
An Expert-Driven Bayesian Network Model

for Simulating and Predicting Software Quality

Lukasz Radlinski

Institute of Information Technology in Management

University of Szczecin

Szczecin, Poland

lukasz@radlinski.edu.pl

Abstract— The main goal of this work is to build an expert-

driven Bayesian network model for simulating and predicting

software quality. In contrast with earlier models, this model

represents software quality as a hierarchy of features and their

sub-features where the features are interrelated with other. It

contains a range of project and process factors that influence

particular quality features. It has been pre-calibrated using

results from the questionnaire survey performed among

software engineers and managers in various software

organizations. Managers in software projects can use such

model to simulate and predict various aspects of software

quality, typically at the early stage of project lifecycle.

Proposed may become a central part of the future decision

support system aimed to analyze, understand, manage and

optimize a software development process.

Keywords- Bayesian network, modeling, software quality,

expert knowledge, simulation, prediction

I. INTRODUCTION

Software quality prediction is an extensively covered
area of software engineering. Various models have been
developed to predict different features of software quality.
These models typically focus on a single aspect of software
quality, for example on number of defects [4], defect
proneness [2], maintainability [15] or reliability [7].
However, software quality is a combination of various
features that are interrelated with each other and influenced
by other factors. Unfortunately, very few predictive models,
discussed in Section 2, integrate multiple aspects of software
quality.

Based on the review of existing models we decided to
develop a new model that would overcome their limitations.
The main requirements for of the new model are the
following:

 Integration of variety of quality features along with
their sub-features and measures;

 Integration of project and process factors that
influence quality features;

 Incorporation of expert knowledge and empirical
data;

 Ability to perform various ‘what-if’ and ‘goal-
seeking’ as well as advanced simulations;

 Ability to run with missing data;

 Ability to adjust the model based on new knowledge
or data by the end user.

Based on an earlier analysis of different modeling
techniques [13], we decided to use a Bayesian network as a
formal representation of the model. With Bayesian network
it is possible to satisfy all of the above requirements.

The main goal of this paper is to present selected details
of the new Bayesian network for integrated software quality
prediction and simulation. The model can be used in
numerous analyses by answering questions such as:

 How levels of effort in various development
activities influence specific quality features?

 Given a typical distribution of effort, how do
environmental project factors influence software
quality?

 In a project with specific project factors, how much
effort should we allocate to achieve some target
levels of software quality?

Earlier work on this model has been already published in
[9][10][12][13]. Since the model has been evolving for about
two years this paper focuses on the most recent version that
satisfies all requirements stated earlier in this section. Due to
limited space, this paper focuses on new results and does not
cover detailed background discussion and justification that
have been published in earlier papers. This paper makes the
following new contributions by providing:

1. A discussion of the preferences for the expected
contents of the model according to the opinions of
the respondents provided during questionnaire
survey.

2. The details of the most recent structure of the model
defined after the questionnaire survey and based on
its results.

3. The behavior of this edition of the model by
discussing the results of the validation process.

This paper is organized as follows: Section 2 briefly
discusses the hierarchy of software quality and revisits
earlier work. Section 3 investigates the respondents
preferences on the expected scope of a new model. Section 4
explains the structure of the new Bayesian network model.
Section 5 discusses the behavior of this model based on the
results of the validation process. Section 6 covers limitations
and threats to validity of obtained results. Section 7 draws
conclusions and ideas for future work.

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

II. BACKGROUND

A. Software Quality

Software quality is a combination of various features.
These features are often organized in a hierarchy. A variety
of such hierarchies, known as software quality models, have
been proposed in software engineering literature, starting
from early work by Boehm and McCall at the end of 1970’s.
We use a hierarchy proposed in an ISO 25010 standard [6].
We chose it due to its popularity among researchers and in
industry and because it has been published very recently but
is based on an earlier 9126 standard – thus it can be
considered as both mature and contemporary.

TABLE I. HIERARCHY OF SOFTWARE QUALITY

Features Sub-features

Functional suitability
Functional completeness
Functional correctness

Functional appropriateness

Performance efficiency
Time behaviour
Resource utilisation

Capacity

Compatibility
Co‐existence
Interoperability

Usability

Appropriateness recognizability

Learnability
Operability

User error protection

User interface aesthetics
Accessibility

Reliability

Maturity

Availability
Fault tolerance

Recoverability

Security

Confidentiality

Integrity
Non-repudiation

Accountability
Authenticity

Maintainability

Modularity

Reusability

Analyzability
Modifiability

Testability

Transferability
Adaptability
Installability

Replaceability

Effectiveness Effectiveness

Efficiency Efficiency

Satisfaction

Usefulness

Trust

Pleasure

Comfort

Freedom from risk
Economic risk mitigation
Health and safety risk mitigation

Environmental risk mitigation

Context coverage
Context completeness

Flexibility

This hierarchy assumes three levels of quality –

characteristics, sub-characteristics, and measures. Table I
lists the first two groups that we call features and sub-
features in our study – by changing in these names we stress
that, although our predictive model is based on the ISO

25010 hierarchy of software quality, it can be relatively easy
adapted to a another hierarchy, i.e., taken from a different
quality model.

B. Related Work

Very few predictive models integrate multiple software
quality features and enable comprehensive quality prediction
together with the ability to perform advanced simulations.
Each of these models, besides important benefits, also has
some disadvantages. Wagner [16] proposed a set of models –
each for a separate quality feature. Thus, this approach does
not provide an integrated model with relationships between
quality features. Beaver [1] proposed a model which contains
a variety of links between quality features. However, this
model was developed using data only from very small
student projects and thus does not generalize to larger
industry-scale projects. Fenton et al. [3] developed a model
that incorporates empirical data and expert knowledge from
industrial projects and in which quality features are linked
together. However, that model contains only two quality
features.

Various authors [8][17] proposed approaches or
frameworks to integrated quality modeling. They do not
propose a working predictive model but rather a meta-model
that integrates various concepts of software quality. It can be
used to support the process of building a predictive model.
Such approaches may seem to be useful for developing a
larger knowledge base for populating predictive models from
it. However, the process of building them is time consuming.
Thus, in our work we develop a predictive model directly,
i.e. without an overhead of such type of framework.

III. ANALYSIS OF THE PREFERENCES ON THE EXPECTED

SCOPE OF THE MODEL

To gather data required for calibrating a new model we
performed a questionnaire survey among experienced
software architects and project managers. Results from the
main part of that survey have been discussed in [14]. Before
that main part, we asked respondents to rate five predefined
versions of the model with different structures.

The main differences between model versions were
related to the model complexity and the number of variables.
Table II summarizes these differences. Model A was the
simplest and model E was the most complex. Models B, C
and D were between models A and E in terms of their
complexity.

TABLE II. OVERVIEW OF MODEL VERSIONS

Characteristic \ Model A B C D E

process activities 3 3 1 1 3

of process factors per activity 3 3 18 18 18

of project factors 0 3 6 3 6

of quality features 8 13 8 13 13

of levels in quality hierarchy 1 2 2 3 3

reflects software composition no no no no yes

Table III summarizes ratings for different versions of the

model. We investigated six criteria: clarity, complexity,
coverage, adequacy, adaptability, and usefulness. The scale

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

available for these criteria was a range of integer numbers
from ‘1’ to ‘5’, i.e. from low to high level of intensity of a
given criterion. For all criteria, except complexity, the most
desirable value was ‘5’, i.e. that the model is clear, covers all
important aspects, is adequate for a given environment, can
be adapted relatively easy, and is useful. For complexity the
meaning of the scale was slightly different – with a value ‘3’
being the most desirable, and the values above ’3’ indicating
too high level of model complexity.

We aggregated the ratings provided by respondents by
calculating a weighted mean for each model and each
criterion (with the necessary adjustment for the complexity).
We arbitrarily defined the weights based on respondent’s
experience and motivation to participate in the survey. Table
III shows the values of these weighted means, with the
values closest to the most desirable value marked in bold.

TABLE III. RATINGS FOR MODEL VERSIONS

Model
Criterion

Weight for
criterion

A B C D E

Clarity 3 4.4 4.0 4.1 3.5 3.0

Complexity 2 1.9 2.5 2.8 3.5 4.2

Coverage 1 2.3 2.9 3.3 3.8 4.4

Adequacy 1 3.0 2.9 3.2 3.2 2.9

Adaptability 1 3.2 2.9 3.3 2.9 2.3

Usefulness 5 2.6 2.4 3.1 3.3 2.8

SCORE – 2.67 2.72 3.12 3.01 2.55

By analyzing these ratings, we can conclude that none of

the model versions won in all categories. In fact, all versions
except ‘B’, won in at least one criterion. Model A was rated
as very clear but too simple for most respondents. On the
other hand, model E was rated as moderately clear but too
complex. The overall rating has been calculated as the
weighted mean of ratings for each model. Based on this
value, we can conclude that the model C was rated as the
best overall, while model E as the worst overall.

IV. STRUCTURE OF THE NEW MODEL

The structure of the model presented in this section is a
slightly adjusted version of model ‘C’ that was rated as the
best overall by the respondents. Since this model is a proof-
of-concept, we decided to enhance model ‘C’ by extending
the number of process activities to three and to use all 13
quality features from the quality model proposed in the ISO
25010 standard [6]. These enhancements not only provide
more functionality of the model but also gave us an
opportunity to investigate the model complexity in terms of
the calculation time.

Project
Factors

Process
Factors

Hierarchy
of Quality

Quality Features
adjusted for

Project Factors

Quality Features
adjusted for

Process Factors

Dependencies
between

Quality Features

Figure 1. Schematic of the proposed model

The high level schematic of this model has been
illustrated in Figure 1. The core of the model consists of a set
of quality features organized in a hierarchy of features, sub-
features and measures, with some explicit links between
main level features. These features are influenced by two
groups of factors, i.e., project factors and process factors.
The complete model structure and a ready-to-use model is
available on-line [11].

Figure 2. illustrates the structure of the sub-network with
project factors. The model contains seven project factors that
describe the nature of the project. Project factors define the
priors of quality features, i.e. default distributions, according
to the information provided by the respondents during a
questionnaire survey. A set of five ‘quality in use’ features
(bottom of Figure 2) is much less influenced by project
factors than remaining internal and external quality features.
This is caused by the fact that quality in use strongly depends
on the specific context/environment of use rather than on
those project factors.

functional
suitability

performance
efficiency

compatibility

usability

reliability

security

maintainability

transferability

effectiveness

efficiency

satisfaction

freedom
from risk

context
coverage

target market

used
methodology

CASE tool
usage

architecture

UI type

deployment
platform

project
difficulty

Figure 2. Structure of the sub-network with project factors and priors of

quality features

Process factors

stakeholder
involvement

problems

requirements
stability

process
difficulty

distributed
communication

problems

leadership
quality

team
organization

defined
process

followed

overall
process
quality

process
effectiveness

effort

adequacy of
methods and

tools

education

motivation

experience

skills

staff quality

process
quality

Features
of internal & external

quality

Features
of quality in use

Figure 3. Structure of the sub-network with process factors

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

functional
suitability

performance
efficiency

compatibility

usability

security

maintainability

effectiveness

efficiency

satisfaction

freedom
from risk

context
coverage

functional
completeness

functional
correctness

functional
appropriateness

functional suitability prior
(from project factors)

functional suitability
adjustment by process

Figure 4. Links between quality features, influence of project and process

factors, and a part of the quality hierarchy

Figure 3. illustrates the structure of the sub-network with
the process factors. This structure has been strongly adjusted
since a version used in the questionnaire survey [13]. The
new structure of a converging star is clearer and more user-
friendly. It enables easier adjustment directly by users – the
variables that aggregate their parents are defined using
expressions, most often as a ‘weighted min’ [5], thus adding
or removing a parent variable requires only adjustment of
that expression rather than manually rebuilding the whole
probability table for the aggregate variable. The model
contains three process sub-networks, one for each main
activity, i.e. specification, development and testing.

Figure 4. illustrates the links between quality features,
influence of project and process factors, and a part of the
quality hierarchy. Each quality feature has its own hierarchy,
i.e. a set of sub-features and measures, and is defined
individually by project and process factors. Figure 4. shows
all existing links between quality features but, due to a
limited space, sub-features and influences from project and
process factors only for an example feature – functional

suitability. However, each quality feature is defined in a
similar way with its own set of sub-features and links from
sub-networks with project and process factors. Two quality
features, reliability and transferability, are not directly linked
with any other quality feature. It does not mean that these
two features are not related with any other quality features
but rather that there are no direct relationships.

V. MODEL VALIDATION

To validate the developed model, we performed a variety
of analyses of results provided by the model. In this paper,
we discuss three of such analyses. Each of them investigates
how the model behaves when an observation is entered to a
single variable, i.e., what are the predictions for the other
variables. Since the model is a Bayesian network, the
predictions are provided not as point numeric values but as
probability distributions. In our analyses, we investigated the
whole probability distributions but to keep the paper concise
we report the median values from predicted distributions.

All variables involved in this analysis are expressed on a
5-point ranked scale, typically from ‘very low’ to ‘very high’
but for some variables a reverse order of states is used. This
ranked scale is internally transformed to a continuous scale
where a state ‘very low’ represents a range [0, 0.2], ‘low’ a
range [0.2, 0.4], etc. until the last state ‘very high’ represents
a range [0.8, 1]. With such transformation it is possible to
calculate statistical measures describing a probability
distribution, including a median that we used in this paper.

In the first analysis, we investigated how a change of one
quality feature influenced remaining quality features. First,
we set an observation ‘very low’ to one quality feature and
calculated the model. Second, we set an observation ‘very
high’ for the same variable and calculated the model. Then,
for each predicted variable we calculated the difference
between median values from these two predictions
(calculations) as shown in Equation 1.

Difference(feature_i) = Median(feature_iprediction_1) –
 Median(feature_iprediction_2)

TABLE IV. PREDICTED RELATIONSHIPS BETWEEN QUALITY FEATURES

Quality features (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

(1) functional suitability – 0.06 0.20 0.20 0.12 0.14 0.17 0.11 0.55 0.53 0.38 0.21 0.46

(2) performance efficiency 0.07 – 0.11 0.07 0.09 -0.29 0.10 0.05 0.13 0.09 0.10 -0.05 0.11

(3) compatibility 0.12 0.06 – 0.36 0.11 0.10 0.22 0.11 0.16 0.14 0.18 0.12 0.15

(4) usability 0.18 0.07 0.49 – 0.10 0.10 0.44 0.09 0.19 0.18 0.28 0.16 0.18

(5) reliability 0.12 0.08 0.17 0.11 – 0.20 0.22 0.17 0.18 0.18 0.17 0.15 0.19

(6) security 0.13 -0.26 0.15 0.11 0.18 – 0.20 0.16 0.15 0.17 0.15 0.42 0.18

(7) maintainability 0.10 0.06 0.22 0.32 0.13 0.13 – 0.11 0.16 0.13 0.16 0.14 0.18

(8) transferability 0.10 0.04 0.16 0.09 0.16 0.16 0.17 – 0.15 0.15 0.15 0.10 0.15

(9) effectiveness 0.38 0.09 0.17 0.14 0.12 0.11 0.17 0.11 – 0.37 0.29 0.17 0.29

(10) efficiency 0.34 0.05 0.14 0.12 0.11 0.11 0.13 0.10 0.35 – 0.21 0.14 0.25

(11) satisfaction 0.23 0.06 0.17 0.19 0.10 0.10 0.16 0.09 0.28 0.20 – 0.12 0.21

(12) freedom from risk 0.11 -0.03 0.11 0.09 0.08 0.25 0.12 0.06 0.14 0.12 0.11 – 0.16

(13) context coverage 0.32 0.07 0.15 0.12 0.11 0.11 0.17 0.09 0.29 0.25 0.21 0.19 –

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

TABLE V. PREDICTIONS FOR QUALITY FEATURES DEPENDING ON OBSERVATIONS FOR PROCESS FACTORS

Process factors \ Quality features (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

spec. overall process quality 0.21 0.13 0.19 0.22 -0.01 -0.02 0.09 -0.01 0.30 0.18 0.20 0.27 0.27

spec. effort 0.22 0.14 0.27 0.23 0.18 0.18 0.24 0.19 0.33 0.26 0.27 0.25 0.27

spec. process effectiveness 0.47 0.31 0.48 0.49 0.14 0.12 0.31 0.14 0.57 0.47 0.49 0.53 0.59

dev. overall process quality -0.01 0.09 0.10 -0.01 0.21 0.17 0.30 0.20 0.17 0.09 0.12 0.06 0.17

dev. effort 0.17 0.13 0.24 0.17 0.23 0.21 0.28 0.22 0.30 0.24 0.25 0.21 0.25

dev. process effectiveness 0.12 0.23 0.34 0.13 0.47 0.40 0.59 0.45 0.47 0.32 0.37 0.26 0.43

test. overall process quality 0.17 0.00 0.19 0.16 0.19 0.22 0.07 0.20 0.07 0.20 0.16 0.08 0.07

test. effort 0.21 0.11 0.27 0.22 0.22 0.22 0.23 0.23 0.28 0.27 0.26 0.22 0.25

test. process effectiveness 0.41 0.09 0.48 0.40 0.43 0.49 0.28 0.45 0.33 0.50 0.43 0.30 0.30

TABLE VI. PREDICTIONS FOR QUALITY FEATURES DEPENDING ON OBSERVATIONS FOR PROJECT FACTORS

Project factors \ Quality features (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

architecture 0.00 0.06 0.06 0.06 0.01 0.07 0.03 0.06 0.00 0.00 0.01 0.03 0.00

case tool usage 0.00 0.03 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00

deployment platform 0.00 0.17 0.11 0.00 0.11 0.02 0.00 0.04 0.00 0.00 0.02 0.01 0.00

UI type 0.12 0.05 0.13 0.29 0.00 0.00 0.12 0.00 0.05 0.05 0.17 0.00 0.04

target market 0.00 0.00 0.03 0.00 0.00 0.00 0.11 0.04 0.00 0.00 0.00 0.00 0.00

used methodology 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.20 0.04 0.00 0.02

project difficulty 0.12 0.07 0.01 0.01 0.10 0.14 0.19 0.01 0.04 0.09 0.02 0.23 0.22

Table IV provides those differences from this first

analysis. Each row represents results for quality features
given a change in quality feature shown in the first column.
For example, a row marked as (1) functional suitability
contains differences in predictions for remaining quality
features than occurred as a result of setting functional
suitability to ‘very low’ and ‘very high’. A value higher than
’0.2’ can be considered as representing a positive
relationship between a pair of quality features, and a value
lower than ‘-0.2’ as representing a negative relationship.
These results show that the model usually properly
incorporates relationships identified during a questionnaire
survey and discussed in [14].

However, each quality feature is at least slightly related
with other quality features although often no direct
relationships exist in the model. This happens because and
observation in one quality feature causes revised predictions
for its parents, and some of these parents then influence other
quality features (i.e. there are common causes for quality
features).

In the second analysis, we investigated how observations
set to selected process variables influence quality features.
Table V provides results for this analysis and, similarly as in
the first analysis, contains the differences between the
median values for quality features depending on setting
observations ‘very low’ and ‘very high’ to process factors.
The numbers in the first row refer to quality features
according to the numbering as in Table IV. Higher values
confirm that the model incorporates a relationship between
particular process factor and a quality feature. These

relationships are consistent with those identified and
discussed in [14].

In the third analysis, we investigated how project factors
influence the quality features. Table VI reports the results in
the same way as in two previous analyses. However, some
project factors are not expressed on a ranked scale but have
labeled states. For these factors we calculated predictions by
setting an observation for all possible states of a project
factor (one at the time). The values of these differences also
confirm that the model properly incorporates the influence of
project factors on quality features as identified in the
questionnaire survey [14].

VI. LIMITATIONS AND THREATS TO VALIDITY

During the work on this model and its validation, we
noticed several limitations and threats to validity of obtained
results. First, the relationships between quality features,
illustrated in Table IV, are not always symmetrical. During
the questionnaire survey, we asked respondents about such
relationships without investigating the direction of the link.
When building a Bayesian network, which is a directed
graph, we defined directions of such link typically according
to the cause-effect relationship. However, this relationship is
of stochastic nature and together with other links in the
model it is not possible to define links between quality
features that would be symmetrical.

Second, during a questionnaire survey, respondents
identified relationships between specific pairs of variables.
However, very often respondents did not provide
information on the details of such relationship. Even further,

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

there were cases when one respondent provided information
on the strong positive relationship between two variables,
whereas according to another respondent this relationship
was negative. Thus, the model cannot incorporate all
information gained because of these contradictory answers.

Furthermore, in this paper, we focus on model validation
that involved a change of one variable at a time. We did not
report results of analyses of scenarios where multiple
variables were set with observations.

Finally, model applicability is limited to software
projects which follow the rationale for this model.
Specifically, this includes large and long-lasting projects
with a full development lifecycle. The model can be applied
to other projects but after significant adjustments which may
cost-ineffective.

VII. CONCLUSIONS AND FUTURE WORK

The developed Bayesian network model, discussed in
this paper, is an extended and improved version of the model
discussed in earlier papers. It has a simpler and clearer
structure and still offers higher functionality due added
useful variables. This model properly incorporates expert
most knowledge gathered during the questionnaire survey as
we confirmed it during the validation stage. A predefined
Bayesian network model well fits the user expectations in
terms of its scope, complexity and usefulness.

Although the model has been pre-calibrated, it may and
should be recalibrated in the target environment. Depending
on the user needs, this may involve adding or removing
variables, adding or removing links, and changing the
quantitative definitions of variables (e.g. the sensitivity of the
changes between different variables). We believe that
because of the modular structure and the usage of
expressions [5] such adjustments are fairly simple.

In the future, we plan to extend the model by using
detailed software measures, i.e., metrics. During the
questionnaire survey we were aware that it would be difficult
to obtain real data on them. We hope that, after presenting
the results from the proof-of-concept model, the companies
would be willing to cooperate tighter to calibrate the model
to their own needs. We also plan to work on the tool support
for the model, so that the model will be a part of a lager
expert-based decision support system aimed to analyze,
understand, manage and optimize a software development
process.

ACKNOWLEDGMENTS

I would like to thank all participants of the questionnaire
survey for providing useful information and additional
thoughts inspiring this and further research. I would also like
to thank Magne Jørgensen and Richard Torkar from Simula
Research Laboratory in Norway and Norman Fenton from
Queen Mary, University of London for valuable comments
on building a Bayesian network model discussed here. This
work has been supported by research funds from the
Ministry of Science and Higher Education / National Science
Centre in Poland as a research grant no. N N111 291738 for
years 2010–2012.

REFERENCES

[1] Beaver JM. A life cycle software quality model using
bayesian belief networks. Ph.D. Dissertation. University of
Central Florida. Orlando; 2006.

[2] Catal C, Diri B. A systematic review of software fault
prediction studies. Exp Syst Appl 2009, 36(4): 7346–7354.

[3] Fenton N, Marsh W, Neil M, Cates P, Forey S, Tailor M.
Making Resource Decisions for Software Projects. In:
Proceedings of the 26th International Conference on Software
Engineering. Washington, DC: IEEE Computer Society;
2004, p. 397–406.

[4] Fenton NE, Neil M. A critique of software defect prediction
models. IEEE Trans Softw Eng 1999; 25(5): 675–689.

[5] Fenton NE, Neil M, Caballero JG. Using Ranked Nodes to
Model Qualitative Judgments in Bayesian Networks. IEEE
Trans Knowl Data Eng 2007; 19(10): 1420–1432.

[6] ISO/IEC 25010:2011(E), Software engineering – Software
product Quality Requirements and Evaluation (SQuaRE) –
System and software quality models, 2011.

[7] Musa JD. Software Reliability Engineering: More Reliable
Software Faster and Cheaper. Second Edition, Authorhouse;
2004.

[8] Nelson HJ, Poels G, Genero M, Piattini M. A conceptual
modeling quality framework. Softw Qual J 2011; 20(1): 201–
228.

[9] Radliński Ł. A conceptual Bayesian net model for integrated
software quality prediction. Annales UMCS, Informatica
2011; 11(4): 49–60.

[10] Radliński Ł, A Framework for Integrated Software Quality
Prediction using Bayesian Nets. In: Murgante B, Gervasi O,
Iglesias A, Taniar D, Apduhan B, editors. Computational
Science and Its Applications - ICCSA 2011. Lecture Notes in
Computer Science; 6786, Berlin / Heidelberg: Springer; 2011,
p. 310–325.

[11] Radliński Ł. Bayesian Network Model for Integrated
Software Quality Prediction. 2012,
http://lukrad.univ.szczecin.pl/projects/banisoq/.

[12] Radliński Ł. Empirical Analysis of the Impact of
Requirements Engineering on Software Quality. In: Regnell
B, Damian D, editors. Requirements Engineering: Foundation
for Software Quality. Lecture Notes in Computer Science;
7195, Berlin / Heidelberg: Springer; 2012 p. 232–238.

[13] Radliński Ł. Enhancing Bayesian Network Model for
Integrated Software Quality Prediction. In: Mauri JL, Lorenz
P, editors. Proc. Fourth International Conference on
Information, Process, and Knowledge Management, Valencia:
IARIA; 2012, p. 144–149.

[14] Radliński Ł. Towards expert-based modeling of integrated
software quality. J Theor Appl Comp Sci 2012 (under
review).

[15] Riaz M, Mendes E, Tempero E. A systematic review of
software maintainability prediction and metrics. In: Empirical
Software Engineering and Measurement, Washington, DC:
IEEE Computer Society; 2009, p. 367–377.

[16] Wagner S. A Bayesian network approach to assess and predict
software quality using activity-based quality models. Inf
Softw Technol 2010; 52(11): 1230-1241.

[17] Wagner S, Deissenboeck F. An Integrated Approach to
Quality Modelling. In: Fifth International Workshop on
Software Quality (WoSQ’07: ICSE Workshops 2007),
Washington, DC: IEEE; 2007, p. 1.

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

	I. Introduction
	II. Background
	A. Software Quality
	B. Related Work

	III. Analysis of the preferences on the expected scope of the model
	IV. Structure of the new model
	V. Model Validation
	VI. Limitations and Threats to Validity
	VII. Conclusions and Future Work
	Acknowledgments
	References

