alone. The artifact evaluation consists in the
analysis of documentation issues of the software
development process. This evaluation is often used to
evaluate the quality of the work done, and thus the
performance of the team. The semi-structured interview
describes face-to-face meetings, which is often used to

obtain feedback from the software developers. The non-
participatory observation occurs when researchers observe
the work done by software developers without interfering
directly with them, a technique called "shadowing". The
audio-video approach consists in the recording of work
sessions performed by the software development team.
These recordings can include conversations between team
partners, computer screen capture videos, keystroke logging
records, etc. Usage data consists in statistical measurements
obtained from the use of specific software tools. These
measurements show the usage frequency of the different
functionalities available. These data help researchers in
understanding how the software developers adapt software
tools to their tasks. Participatory observation occurs when
the researcher actively participates in the observed task. This
approach enables a more accurate recording of the internal
cognitive processes required to perform the task, at the cost
of a significant bias.

TABLE II. DATA COLLECTION METHODOLOGY OF THE SELECTED

PAPERS

Approach # Papers

Survey

questionnaire
11

[S8], [S11], [S12], [S17], [S18], [S22],

[S24].

Artefact

evaluation
10

[S1], [S2], [S3], [S5], [S8], [S11], [S12],

[S13], [S15].

Semi-structured

interview
7 [S3], [S5], [S16], [S19], [S20], [S24].

Non-

participatory

observation

6 [S3], [S5], [S9], [S13], [S24].

Audio-video 3 [S1], [S2], [S9].

Usage data 3 [S21], [S23].

Participatory

observation
2 [S4].

IV. DISCUSSION

This section presents the conclusions of the selected
papers, based on the concepts found through the Grounded
Theory approach.

The results of the synthesis can be related to Vygotsky's
triangular model of mediated interaction [10], which stated
that the activities performed by the software developers
within their teams are always mediated by their
environment. As Engestrom [11] elaborates, this mediation
can take the first four forms presented in Table III.

The new "Emotion" form was motivated by the multiple
studies evaluating the emotional state of the team. The
importance of emotions during problem-solving has been
deemed critical by recent research. Damasio insist on the
fact that "the presumed opposition between emotion and
reason is no longer accepted without question" [12].
Emotion must be considered alongside cognition.

A. Community: The Software Development Team

Distributed cognition in software engineering is closely
related to how the team assists the individual developer. To
be an effective mediator, the team must have coherent
situational awareness. Situational awareness is defined as

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

the knowledge a person has of himself/herself and his/her
surroundings [13]. In software engineering research, this
awareness is oriented along two axes: team meta-cognition
and task awareness.

TABLE III. FORMS OF MEDIATIONS

Form Description In software engineering

Community Team interaction Development team

Instruments
Tools and artefacts

used
Individual tools, groupware.

Division of
Labor

Tasks performed
Team topology and team
structure.

Rules Impact of disciplined Process, project, organization

Emotion Emergent state Motivation

Team meta-cognition is defined as what each team

member knows on the knowledge of their teammates. Good
team awareness implies that team members know who the
experts are and who are reliable sources of information. It is
related to the "who knows what". Task awareness is related
to the team's shared mental model of the work to do. The
more this mental model is coherent between team members,
the team's environment and the relevant stakeholders, the
better is task awareness.

1) Team Meta-Cognition
The importance of team meta-cognition has been

outlined by the works of Kraut and Streeter [14], cited by
[S7]:

"Experimentation has shown that developers valued
other people as their most used source of help when
developing software."

This observation has also been reported by Glor and
Hutchins [S1]. When one team member is stuck on a
problem, he can present it to one of his partner in order to
start a discussion on the most appropriate solution.

The best source of information for software developers
is their teammates. It is therefore important for the
developer to know who hold this information within the
team. This becomes problematic when the team meta-
cognition is weak: Sub-optimal choices can be made
because the decision-makers are not aware that better
solutions exist. Similarly, team performance can be affected
when the identified sources of information are not
appropriate. Walz et al. [S2] report a case where the two
developers with the most influence on decision-making
where the ones with the less experience. The team had a
poor perception of its own knowledge because the
appropriate experts were not identified, resulting in a poor
choice of solutions.

To resolve meta-cognition problems, many studies
present specific methods [S8, S10, S11, S14, S16, S17]. For
example, Kettunen [S10] recommends the identification of
"knowledge dependencies" within the team. He presents the
importance of information change propagation within the
team: A developer must be aware of the people around him
capable of providing information changes relevant to his
work.

Ye's paper [S14] recommend the identification of expert
related to the number and size of modifications made in a
code module. Such a tool could enable a developer to
contact directly the person most susceptible to know how
this code works.

Hause et al. [S8] demonstrate the importance of efficient
communications. Their research shows that high
performance teams communicate less than lower performing
ones, because their exchanges are better targeted and better
structured. A better knowledge of who are the experts
within the team could, for example, limit the
communication exchanges to the person most susceptible to
provide a relevant answer. Their conclusion [S8] is
confirmed by Espinosa et al. [S16]. The later shows that a
software development team distributed on distant sites
possesses a better knowledge of its own experts. The
difficulty of exchanging information over distant sites forces
developers to have a better knowledge of the reliable
information sources. Sarker et al. [S11] paper shows that
sources providing large amounts of accurate information
have the greatest impact on knowledge transfer.

Finally, He et al. [S17] show that team meta-cognition is
essentially a matter of time. Their paper presents a
significant correlation between the self-evaluation of the
performance of the teams and the quality of the software
product as the project progresses. The impact of familiarity
between team partners, initially very strong, diminishes as
the team members learn to know themselves better. The
team has therefore a better vision of the strengths and
weaknesses of their partners, and thus obtains a better self-
evaluation of their performance.

2) Task Awareness
Better task awareness is mostly useful for the planning

and coordination of the work. As Espinosa et al. [S16]
explain, a shared knowledge of the task helps team
coordination. For example, the use of a public media like
the wall board of Sharp et al. [S13] improves team
coordination by publicizing immediately any change in the
state of the cognitive system. This immediate propagation of
changes enables better team situational awareness. This
immediate propagation also ensures that the mental model
of the task remains synchronized throughout the team, as
shows Kettunen [S10]. The presence of a synchronized
mental model also diminishes the need to communicate, and
thus improve the performance of the team Hause et al. [S8].

De-Franco Tomarello [S12] also shows that if an initial
model of the task is imposed upon the team, it improves the
problem comprehension. An initial model enables the team
to start with a shared mental model better structured and a
better organized.

The works of Flor and Hutchins [S1] and Spinuzzi [S5]
outline the adaptation of the information received to the
context of the task. They show that developers reuse and
adapt the information obtained according to their immediate
needs. Spinuzzi adds that the artifacts given to the
developers are not used in the manner planned, but they are
rather adapted to the nature of the task. Information must
therefore be designed to be compatible to the needs of the
task. Spinuzzi notes that important information resources

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

are ignored because their usability in the context of the task
is weak. Developers have therefore diminished task
awareness because they do not have all the relevant
information in hand. Spinuzzi's concerns are confirmed by
Conradi and Dingsoyr [S4], who warn that inadequate data
repositories become data cemeteries.

B. Instruments: Cognitive Support Tools

The mediating instruments are the various artifacts and
tools used by the developers. Among the many tools
available, some have an explicit objective to support
individual and group cognitive tasks. Cognitive support tool
research in software engineering is oriented along two axes:
Tool supporting individual cognition, and tool supporting
team cognition ("groupware").

1) Individual Cognition Support Tools
The papers on individual cognition present two tools

common in software development environments: code
completion [S14] and compilers' error list [S9].

Code completion, presented by Ye as a cognitive
support tool [S14], is a feature of most modern integrated
development environments (IDE). This tool recall to the
developers all the words understood by the compiler. This
enables them to speed up their works by giving them
context-aware information. Given the large size and
complexity of software components this tool is an essential
asset of the software developer.

Walenstein [S9] shows that compilers' error list assists
developers in their debug planning by providing a list of the
problems found with links to the relevant code snippet. This
tool facilitates the developer's work, who only needs to
identify the reason for the problem, and not where the
problem is located.

2) Team Cognition Support Tools
Groupware tools contains the management of public

communication channels like wall boards, wiki software,
shared calendars, web forums and audio-videoconference
tools [S13]. The main characteristic of these tools is that
they are transparent as to the origin and destination of the
information transmitted. The drawback of this is that users
of the system have access to data which do not concern
them. In one specific case, a discussion forum had to be
moved from a public to a private space, because it created
exaggerated expectations from some of its users [S21].
However, private communication channels are also essential
for efficient information exchange. Software developers can
exchange intermediate steps of a work-in-progress to a team
partner without concern for public judgment [S24].

Many papers on team cognition support present the
required functionalities for collaborative tools
("groupware"). For example, De Franco-Tomarello et al
[S7] list the following key functionalities to ensure that
groupware offer a support for collective decision-making,
team situation awareness, and sharing mental models :

 Ability to support the team communication channel,

 Ability to support the team collective tools, like
planning tools, design tools and knowledge bases,

 Ability to support a collaborative approach to
modeling.

Walz et al. [S2] add the necessity to document the
rationale behind the choices made by the team. They blame
current groupware solutions which report information
without reporting how the information was obtained. They
argue that the decisions made must be documented with
more details.

Whittaker and Schwarz [S3] compare the advantages of
a planning tool like Microsoft Project to a kanban-style wall
board of tasks. They show that the wall board is beneficial
because of its public aspect and its flexibility. They argue
that current groupware are too restrictive and do not enable
different planning approaches. They show however that the
wall board is difficult to transmit to stakeholders on distant
sites, and that it is difficult to make major changes. It is also
not possible to follow the version changes on the wall
board, contrarily to a software tool. Finally, it is not possible
to present different views of the data when using the wall
board.

Research on groupware took a different turn with the
emergence of the "Web 2.0". A software team can now cook
up a collaborative framework of tools from a plethora of
tools available on the Cloud. For example, a team can use a
knowledge base managed with Drupal (www.drupal.org),
track its development issues with Bugzilla
(www.bugzilla.org), plan their tasks with Trac
(www.trac.edgewall.org), and keep contact with each others
with Pidgin (www.pidgin.im).

C. Division of Labor: The Structure of the Team

The division of labor mediator describes the actual tasks
performed by the different members of the team. It also
considers how the team is spatially disposed, as the physical
workspace can have an important impact on the interactions
taking place.

For example, it is important to plan the disposition of
team members and their communication channels when the
team is distributed. The theoretical model of Kubasa and
Heiss [S6] proposes and optimization of information flows
based on geographical distances, hierarchies, cultural
difference and personal familiarity (friendship, rivalry). This
model also enables the calculation of a communication cost
and of the probability of a delivered message without error.

Meneely and Williams [S23] focused instead on the
modeling of a real case; a software development forum.
Through a statistical analysis of its usage data, they
identified the people performing the roles of "solution
providers" and "solution approvers". They noted that
approvers, those who choose a solution and implement it in
code, are central in the communication network of the
forum. Their statistical approach enables an evaluation of
the state of an open-source community.

Bass et al. [S20] recommends that the physical
disposition of team members across distant sites must
consider team meta-cognition. The identification of domain
experts during team construction ensures that every
developer knows the reliable sources of information (see
section IV.A.1). They also say that it is important that each
distant site has one person acting as developer in the team.

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

http://www.drupal.org/
http://www.bugzilla.org/
http://www.trac.edgewall.org/
http://www.pidgin.im/

This ensures a proper dissemination of information across
the multiple sites despite the distance.

D. Rules: Project, Process and Organizational Constraints

Lavallee et al. [15] work on the impacts of processes on
individual developers concluded that the impacts are not
often considered despite having serious detrimental effects.
The conclusions are similar at the team level: The impacts
of mediating rules on the software development team are
rarely observed. Stubblefield and Carson [S18] outline this
concern by urging managers not to impose strict rules on the
use of a groupware tool: Usage must be adapted to the
cognitive needs of the task, and not the other way around.

Hause et al. [S8] note that decision-making mechanisms
can be different from one team to another. As Falessi et al.
[S15] note, having different process at the individual level is
not problematic, but it can become critical at the team level.
They show that to impose a decision-making approach with
explicit alternative research improve the decision quality
from 11% to 67%.

However, decision-making cannot be delayed
indefinitely. As Walz et al. [S2] show, software
development projects are split into two phases: A decision-
making phase and an execution phase. The acquisition of
new knowledge must occur at the beginning of the project;
if this information arrives only after the midpoint of the
project, it is typically ignored. Walz et al. report that adding
experts after this knowledge acquisition phase has no impact
on the decisions made beforehand. The development team
has already made its decisions and does not want to roll
back.

However, this capacity to roll back decisions is one
characteristics of good working teams, as observed by
Hause et al. [S8]. Good teams, having a better shared mental
model of the work to do and a better knowledge of the
experts in their midst, make less decisions than other teams,
but are more ready to roll back and change previous
decisions. Good teams changed 20% of their decisions,
against only 9% for the bad teams.

E. Emotion: Team Emotional States and Motivation

One of the aspects uncovered by research in cognitive
psychology is the fact that individual performance changes
when the person's emotional state changes. We can observe
the same fact at the team level, and thus the emotional state
of the team can also affect its performance. Marks and
Mathieu describes these emotional states as "emergent
states":

"Emergent states describe cognitive, motivational, and
affective states of teams, as opposed to the nature of their
member interaction." [16]

For example, team topology can stay stable for the
duration of the project, but the emotional state can change
within a single day, or even a single meeting. Whittaker and
Schwarz [S3] studies the impact of a material wall board of
tasks on the team sense of belonging. This wall board
requires developers to cut pieces of paper detailing their
estimations and to stick it to the wall. The manual aspect
and the public nature of the board improve the perceived

responsibility of the developers toward their task
estimations. There is a certain shame in having to correct the
content of the wall board; therefore the estimations are more
carefully made. By contrast, the software tool is very often
"write-only": Developers enter data in the tool, but they
never read it. The quality of the estimations in the software
tool is much weaker.

Parsarnphanich and Wagner [S22] study the motivation
of important contributors to the Wikipedia knowledge base.
They show that the greatest motivator to contribution is the
quick feedback they receive from their contributions, even
when the change is minor. This quick feedback outlines the
public aspect of their contribution and incites them to
continue. These two papers show that pride can affect
performance [S3] and productivity [S22]. They also show
that pride can be controlled by the public aspect of the task.

Trust is also an important emotion for certain team
cognition elements, like meta-cognition. An initial face-to-
face meeting seems to have an important impact on what the
developers perceived of their supervisors. Bass et al. [S20]
show that a visit from the manager to all the distant sites can
improve communication for the project duration.
Richardson et al. [S19] note that if the supervisors did not
meet the other team members face-to-face, the developers
did not ask them questions.

Motivation is also an essential emotion required for the
success of any project. Wikis and other collective memory
knowledge bases are dependent on the volunteer work of
motivated individuals. A pragmatic altruism or idealism has
been identified has a major factor of Wikipedia's success
[S22]. Managers must encourage a cooperation culture
within their teams. Tools must be able to support the
implication of the team partners by promoting a good
compatibility with the work to perform [S5].

V. CONCLUSIONS

The main conclusion from the synthesis is that there is
no consensus on how to manage distributed cognition in
software development: Many papers describe what should
be done, but very few describe how to do it. The use of
varied practices in varied contexts means that comparison
between studies is very difficult, since contradictory
conclusions abound.

There are also many suggestions for new functionalities
for cognitive-support software tools. There are therefore few
empirical studies of the software functionalities considered
as important. One study notes that the main weakness of the
existing groupware tools is that they lack flexibility [S3]:
Software developers prefer using many tools more adapted
to their task rather than one generic all-purpose tool.

Additionally, there are very few studies on the
ergonomics of software tools. The papers describe what
collaborative tools ("groupware") must support, but they do
not describe how this support can be ensured. There is
therefore not enough research on the affordance of
collaborative tools available for software development
teams.

There are also no papers on the mental workload of
software developers. We do not know the impact of

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

collaborative tools on the mental workload of software
developers. There is no information on the global mental
workload of the software team, nor whether cognitive effort
is appropriately spread across team partners.

ACKNOWLEDGMENT

We thank Professor Jean-Marc Robert for the initial idea
of a literature review on the subject of distributed cognition.

REFERENCES

[1] E. Hutchins, Cognition in the wild. Cambridge, MA: MIT
Press, 1995.

[2] B. Kitchenham, “Procedures for Performing Systematic
Reviews,” 2004.

[3] J. Biolchini, P. Gomes Mian, A. Candida Cruz Natali, and G.
Horta Travassos, “Systematic Review in Software
Engineering,” Rio de Janeiro, 2005.

[4] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham,
“Using Mapping Studies in Software Engineering,” in
Proceedings of Psychology of Programming Interest Group,
2008, vol. 2, pp. 195–204.

[5] D. S. Cruzes and T. Dybå, “Research synthesis in software
engineering: A tertiary study,” Information and Software
Technology, vol. 53, no. 5, pp. 440–455, May 2011.

[6] A. L. Strauss, Qualitative Analysis for Social Scientists.
Cambridge, UK: Cambridge University Press, 1987, p. 319.

[7] G. Coleman and R. O’Connor, “Software Process in Practice:
A Grounded Theory of the Irish Software Industry,” in
Software Process Improvement, vol. 4257, I. Springer Berlin
/ Heidelberg, 2006, pp. 28–39.

[8] S. Basri and R. V. O’Connor, “Understanding the Perception
of Very Small Software Companies towards the Adoption of
Process Standards,” in Systems, Software and Services
Process Improvement, vol. 99, Springer Berlin Heidelberg,
2010, pp. 153–164.

[9] M. Lavallée and P. N. Robillard, “The Impacts of Software
Process Improvement on Developers: A Systematic Review,”
in 34th Intl Conf on Software Eng (ICSE 2012), 2012.

[10] L. S. Vygotsky, Mind in Society: The Development of Higher
Psychological Processes. Cambridge University Press, 1978.

[11] Y. Engeström, “Activity theory as a framework for analyzing
and redesigning work.,” Ergonomics, vol. 43, no. 7, pp. 960–
74, Jul. 2000.

[12] A. Damasio, The Feeling of What Happens: Body and
Emotion in the Making of Consciousness. Houghton Mifflin
Harcourt, 2000, p. 400.

[13] M. R. Endsley, “Toward a theory of situation awareness in
dynamic systems,” Human Factors, 37 (1), pp. 32–64, 1995.

[14] R. Kraut and L. Streeter, “Coordination in Software
Development,” Communications of the ACM, 38, no. 3, 1995.

[15] M. Lavallée and P. N. Robillard, “The Impacts of Software
Process Improvement on Developers: A Systematic Review,”
in International Conference on Software Engineering, 2012.

[16] M. A. Marks, J. E. Mathieu, and S. J. Zaccaro, “A temporally
based framework and taxonomy of team processes,” Academy
of Management Review, vol. 26, no. 3, pp. 356–376, 2001.

APPENDIX A. THE SELECTED PAPERS

Reference

S1

N.V. Flor and E.L. Hutchins, (1991). Analyzing distributed
cognition in software teams: a case study of team

programming during perfective software maintenance. Empir.

Stud. of Program.: 4th Workshop.

Reference

S2

D. Walz et al., (1993). Inside a software design team:

Knowledge acquisition, sharing, and integration. Comm. of
the ACM.

S3

S. Whittaker and H. Schwarz, (1999). Meetings of the board:
the impact of scheduling medium on long term group

coordination in software development. Computer Supported

Cooperative Work.

S4

R. Conradi and T. Dingsoyr, (2000). Software experience

bases: a consolidated evaluation and status report. PROFES

2000.

S5

C. Spinuzzi, (2001). Software development as mediated

activity: Applying three analytical frameworks for studying
compound mediation. ACM SIGDOC Intl Conf. on Comp. D.

S6

G. Kubasa and M. Heiss, (2002). Distributed face-to-face

communication in bottom-up driven technology management -
A model for optimizing communication topologies. IEEE Intl

Eng. Mngmnt Conf.

S7

J. DeFranco-Tommarello and F.P. Deek, (2002).

Collaborative software development: a discussion of problem

solving models and groupware technologies. 35th Hawaii Intl
Conf. Syst & Science.

S8
M. Hause et al., (2003). Performance in international
computer science collaboration between distributed student

teams. 33rd Annual Frontiers in Education.

S9
A. Walenstein, (2003). Observing and measuring cognitive
support: steps toward systematic tool evaluation and

engineering. 11th IEEE Intl Workshop on Program Compreh.

S10
P. Kettunen, (2003). Managing embedded software project

team knowledge. IEE Proceedings: Software.

S11

Sa. Sarker et al., (2003). Knowledge transfer in virtual
information systems development teams: an empirical

examination of key enablers. 36th Hawaii Intl Conf. on

Systems Sciences.

S12

J. DeFranco-Tommarello, (2003). A study of collaborative

software development using groupware tools. Proceedings.
ITRE.

S13
H. Sharp et al., (2006). The role of story cards and the wall in

XP teams: a distributed cognition perspective. AGILE .

S14
Y. Ye, (2006). Supporting software development as

knowledge-intensive and collaborative activity. ICSE 2006.

S15

D. Falessi et al., (2006). Documenting design decision

rationale to improve individual and team design decision

making: An experimental evaluation. ISESE’06.

S16

J.A. Espinosa et al., (2007). Team knowledge and

coordination in geographically distributed software
development. J. Mngmnt Inf. Syst.

S17
J. He et al., (2007). Team cognition: Development and
evolution in software project teams. J. Mngmnt Inf. Syst.

S18

W.A. Stubblefield and T.L. Carson, (2007). Software design

and engineering as a social process. Conf. on Human Factors
in Computing Systems.

S19
I. Richardson, S. Moore, D. Paulish, V. Casey and D. Zage,
(2007). Globalizing software development in the local

classroom. Software Engineering Education Conf.

S20
M. Bass et al., (2007). Collaboration in global software
projects at siemens: An experience report. ICGSE.

S21
P.-H. Cheng et al., (2008). collaborative knowledge
management process for implementing healthcare enterprise

information systems. IEICE Trans. on Inf. and Syst.

S22
P. Prasarnphanich and C. Wagner, (2009). The role of wiki
technology and altruism in collaborative knowledge creation.

J. Comput. Inf. Syst.

S23

A. Meneely and L. Williams, (2011). On the Use of Issue

Tracking Annotations for Improving Developer Activity

Metrics. Adv. Softw. Eng.

S24
S. Patil et al., (2011). Methodological reflections on a field

study of a globally distributed software project. Inf. Soft.Tech.

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

	I. Introduction
	II. Methodology
	A. Databases and Search String
	B. Selection Process
	C. Data Synthesis Process

	III. Results
	A. Study Methodology

	IV. Discussion
	A. Community: The Software Development Team
	1) Team Meta-Cognition
	2) Task Awareness

	B. Instruments: Cognitive Support Tools
	1) Individual Cognition Support Tools
	2) Team Cognition Support Tools

	C. Division of Labor: The Structure of the Team
	D. Rules: Project, Process and Organizational Constraints
	E. Emotion: Team Emotional States and Motivation

	V. Conclusions
	Acknowledgment
	References

	Appendix A. The Selected Papers

