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Abstract—Advertising is essential to increase product aware-
ness and foster a positive outlook, which in turn helps sales. To
promote the brand and its products, billboard advertisements are
widely used. This paper presents a novel approach for classifying
billboards. The proposed method utilises Convolutional Neural
Network (CNN) architectures to extract features from the images
to enable classification. The model is trained on a dataset of
billboards collected from various locations and achieves results
that demonstrate high classification accuracy. The system is
trained and evaluated using the CIFAR10 dataset, which includes
10 classes of objects and an additional 11th class - ’billboard’,
is included. The experiment utilises five different CNN archi-
tectures: Basic CNN, ResNet, Visual Geometry Group (VGG),
MobileNet, and DenseNet. The performance and evaluation of
each architecture are presented in detail, and extensive exper-
iments and comparisons are conducted to determine the most
effective model for classifying billboards. The results indicate that
a CNN and its architectural designs are a promising solution for
automating the classification of billboards in the wild.

Index Terms—Classification; CNN-Architecture; Billboard;
Image-Processing; CIFAR10

I. INTRODUCTION

Out of Home (OOH) advertising is one of the most powerful
channels, helping connect brands with a large and diverse
audience when they are outside of their homes. This type of
advertising offers several advantages including the ability to
reach specific audiences using visually striking images that
can increase sales and maintain brand visibility in the market.
It is considered less intrusive than other forms of advertising
as consumers choose whether or not to engage with it. Such
advertisements can be found on roadside billboards, transit
stations, street furniture, retail outlets, health and beauty,
point of care and office buildings just to name a few [1].
The visibility of OOH advertisements can vary. For example,
a billboard’s size, shape, location and viewing angle affect
visibility and in some cases, obstructions such as trees, traffic
signals and vehicles can partially block an onlooker’s view of
a billboard. As a result, detecting billboards in images can be
challenging due to the dynamic nature of their content [2] [3].

The purpose of this study is to create a classifier for
billboard images using a CNN model that can accurately
categorise billboards amidst other types of images in nat-
ural environments. The goal is to train and test 5 CNN
architectures using billboard images merged with a subset
of the CIFAR10 dataset [4], evaluate their effectiveness and

determine the most efficient deep learning model for real-
time billboard classification [5] [6]. The complexity lies in
discerning billboards, which often blend seamlessly into the
urban landscape, demanding the model’s heightened percep-
tual acuity. Moreover, the efficacy of our proposed method
in classifying billboards becomes evident when juxtaposed
with classification against 10 distinct categories present in
the CIFAR-10 dataset. Billboards, despite being distinct from
these classes, can share similar visual characteristics with
urban structures, causing intricacies in differentiation [2].

Computer vision techniques are driving a revolution across
diverse applications, encompassing object and pattern recogni-
tion, precise image segmentation, robust facial detection, and
even pioneering advancements in robotics and autonomous
driving [7] [8] [9]. Object classification is a fundamental
problem in computer vision and has been extensively studied
in the machine learning and computer vision communities
[10]. One of the earliest and most successful approaches to
object classification is the use of hand-crafted features, such
as edge detection and texture analysis [11]. These methods
rely on expert knowledge and domain-specific heuristics to
extract informative features from images and use them to
train a classifier [12]. Some of the well-known classifiers,
logistic regression, naive bayes, k-nearest neighbors, decision
tree etc., were utilised for classification purposes [13]. These
classifiers are widely recognised and frequently employed
in various machine learning tasks due to their simplicity,
interpretability, and reasonable performance. However, these
methods are limited in their ability to capture complex and
abstract patterns and require a significant amount of manual
effort to design and implement which led to advancements in
deep learning [14] [15].

Recent advances in machine learning and deep learning
have led to the development of more powerful and flexible
object classification algorithms [14] [16]. These methods use
CNNs to automatically learn rich and complex features from
raw images, without the need for manual feature engineering.
CNNs have achieved state-of-the-art performance on many
benchmarks [17] and are widely used in practical applications.
Current studies have centred on addressing these challenges
and advancing the state of the art in object classification.
However, there are still many challenges and open questions
in the field of object classification [15]. These include the
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need for large amounts of labelled training data, the sensitivity
of deep learning models to small perturbations in the input
and the difficulty of explaining and interpreting the decisions
made by these models [18]. This includes the development of
CNN architectures, such as the VGG and ResNet architectures
[16] [19], the use of transfer learning and other techniques to
improve the efficiency and robustness of these models and the
exploration of more interpretable and explainable approaches
to object classification [4] [14] [20].

Hence, in this research, we investigate well-known archi-
tectures, such as ResNet, VGG, MobileNet, and DenseNet
to build a billboard classifier. The study provides a de-
tailed analysis of each architecture’s performance, facilitating
a comprehensive understanding of the achieved results. To
illustrate our research trajectory, this paper adheres to the
designated structure in the forthcoming sections. In Section
2, we delve into the Methodology, addressing dataset creation
and billboard classifier design. Following that, Section 3, sheds
light on Network Architectures, laying out the specific layers,
training details, hyperparameter optimisation and provides
comprehensive information about the five distinct network
architectures employed in the research. Subsequently, Section
4 is dedicated to the Results and Analysis of the applied
methods, with a focus on evaluating the performance using
F1 scores on datasets CIFAR11 and CIFAR2. Lastly, the final
section encapsulates the conclusion.

II. METHODOLOGY

This section discusses the dataset used and the methodology
employed for the image classification experiment using CNN
architectures.

A. Dataset
The CIFAR10 dataset [21] [22] is often used as a benchmark

for evaluating the performance of different image classification
algorithms. The 10 in CIFAR10 dataset represents 10 classes
with 6000 images per class, each image is of size 32∗32 pixels.
In total this dataset is comprised of 60,000 colour images.
The 10 classes are as follows in alphabetic order: Airplane,
Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, and
Truck.

For our experiment, we have integrated a new class denoted
‘Billboard’ in the dataset. This class of images was collected
by the OOH industry partner. The Billboard images shown in
Figure 1 were cropped and resized to 32∗32 pixels to be con-
sistent with the CIFAR10 standard. Several observations are
made for the billboard class such as images including different
types of billboards, different locations, different backgrounds,
obstructions caused by trees, vehicles or people, and other
background clutter, etc. A total of 778 images were deemed
suitable for use in the experiment. However, this created class
imbalance while merging this class into CIFAR10 which has
6000 images per class.

Imbalanced datasets can negatively affect the performance
of machine learning models by biasing the training towards
the majority class and reducing the ability of the model to

Fig. 1. Billboard class images.

accurately classify the minority classes. Previous studies have
shown that balancing the dataset can improve the performance
of CNNs in image classification tasks [23]. Hence, we selected
approximately the first 700 images of each of the 10 classes
in the CIFAR10 dataset. By selecting an equal number of
images for each class, we aimed to improve the accuracy and
robustness of the CNN models used in this experiment [24].
Billboard images were pre-processed to match the CIFAR10
standards creating two separate datasets, denoted as CIFAR11
and CIFAR2 for nomenclature purposes, as briefly stated
below:

• CIFAR11: Billboard class combined with all 10 classes of
CIFAR10 – 6188 images used for the training set, 1546
images for validation set and 220 images for the testing
set. Total 7,954 images belonging to 11 classes.

• CIFAR2: Based on the outcomes in Table III, the ’Bill-
board’ class was merged with only ’Ship’ class from
CIFAR10 - 1230 images used for the training set, 306
images for the validation set and 40 images for the testing
set. Total 1,576 images belonging to 2 classes.

B. Billboard Classifier

To conduct the research, five CNN architectures, namely
a basic CNN, ResNet, VGG, MobileNet and DenseNet, have
been utilised [16] [19] [25] [26]. Our approach involved build-
ing upon pre-trained models. The transfer learning was applied
for ResNet, VGG, MobileNet, and DenseNet architectures
[27].

The basic building blocks used for this experiment are
shown in Figure 2. The standard methodology for image
classification using CNNs involves several steps. Firstly, a
dataset comprising images and their respective labels is split
into training and validation sets. These images are then pre-
processed by performing data normalization to make them
compatible with the CNN architecture. The preprocessed data
are fed into the classifier for training, which is one of the
five CNN architectures used in the experiment. The classifier
is trained on the validation and training datasets to extract
features from the images using convolutional layers, activation
functions, and pooling layers. The output is then passed
through fully connected layers to classify the images into their
respective classes. Backpropagation is applied to adjust the
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Fig. 2. Billboard classifier building blocks.

weights and biases to train the network. Finally, the training
process is repeated and fine-tuned using hyper-parameters such
as a number of epochs, learning rate, batch-size, etc., to
improve the accuracy. The model’s performance is evaluated
on an unseen test set [12].

III. NETWORK ARCHITECTURES

Each of the five CNN architectures has its own strengths
and weaknesses, and the choice of architecture depends on
the specific requirements of the image classification task at
hand [7]. For example, ResNet [16] and VGG [19] are good
choices for large, complex datasets, while MobileNet [25] is
a good choice for deployment on mobile devices with limited
computational resources. DenseNet [26] is a good choice
for image classification tasks that require a high degree of
accuracy and fast convergence.

A. Basic CNN
A basic CNN is a simple feed-forward network that is

designed to provide a foundation for understanding more
complex models. The basic structure of a CNN for training
on the dataset involves several key components: the input
layer, convolutional layers, pooling layers, fully connected
layers, and an output layer with an activation function. These
components work together to learn to recognize and classify
the objects in the images [28]. The convolutional layer is used
for extracting features from the input image. The basic formula
for a single convolutional layer can be represented as:

f(x) = W ∗ x+ b (1)

where f(x) is the output of the convolutional layer, W is the
set of weights filters, x is the input image, and b is a bias
term.

B. ResNet
ResNet is a deep residual learning framework that was

introduced in 2015 by He et al. [16]. It is designed to address
the vanishing gradient problem in deep networks by adding
shortcut connections that bypass one or more layers. This
allows for easier training of much deeper networks to learn
residual mappings, which can help to improve performance

Fig. 3. Basic CNN Visualisation in Layered View.

for image classification tasks. ResNet is known for its high
accuracy and ability to handle large datasets. For our ex-
periment, we have employed the ResNet 50 model, chosen
for its remarkable depth, skip connections, and advanced
architecture, which collectively enhance its ability to capture
intricate features within the images. The output of the residual
block can be represented as:

Y = F (x,Wi) + x (2)

where x is the input to the residual block, F (x,Wi) is the
residual mapping function that is learned by the block, Wi

are the learnable parameters of the block, and Y is the output
of the block. The ”+ x” term in the equation represents the
identity mapping, which allows the output of the block to
include the original input x.

C. VGG
Visual Geometry Group (VGG) is a CNN architecture, that

was proposed in 2014 by Simonyan et al. [19]. It is known
for its use of small convolutional filters and deep network
architecture, which helps to capture fine-grained details in
images. VGG differs from a basic CNN by having more layers
and using smaller filter sizes of 3∗3 pixels. This allows VGG
to learn more complex features from the input image but also
makes it more computationally expensive to train and run. To
mitigate this issue, VGG typically uses max pooling layers
after every two or three convolutional layers to reduce the
spatial dimensions of the output. By downsampling the output,
VGG is able to decrease the computational load of the network
while still retaining important features.

f(x) = W2 · (W1 · (W1 · x+ b1) + b2) + b3 (3)

where x is the input image, W1 and W2 are weight matrices,
b1, b2, and b3 are bias vectors represents the max pooling
operation.

D. MobileNet
MobileNet is a lightweight CNN architecture that was

introduced in 2017 by Howard et al. [25]. It was designed
for use in mobile and embedded devices and is known for
its efficiency and accuracy. MobileNet is a computationally
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TABLE I
ARCHITECTURE COMPARISON OF THE LAYER STRUCTURE1

Basic CNN ResNet VGG MobileNet DenseNet
conv2d (Conv2D) resnet50 (Functional) input 2 (InputLayer) mobilenetv2 1.00 224 (Functional densenet201 (Functional)
max pooling2d (MaxPooling2D) flatten (Flatten) block1 conv1 (Conv2D) global max pooling2d 1 (GlowbalMaxPooling2D) flatten 1 (Flatten)
conv2d 1 (Conv2D) block1 conv2 (Conv2D) dense (Dense) batch normalization 2 (BatchNormalization)
max pooling2d 1 (MaxPooling2D) block1 pool (MaxPooling2D) dense 3 (Dense)
conv2d 2 (Conv2D) block1 conv2 (Conv2D) dropout 2 (Dropout)
flatten (Flatten) block1 pool (MaxPooling2D) batch normalization 3 (BatchNormalization)
dense (Dense) block2 conv1 (Conv2D) dense 4 (Dense)
dense 1 (Dense) block2 conv2 (Conv2D) dropout 3 (Dropout)
flatten 1 (Flatten) block2 pool (MaxPooling2D) dense 5 (Dense)
dense 2 (Dense) block3 conv1 (Conv2D)
dense 3 (Dense) block3 conv2 (Conv2D)

block3 conv3 (Conv2D)
block3 conv4 (Conv2D)
block3 pool (MaxPooling2D)
*
flatten 1 (Flatten)
dense 1 (Dense)

efficient version of the CNN that uses depthwise separable
convolutions to reduce the computational complexity while
maintaining accuracy. Its lightweight architecture helps to
reduce computation time and energy consumption, while still
providing good performance for image classification tasks.
MobileNet uses depthwise separable convolutions, and can be
represented as:

f(x) = (W1 ∗ x)W2 + b (4)

where f(x): Output of the MobileNet layer, W1: Depthwise
convolutional kernel, W2: Pointwise convolutional kernel, x:
Input to the MobileNet layer (e.g., an image), b: Bias term.

E. DenseNet

DenseNet is a convolutional neural network that was intro-
duced in 2016 by Huang et al. [26]. It is known for its dense
connectivity pattern, where each layer is connected to all pre-
vious layers, which helps to reduce the number of parameters
and mitigate overfitting. The dense blocks allow for a more
efficient flow of information and have been shown to improve
accuracy and convergence speed for image classification tasks.
The output of a single dense block can be represented as:

f(x) = [f1(x), f2(x), ..., fk(x)] (5)

where f(x): Output of the DenseNet layer, fi(x): Output of
the i-th dense block, x: Input to the DenseNet layer, k: Number
of dense blocks in the DenseNet layer.

F. Training Details: Architecture Enhancement

Figure 3 presents the basic layer outline. In Table I, the
layers and their implementations employed are explained for
the following CNN architectures: Basic CNN, ResNet, VGG,
MobileNet, and DenseNet. These architectures are formed by
incorporating additional layers and implementations, which act
as essential building blocks. They enable efficient feature ex-
traction and effective classification tasks for the given dataset.
In the context of Table I, the symbol ’∗’ serves as an indicator,
denoting the repetition of block 3, which occurs twice. A brief
explanation of the purpose and functionality of the layers is
provided below [29]:

• Conv2D: this layer performs a convolution operation on
the input data to extract relevant features.

• MaxPooling2D: this layer applies max pooling to reduce
the spatial dimensions of the input, preserving the most
important features.

• Flatten: this layer reshapes the input data into a 1-
dimensional vector, preparing it for the fully connected
layers.

• Dense: these layers are fully connected layers that per-
form a linear transformation on the input data, followed
by an activation function, to generate class predictions.

• Batch Normalization: this layer normalises the input data,
helping with training stability and improving the learning
process.

• Dropout: this layer randomly sets a fraction of input units
to 0 during training, which helps prevent overfitting.

• GlobalMaxPooling2D: this layer applies max pooling
across the entire feature map, reducing the spatial dimen-
sions to a single value for each feature map.

Hyperparameter Optimization: Table II illustrates the
hyperparameters employed for training each network after util-
ising the default parameters. A meticulous selection and fine-
tuning process were undertaken to optimise the performance
of each network. The hyperparameters were carefully tuned
to maximise the performance of each model. Table II presents
a concise summary of the hyperparameters utilised for each
model and a brief explanation for each parameter is given
below:

• Epochs: The number of epochs determines the number of
times the training process is repeated. After each epoch’s
the model’s output is compared to the ground truth (actual
values), and the loss function calculates the difference
between them then it adjusts the weight. This newly
created weight is then given to system for next epoch for
training and this process goes on until the best possible
accuracy is achieved without overfitting. This value is
different for each model used.

• Early Stopping: The number of epochs used with the
CIFAR-11 dataset differs from CIFAR-2 due to the dif-
ference in the number of images. CIFAR-11 has 7954
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TABLE II
HYPER-PARAMETER TUNING

Model Name Basic CNN ResNet VGG MobileNet DenseNet
Optimizer Adam SGD Adam Adam Adam
Epochs (CIFAR11) 20 10 3 15 5
Epochs (CIFAR2) 3 3 3 5 3
Activation Function ReLU SoftMax SoftMax SoftMax SoftMax
Batch Size 16 32 16 32 32

images, while CIFAR-2 has only 1230 images. To prevent
overfitting, the dataset with fewer images (CIFAR-2)
required early stopping with the number of epochs given
in Table II for each network that proved to be effective
in attaining optimal performance. By leveraging the early
stoppage method [30], overfitting was sucessfully over-
come for CIFAR-2.

• Batch Size: this was adjusted according to the availability
of computational units, aiming to efficiently utilise the
computational resources to benefit from parallel process-
ing and improve training efficiency.

• Activation Function: the Softmax activation function is
commonly employed in multi-class classification tasks
as it converts the model’s output into probability distri-
butions across different classes used for ResNet,VGG,
MobileNet and DenseNet. The Basic CNN utilised the
ReLU activation function, which is a widely used ac-
tivation function known for its ability to mitigate the
vanishing gradient problem and introduce non-linearity
to the model. Allowing the model to capture complex
patterns and features essential for classification tasks.

• Optimizer: The optimizer used in the training process
varied across the models. Basic CNN, VGG, MobileNet,
and DenseNet were optimised using the Adam optimizer,
which is an adaptive learning rate optimisation algorithm
known for its efficiency in handling sparse gradients
and noisy data. It computes adaptive learning rates for
each parameter by taking into account the exponential
decay rates of past gradients and their squared gradients.
This helps the model converge faster and achieve better
performance. Conversely, the ResNet utilised Stochastic
Gradient Descent (SGD) as the optimizer. SGD is a
widely used optimisation algorithm that iteratively up-
dates the model’s parameters based on the gradients
computed on randomly selected mini batches of data [29].

In addition to the hyperparameters listed in Table II, specific
measures were taken to address overfitting in the ResNet
model. Initially, the model was trained using a learning rate
of 0.001, and further fine-tuning was performed by employing
SGD with a momentum value of 0.9, potentially improving
its performance and convergence. Through careful selection
and fine-tuning all networks hyperparameters, the models were
trained and optimised to achieve the best possible performance
on the CIFAR-11 and CIFAR-2 datasets, considering the
differences in the number of images and potential overfitting
issues.

IV. RESULT ANALYSIS

The following section presents evaluation results for bill-
board classification. Tables III and IV present the results
of evaluating 5 different deep learning architectures (CNN,
ResNet, VGG, MobileNet, and DenseNet) on different classes
of images using the CIFAR11 and CIFAR2 datasets. The
performance metrics used are precision, recall, and F1-score
[31]. The F1-score is a commonly used performance metric
for evaluating multi-class classifiers. It is the harmonic mean
of precision and recall. Precision is the ratio of correctly
predicted positive observations to the total predicted positive
observations. Recall (or Sensitivity) is the ratio of correctly
predicted positive observations to all actual positive observa-
tions in the dataset:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(6)

In terms of performance for the ’Billboard’ class in Table
III, different network architectures showed varying levels of
accuracy. Among the architectures evaluated, the basic CNN,
DenseNet, and VGG exhibited relatively high F1-scores of
0.97, 0.92, and 0.88, respectively. These scores suggest that
these architectures achieved a high level of precision and
recall in classifying images belonging to the ’Billboard’ class,
resulting in a balanced overall performance. On the other hand,
the ResNet architecture attained an F1-score of 0.86, indicating
a slightly lower but good level of accuracy for this class. How-
ever, the MobileNet architecture exhibited the lowest F1-score
of 0.10 for the ’Billboard’ class, implying that it struggled
to accurately classify images within this specific class. The
comparatively diminished performance of MobileNet might
stem from its lightweight architecture optimised for efficiency,
which could compromise its ability to capture intricate dataset
features, unlike more complex counterparts such as ResNet,
DenseNet, and VGG, which have shown consistently good
results across all classes.

The ’Billboard’ class consistently performs well across
architectures, the performance of other classes varies. Some
classes, such as ’Airplane’ and ’Truck’ tend to achieve rel-
atively high scores, while others, like ’Cat’ and ’Deer’ show
lower scores. The ’Ship’ class in the CIFAR-11 dataset demon-
strates relatively consistent performance across the network
architectures. The F1-scores for this class range from 0.48
to 0.61 suggesting a balance between precision and recall,
indicating that the models achieve a reasonable trade-off
between correctly identifying ’Ship’ images and minimising
mis-classifications. Therefore, this specific ’Ship’ class with
’Billboard’ has been chosen for subsequent CIFAR2 class
analysis.

Using CIFAR11, the testing accuracy results for the basic
CNN, ResNet, VGG, MobileNet, and DenseNet are 51.36%,
54.55%, 49.55%, 30.45%, and 54.09% respectively. It is
evident that ResNet and DenseNet performed well compared
to other models. These results highlight the effectiveness of the
CIFAR11 model in accurately predicting the target class based
on the testing data set. The highest testing accuracy achieved
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TABLE III
COMPARATIVE MODEL SUMMARY OF 5 NETWORK ARCHITECTURES OF CIFAR-11

Class Name CNN ResNet VGG MobileNet DenseNet
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Airplane 0.41 0.35 0.38 0.55 0.80 0.65 0.57 0.65 0.6 0.60 0.45 0.51 0.58 0.75 0.65
Automobile 0.67 0.40 0.50 0.60 0.45 0.51 0.40 0.70 0.51 0.78 0.35 0.48 0.60 0.45 0.51
Billboard 1.00 0.95 0.97 0.79 0.95 0.86 0.86 0.90 0.88 1.00 0.05 0.10 1.00 0.85 0.92
Bird 0.37 0.55 0.44 0.38 0.50 0.43 0.29 0.35 0.32 0.27 0.60 0.37 0.41 0.45 0.43
Cat 0.56 0.45 0.50 0.35 0.30 0.32 0.28 0.25 0.26 0.16 0.55 0.25 0.40 0.40 0.40
Deer 0.31 0.25 0.28 0.32 0.55 0.41 0.43 0.50 0.47 0.08 0.15 0.11 0.44 0.60 0.51
Dog 0.38 0.30 0.33 0.67 0.40 0.50 0.50 0.35 0.41 0.50 0.35 0.41 0.63 0.60 0.62
Frog 0.50 0.35 0.41 0.59 0.50 0.54 0.44 0.35 0.39 0.43 0.30 0.35 0.45 0.25 0.32
Horse 0.44 0.55 0.49 0.64 0.45 0.53 0.44 0.40 0.42 0.67 0.10 0.17 0.56 0.50 0.53
Ship 0.54 0.70 0.61 0.55 0.55 0.55 0.60 0.45 0.51 0.50 0.25 0.33 0.48 0.50 0.49
Truck 0.55 0.80 0.65 0.92 0.55 0.69 0.85 0.55 0.67 0.57 0.20 0.30 0.50 0.60 0.55

TABLE IV
COMPARATIVE RESULT OF 5 NETWORK ARCHITECTURES OF CIFAR-2

Class Name CNN ResNet VGG MobileNet DenseNet
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Billboard 0.94 0.85 0.89 0.51 1.00 0.68 0.86 0.95 0.90 0.83 1.00 0.91 0.95 1.00 0.98
Ship 0.86 0.95 0.90 1.00 0.05 0.10 0.94 0.85 0.89 1.00 0.80 0.89 1.00 0.95 0.97

(a) CIFAR11 - ResNet. (b) CIFAR2 - DenseNet.

Fig. 4. Confusion Matrix.

by ResNet among all the models makes it a prime candidate
for further analysis using the confusion matrix shown in Figure
4(a), which provides a visual representation of the correct and
incorrect predictions for each class.

Considering CIFAR2, observing Table IV, we can see that
the highest F1-score across all architectures and classes is
achieved by the DenseNet with a value of 0.98 for billboard
class. For the class ’Ship’, as well the highest F1-score
is achieved by DenseNet with a value of 0.97. It can be
concluded that the DenseNet architecture outperforms other
architectures in terms of the F1-Score for both the ’Billboard’
and ’Ship’ classes which is also reflected in Figure 4(b) using a
confusion matrix for detailed model performance of each class.
The precision and recall values for the DenseNet architecture
are close to 1.0 which indicates good performance.

V. CONCLUSION

This paper presents deep learning based approaches for
billboard classification. Based on the results presented, we can
determine that ResNet (CIFAR11) and DenseNet (CIFAR2)
are strong candidates compared with the other 3 CNN, par-
ticularly for the dataset for automating the classification of
billboards and provide a promising solution for this application

domain. However, it is important to note that the choice
of architecture depends on the specific requirements of the
image classification task at hand, and other factors such as
computational complexity and deployment environment may
also influence the final choice of architecture. Overall, the
field of object classification continues to evolve and advance,
with many exciting developments and opportunities for further
progress.
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