

Toward Comparing Knowledge Acquisition in DeepRL Models

Anthony Marchiafava, Atriya Sen

Department of Computer Science

University of New Orleans

New Orleans, United States

email: amarchia@uno.edu, asen@uno.edu

Abstract—In order to better exploit Deep Reinforcement

Learning (DeepRL) systems such as DeepMind’s Alpha Go &

Alpha Zero, it is desirable to understand how they acquire

knowledge, and how human knowledge acquisition can

contribute to or benefit from such an understanding. We

analyze a series of DeepRL models trained to play the board

game of chess in a human-like fashion, to study if these models

acquire concepts differently from self-trained DeepRL models

such as AlphaZero. Our preliminary results indicate that

human chess players may acquire concepts very similarly to

self-trained models. We further discuss some of the potential

consequences of such an outcome.

Keywords-Artificial Intelligence; Deep Reinforcement

Learning; Reinforcement Learning; Deep Learning; Explainable

AI.

I. INTRODUCTION

The game of chess has been called the “drosophila” of
artificial intelligence (AI), referring to the extensive use of
fruit flies (drosophila) in experimental biology. While
traditional chess engines rely primarily on tree search with
advanced heuristics, many modern approaches have
exploited deep learning or deep reinforcement learning.

One such recent project is AlphaGo Zero, which uses a
combination of Monte Carlo Tree Search (MCTS) and a
deep neural network [1]. Leela Chess Zero is an open-source
implementation of both the MCTS and the (convolutional)
neural network of AlphaGo Zero, and achieves a similar
level of performance (i.e., playing strength), which is to say,
a superhuman level: capable of consistently defeating any
known human player.

It may be reasonably hypothesized that such neural
systems are learning implicit knowledge about chess-playing
concepts and strategies. Understanding the internal
knowledge acquisition processes of these and similar
systems have the potential to provide insight into both chess
as a game and the application of a similar process to varied
adversarial domains, such as international trade, nuclear
deterrence, and other negotiations.

The MCTS algorithm is used to examine the possible
outcomes of the game depending on which move is chosen,
by searching through trees generated from different choices
the player could make, and examining which ones lead to the

highest probability of winning [2]. These trees are generated
by the deep neural network.

The deep neural network is fundamentally a two-state
regression or classification model which accepts some input
and produces one or more outputs [3]. The network will
accept the input and produce derived features, which are then
used to produce further derived features depending on
network depth, and derived features are combined using an
output function to produce the final output. Derived features
are produced using linear combinations of the inputs and
activation functions and other operations at different layers
of the network. The first few layers more closely match the
structure of the initial input, but as further derived features
are generated, the derived features become more and more
abstract.

The deep neural network accepts the current state of the
chess board, prior states of the chess board, including a
number of additional game-specific parameters such as the
current castling status, and finally move count as input, and
produces two outputs via dual network heads: (1) the policy
head, which produces the probability distribution of possible
moves, and (2) the value head, which produces the predicted
outcome of the game, based on making the suggested move,
as a win, lose, or draw. The MCTS uses the output of the
neural network to choose the best candidate move. AlphaGo
Zero learnt to play chess without exposure to human moves
or more abstractly, playing styles, and generated implicitly
expressed strategies sophisticated enough that it prevailed in
a multi-game match against Stockfish, then a traditional
search-based engine (Stockfish has now been updated to
additionally use a neural model).

In an effort produce engines that behave more human-
like at a variety of skill levels, Maia Chess was created [4].
Different versions of Maia were trained on specific games of
human players at different skill levels, in lieu of using self-
play, effectively training the neural network in human-style
play. The different versions of Maia were able to produce
gameplay choices similar to human players from 1100 ELO
to 1900 ELO, where ELO refers to the ELO rating system,
which is used almost exclusively in chess, and refers to a
relative ranking of a particular player’s odds of winning
against another player of a different skill level (i.e., ELO
rating). Maia was built on the Leela Chess Zero framework,
an open-source engine inspired by Alpha Zero. However

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-014-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DIGITAL 2022 : Advances on Societal Digital Transformation - 2022

Maia does not use an MCTS, but rather uses a deep learning
model exclusively.

We will show how we can detect and compare the
concepts that the various versions of Maia use. In section 2
we indicate what motivated our work here and what similar
work was done in the past. In section 3 we show the
technique we used to get concepts and how they are detected.
In section 4, we show the results we were able to generate. In
section 5 we show what further work can be done in the
future.

II. MOTIVATION & PRIOR WORK

Since deep neural networks (DNNs) are inherently black
boxes, the ability to understand and explain the presumed
acquisition of concepts and strategies by the network in
chess and other adversarial domains is highly desirable for a
variety of reasons, including training humans in
“superhuman” strategies, and interpreting them in terms of
human strategies. A DNN learns derived features generated
using the backpropagation algorithm, which updates
intermediate node weights based on the gradient between the
observed output and the expected output at the final layer of
the network, a process which is not directly human-
interpretable.

One interpretability technique is to use the technique of
linear probing to examine the detectability of concepts at the
intermediate layers of the neural network, and the acquisition
of knowledge those concepts entail [5]. This approach is
derived from a technique for detecting image concepts in
computer vision using concept activation vectors (CAVs)
[6]. We separate examples of game states which have some
concept in common, and examples which do not exhibit that
concept. These classifications are matched to the activations
of a particular layer in a neural network, whose input
matches our game state. We then train a linear classifier to
differentiate between the inputs of the two classes. This
allows us to detect if the set of activations of a particular
layer for a particular network contain the information needed
to determine if a concept is present or absent at that layer.
This has been the approach taken in [7], for interpreting
concepts learnt by Alpha Zero.

In this paper we present the results of a similar
examination using linear probing, to compare the behavior of
concept and strategy knowledge acquisition across various
versions of weights learnt by the Maia network, to compare
the concept acquisition of a model trained on human play
against a model trained by self-play. Our preliminary results
indicate that human chess players may acquire concepts very
similarly to self-trained models.

III. TECHNIQUE AND PROCESS

To understand the concepts we will compare we must

detect the concepts, preprocess our input data to be

interpretable by the modified version of the network we

need to use, and get the activations from the intermediate

layers we examine.

A. Concepts

The concepts we tested for in the DNN’s chess
understanding were material advantage and a modified
version of material advantage from the perspective of the
player with the white pieces. The concept of material
advantage is defined by adding up the number of pieces one
player has remaining on the board, adjusted by the assumed
inherent value of those pieces, and subtracting the value of
the other player’s pieces. A pawn is worth 100 points, a
knight is worth 320 points, a bishop is worth 330 points, a
rook is worth 500 points, and a queen is worth 900 points.
So, a player with three pawns and one queen is worth 1200
points and a player with only two rooks is worth 1000 points,
so there would be a 200-point advantage for the first player
over the second. The king is not assigned a material value,
since losing the king is not possible in chess.

 The second concept includes the previously mentioned
material advantage modified by an increased weight for
pieces in more advantageous positions and a penalty for
disadvantageous positions. The weights of these positions
are defined by a piece-square table. Each piece-square table
is an 8x8 array of numbers where each defines a modifier for
the quality of each piece in that position, referring to the
postulated long-term strategic advantage or disadvantage of a
piece being in that position.

We created a unique piece-square table for each type of
piece. These piece-square tables are each oriented towards
whoever is the player whose board position is being
evaluated. We used publicly available human-play ranked
games from the online chess platform Lichess to generate the
game states, to generate the game states over which to check
for the two material advantage concepts. Lichess is a popular
platform and has many years of games to draw upon. The
Lichess games were also in same format of the games which
were used to train the Maia networks used, the Portable
Game Notation (PGN) format, used to notate each move
made by either player over the course of a single game.
Combined with knowledge about chess boards and game
states, PGN files are sufficient to generate every game state
occurring over the course of a game. The files also included
the metadata about the players, including their ELO ratings.

B. Preprocessing

We used the same tools used to generate the Maia
training data, to create a dataset of 204,800 sample game
states. First, we separated games by ELO using pgn-extract
[8], a tool for extracting games using portable game notation
formatted games. This allowed us to remove games which
may have been trained on already, and allowed us to evaluate
games which were not in the training dataset for a particular
version of Maia. These games were then converted into a
format suitable for providing the Leela Chess Zero (Lc0)
neural network using trainingdata-tool [9], which is designed
to convert from PGN games to the Lc0 format. These are
stored in binary files which are not human-readable. Since
each game was entirely converted into a series of inputs -
one input for each move in the game - we also needed to
know which game state corresponded to which concept.

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-014-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DIGITAL 2022 : Advances on Societal Digital Transformation - 2022

Therefore, we converted each given input back into a format
which could be evaluated for material advantage and
modified material advantage. This provided both the input in
the correct format and a more easily interpretable version
that we maintained as linked to each other.

C. Activation Layers as Input

For each activation layer and Maia version we wished to
examine, we then generated the activations of the neural
network up to that layer and stored those activation values.
Examining 19 activation values for the version of Maia
trained to behave like a player in the 1200-1299 ELO range
created examples of what concepts the network could detect
at each of those hidden layers, in the samples provided.

We then created a new DNN model whose input was the
original input and whose output was the activation values of
the layer we wished to examine in the original network,
creating 19 sets of activations for each input. These were
then used as input to a classifier whose output was the
presence or absence of the material advantage concept. We
then trained a classifier to determine if a layer’s activation
was correctly classified. That is, for a game state which
shows a material advantage for the active player, that game
state when converted to an input should produce layer
activations which can be classified correctly if that layer
includes the information that the concept classification
requires.

IV. RESULTS

We examined the odd numbered activation layers for
both the concepts previously mentioned, across the three
ELO categories of 1200, 1400, and 1900, for both simple
material advantage and material advantage incorporating the
weights found in the piece-square tables. The more basic
material advantage was detectable with roughly 73%
accuracy across the three categories and across all the
activations examined. To evaluate this, we split our classifier
data into a training set of 200,000 samples and a testing set
of 4,800 samples.

TABLE I. MATERIAL ADVANTAGE

Maia
Activation Layer Classification Accuracy

Activation_1 Activation_9 Activation_19

1200 0.737708 0.737916667 0.738958

1400 0.738542 0.738125 0.738125

1900 0.737708 0.7375 0.738333

TABLE II. MODIFIED MATERIAL ADVANTAGE

Maia
Activation Layer Classification Accuracy

Activation_1 Activation_9 Activation_19

1200
0.534167 0.550625 0.529792

1400 0.537083 0.544375 0.544375

1900 0.535208 0.546041667 0.543958

Comparable results were obtained from an examination
of AlphaGo Zero in [7], the conclusion being that material
advantage as a concept is relatively easy to detect, even from
the inputs without activations, and provides a good baseline
to evaluate the concept detection system. Each version of
Maia was fully capable of detecting the concept to a similar
degree: we can conclude that this concept is not sufficiently
different across the different ELO categories of Maia
models.

The results of examining for modified material advantage
show our technique to be less accurate. This may be because
our modified version of material advantage is not sufficiently
aligned with a concept that any version of Maia is looking
for. There may be some weighted version of material
advantage that Maia may use, but the specific concept we
attempted to detect does not appear to be one used by Maia.
This indicates that it is necessary to explore other concepts to
further understand the different behaviors of the Maia
models.

V. CONCLUSION AND FURTHER WORK

The specific domain concepts examined here represent a
proof of concept of our strategy. Since the accuracy of each
version of Maia is similar across the ELO ranges used, other
more subtle concepts may be more effective at showing the
differences between the human-trained models. Or, if the
concept detection is the same across all versions of Maia for
most concepts, further work is necessary to understand the
difference in behavior but similarity in concept detection. If,
for example, the data necessary to detect a particular concept
differs between versions of Maia or Lc0, then we can say
that part of that concept is potentially used in differentiating
the final behavior.

A more thorough examination of the behavior of a self-
trained model which exactly uses the Maia network’s
structure would be additionally worth comparing to, as the
default Leela Chess Zero weights did not match with the
version used by Maia. Further work on comparing a self-play
trained model such as Lc0 to one trained entirely on human
generated data such as Maia, may show novel rationale for
the difference in quality and behavior between these systems.

REFERENCES

[1] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K.
Simonyan and D. Hassabis, "A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play,"
Science, vol. 362, no. 6419, pp. 1140-1144, 2018.

[2] M. Świechowski, K. Godlewski, B. Sawicki and J. Mańdziuk,
"Monte Carlo Tree Search: A Review of Recent
Modifications and Applications," arXiv, 2021.

[3] T. Hastie, R. Tibshirani and J. Friedman, The Elements of
Statistical Learning, New York: Springer New York Inc,
2001.

[4] R. McIlroy-Young, S. Sen, J. Kleinberg and A. Anderson,
"Aligning Superhuman AI with Human Behavior: Chess as a
Model System," in 2020 ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD
2020), 2020.

15Copyright (c) IARIA, 2024. ISBN: 978-1-68558-014-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DIGITAL 2022 : Advances on Societal Digital Transformation - 2022

[5] A. Guillaume and Y. Bengio, Understanding intermediate
layers using linear classifier probes, arXiv, 2016.

[6] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F.
Viegas and R. Sayres, "Interpretability Beyond Feature
Attribution: Quantitative Testing with Concept Activation
Vectors (TCAV)," arXiv, 2017.

[7] T. McGrath, A. Kapishnikov, N. Tomašev, A. Pearce, D.
Hassabis, B. Kim, U. Paquet and V. Kramnik, "Acquisition of
Chess Knowledge in AlphaZero," arXiv, 2021.

[8] https://www.cs.kent.ac.uk/people/staff/djb/pgn-extract/, last
accessed July 12th, 2022.

[9] https://github.com/DanielUranga/trainingdata-tool, last
accessed July 12th, 2022.

16Copyright (c) IARIA, 2024. ISBN: 978-1-68558-014-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DIGITAL 2022 : Advances on Societal Digital Transformation - 2022

https://www.cs.kent.ac.uk/people/staff/djb/pgn-extract/
https://github.com/DanielUranga/trainingdata-tool,

