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Abstract—For patients suffering from a stroke, the time until 
the start of the treatment is a crucial factor with respect to the 
recovery from this condition. In rural regions, transporting the 
patient to an adequate hospital typically delays the diagnosis 
and treatment of a stroke, worsening its prognosis. To reduce 
the time to treatment, different policies can be applied. This 
includes, for instance, the use of Mobile Stroke Units (MSUs), 
which are specialized ambulances that can provide adequate 
care closer to where the stroke occurred. To simulate and 
assess different stroke logistics policies, such as the use of 
MSUs, a major challenge is the realistic modeling of the 
patients. In this article, we present an approach for generating 
an artificial population of stroke patients to simulate when and 
where strokes occur. We apply the model to the region of 
Skåne, where we investigated the relevance of travel behavior 
on the spatial distribution of stroke patients. 

Keywords-Agent-based Social Simulation; Synthetic 
Population; Population Generation; Mobile Stroke Unit. 

I.  INTRODUCTION 
Every year, more than 1 million people in the European 

Union suffer from a stroke and the one-month case-fatality is 
up to 35% [1]. The occurrence of strokes is associated with 
the age of the individual and most of those suffering from a 
stroke are 70 years of age or older. Hence, as the number of 
people that are older than 70 years will increase, the number 
of strokes is also expected to increase [2][3].  

 There are two types of acute strokes, acute ischemic 
strokes (AIS), where a clot or narrowed blood vessel blocks 
the flow of blood to the brain, and hemorrhagic strokes, 
caused by a burst blood vessel [4]. Both types of strokes 
require immediate treatment and delays negatively affect the 
patients’ outcomes. Yet, the treatment of these two kinds of 
strokes differs greatly. To dissolve the blood clot and to 
restore the blood flow, an AIS needs to be treated with 
thrombolytic medication as quickly as possible. In case of 
hemorrhagic strokes, however, there is a contraindication for 
thrombolysis as it might kill the patient. Instead, the effect of 
blood thinners must be counteracted to control and stop the 
bleeding. Hence, making the right diagnosis is a vital first 
step for the efficient treatment of strokes.  

Imaging of the brain, e.g., through CT or MRI scans, and 
specific laboratory tests are required to adequately diagnose 
the cause of a stroke. However, especially in urban areas, the 
access to such scanners and laboratories is limited and the 
patient needs to be transported to a suitable hospital, causing 
valuable time to pass. A stroke logistics policy that can be 
applied to address this challenge is the deployment of Mobile 

Stroke Units (MSUs), which are specialized ambulances 
with all equipment required to diagnose stroke patients. 
Through this, the time between the onset of symptoms and 
the beginning of treatment of the stroke can be shortened, 
which significantly can improve the prognosis of the 
patients. The feasibility of this concept and its capability to 
prevent brain damage of stroke patients was demonstrated by 
Walter et al. [5].  

To investigate the suitability and effects of stroke 
logistics policies for a specific region, computer simulation 
can be used. This allows for investigating different policies 
under realistic conditions without jeopardizing the health of 
the patients as they can be analyzed and compared in an 
artificial system. The use of simulation in healthcare is well 
established. Barnes et al. [6], for instance, provide a 
comprehensive overview of how simulation can be applied 
in healthcare operations management and underline the 
successful application of simulation for evaluating policy 
alternatives. An increasing application of simulation in 
healthcare has also been identified by Almagooshi [7], e.g., 
for the analysis of patient flows, emergency departments, and 
treatment of, e.g., stroke. 

A major challenge when simulating stroke logistics is the 
modeling of the patients’ whereabouts. For instance, in terms 
of MSUs, where the number of vehicles is limited, the 
locations of the MSUs should be determined such that the 
time to treatment can be reduced for all inhabitants of the 
region. To this end, Amouzad Mahdiraji et al. [8] studied the 
average time to treatment for different distributions of MSUs 
and showed that a small number of MSUs can indeed 
significantly reduce the time to treatment for most 
inhabitants in the region. For their study, the authors used 
demographic data on the inhabitants’ place of residence for 
determining where the demand for emergency care occurs. 
However, this does not consider that individuals travel and 
might not be at home when having a stroke, for instance, due 
to leisure activities, shopping, or work. Yet, the spatial 
distribution of strokes potentially affects the suitability of 
different stroke logistics policies and, thus, might need to be 
considered when assessing their suitability. 

In this article, we present an agent-based model for 
generating a synthetic population of stroke patients and to 
simulate their travel behavior. This allows for testing 
different policies without jeopardizing the health of the 
patients. We apply this model to the region of Skåne in 
southern Sweden to investigate how travel behavior is 
expected to affect the spatial distribution of stroke patients. 
Moreover, the generated synthetic population of stroke 
patients can be used to assess different stroke logistics 
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policies, e.g., to compare different placements of MSUs and 
to assess how this affects the time to treatment. 

The rest of the article is structured as follows. Section II 
presents related work on the use of agent-based modeling 
and simulation in healthcare, on policy making for treatment 
of acute strokes, and on methods for population generation. 
In Section III, the model for generating a population of 
stroke patients with travel behavior is presented. Section IV 
presents and discusses the results of the case study in Skåne, 
Sweden, and in Section V, conclusions are drawn, and future 
work is presented. 

II. BACKGROUND 
Diagnosis and treatment processes in healthcare often 

include multiple consecutive steps and involve different 
specialists and caregivers. Planning and optimizing such 
complex processes are challenging and requires the 
comparison of potential configurations under different 
circumstances. Evaluating these processes in the real-world 
prior to their implementation might not only be costly and 
time consuming but also pose a danger to the patients’ well-
being. To overcome this, simulation can be used. By 
building a virtual model of the real-world, an artificial 
system can be created to investigate different scenarios and 
to observe the effects different measures and decisions 
might have on the process of care provision.  

A. Agent-based modeling and simulation in healthcare 
There exist different simulation paradigms, i.e., 

approaches for modeling and simulating phenomena or 
systems. In healthcare, as well as in other domains where 
humans are the object of investigation, individual-based 
simulation paradigms are often applied. An example is 
agent-based simulation (ABS), a form of microsimulation, 
which consists of the simulation of states and behavior of 
individuals over time [9]. Here, each individual is 
represented by an agent, an autonomous entity that, for 
example, imitates human-like behavior and reasoning. This 
includes the subjective perception of the environment but 
also the individual decision making based on the personal 
traits and characteristics of each individual, which leads to 
individual actions and behavior. 

In logistics and production, for instance, the use of 
simulation is well established [10]. But also in healthcare, 
for instance in terms of the ongoing Covid-19 pandemic, the 
use of simulation is feasible [11]. Cabrera et al. [12] use 
simulation for designing a decision support system that can 
provide management support for emergency departments. 
This is achieved by analyzing the optimal staff 
configuration to minimize patients’ waiting time and 
maximize patient throughput. A more extensive simulation 
model of hospital processes has been proposed by 
Djanatliev & German [13]. It combines individual-based 
simulation with system dynamics for analyzing different 
innovative workflows prior to their implementation, e.g., 
prostate cancer screening and effects of MSUs on onset-to-
treatment times. 

Simulations of stroke treatment were presented by, for 
instance, Monks et al. [14] and Chemweno et al. [15]. 

Monks et al. investigate clinical benefits of reducing delays 
in thrombolysis (alteplase) of AIS patients. They propose a 
discrete-event simulation model of stroke patients arriving 
at a large district hospital, where measures can be adopted to 
reduce in-hospital delays (e.g., prealert of paramedics) and 
where certain limitations of alteplase treatment (i.e., 
extension of treatment deadline from 3 to 4.5 hours and 
patient age over 80 years) can be relaxed. To assess and 
compare the benefits of policies for reducing waiting times, 
the authors model two treatment paths, the traditional 
treatment and one that takes measures into account for 
reducing in-hospital delays. The results show that an 
extension of the time window in combination with reduced 
delays can lead to 5-times increased thrombolysis rates. 
Chemweno et al. present a discrete-event simulation of the 
diagnostic path of patients in a stroke unit to investigate the 
effect of different test capacities. This is to overcome 
shortcomings of traditional queuing theory models, which 
cannot predict waiting times due to the complexity of 
treatment pathways and interrelationships between required 
resources. This allows for the assessment of policy changes 
in capacity profiles and test resources. The study outlines 
the effects different policies might have on waiting times, 
e.g., adding extra timeslots, shifting from MR to CT scans, 
and implementing joint timeslots.  

B. Policies for Treatment of Acute Strokes 
For the treatment of acute ischemic strokes, intravenous 

thrombolysis to dissolve the blood clot is the only approved 
reperfusion treatment [16]. However, according to 
Fassbender et al. [17], only less than 5% of the stroke 
patients receive this therapy. One potential explanation is 
that the critical time window of 3 hours is exceeded due to 
the transport to the hospital. To reduce the time to treatment, 
the use of Mobile Stroke Units (MSUs) was proposed, i.e., 
specialized vehicles that are equipped with devices required 
for adequately diagnosing and treating stroke patients. 
Walter et al. [5] compared the use of MSUs to hospital 
treatment and found that the time from alarm to therapy 
could be reduced from 76 to 35 minutes. Calderon et al. [18] 
analyzed the worldwide status of MSUs and compared 
different services outlining the success of the approach. The 
economic viability of MSU treatment was analyzed by Kim 
et al. [19], underlining its cost-effectiveness due to earlier 
provision of therapy.  

The success of MSUs and their effect on treatment times 
also depends on where they are located. Rhudy et al. [20] 
visually analyzed data of MSU dispatches and the 
occurrence of strokes to optimize service provision. For 
Sydney, Australia, Phan et al. [21] searched for optimal 
locations for MSUs by investigating travel times from 
suburbs to each potential MSU hub. For a similar purpose, 
Amouzad Mahdiraji et al. [8] developed an agent-based 
model that allows for analyzing the benefits of different 
MSU configurations. In their study, Amouzad Mahdiraji et 
al. investigated the average time to treatment for different 
distributions of MSUs and showed that a small number of 
MSUs can significantly reduce the time to treatment for 
most inhabitants in the region. Moreover, agent-based 
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simulation can also be used to assess other stroke logistics 
policies, e.g., whether patients should be brought to the 
closest hospital or to a specialized thrombectomy center 
[22]. To assess this, Al Fatah et al. developed a simulation 
model of logistical operations of stroke patients, i.e., 
whether patients should be transported to the closest 
hospital or towards a stroke center. The results showed that 
those patients that require special treatment indeed benefit 
from being transported in the direction of a stroke center 
whereas those who do not require specialist treatment 
benefit from being transported to the closest hospital.  

None of the presented approaches takes travel behavior 
into consideration when investigating and optimizing 
locations and service designs of MSUs. Instead, individuals 
are assumed to stay at their home location, which can be 
derived from census data or randomly selected using Monte 
Carlo approaches [22]. 

C. Population Generation 
To generate realistic results when applying agent-based 

simulation, individuals and their behavior must be modeled 
in a realistic way. Especially when modeling a larger 
population of individuals, it is important that the relevant 
features of the artificial population, e.g., age distribution or 
employment status, correspond to those of the original 
population. However, due to privacy reasons, data on each 
individual’s properties is usually not available. The 
challenge associated with synthetic population generation is 
that aggregated data, e.g., census data, and disaggregated 
personal data need to be combined to model each individual, 
such that the characteristics of the modeled population 
correspond to the used input data [23][24]. In transportation, 
for instance, population generation is used to model 
individual demand for mobility services [25][26]. 

III. AN AGENT-BASED MODEL FOR GENERATING A 
POPULATION OF STROKE PATIENTS WITH TRAVEL BEHAVIOR 

To allow for a more dynamic and realistic assessment of 
stroke logistics policies, we developed an agent-based 
model that takes travel behavior of individuals into account. 
To this end, we generate a synthetic population of potential 
stroke patients, combining socio-demographic census data, 
data on real strokes cases from a healthcare provider, and 
travel data from a transport service provider. This allows for 
the simulation of the dynamical spatial and the temporal 
component of stroke occurrence and treatment.  

For the study, we selected Skåne, a region in southern 
Sweden. Skåne consists of approximately 1.4 million 
inhabitants, that live in 33 municipalities with a total area of 
nearly 11 000 km2. In Skåne, there are 9 hospitals with 
emergency departments that can treat acute strokes. In 2015, 
there were 3 973 stroke incidents recorded in Skåne out of 
which 3 830 patients also live in Skåne. Moreover, 12 
patients that have their place of residence in Skåne were 
treated in the neighboring counties Kronoberg, Blekinge, or 
Halland and most of the patients are 45 years of age and 
older. Based on data from the regional healthcare provider, 
Södra Sjukvårdsregionen (Southern Health Care Region; 
SHR), we derived the daily distribution of strokes per hour 

(see Figure 1). Most strokes are reported during the 
afternoon with most of the incidents occurring around 4 
p.m.  

 
 

 
Figure 1.  Total number of strokes per hour extracted from data of the 

regional healthcare provider. 

To model travel behavior, we used data from a regional 
travel survey (Resvaneundersökning för Skåne; RVU) that 
was conducted in Skåne in 2013 [27]. As part of this study, 
travelers were asked about their traveling habits and the 
resulting dataset contains information on approximately 
56 000 distinct trips. This includes, for instance, the origin, 
destination, duration, and purpose of the trip but also socio-
demographic data on the travellers, e.g., age, gender, and 
place of residence.  

Finally, for generating a realistic population, we used a 
census dataset from Statistiska centralbyrån (Statistics 
Sweden; SCB), the Swedish government agency for 
statistics. The SCB dataset includes, for instance, 
information of the density and age of the population of 
Skåne. Yet, this data only provides information on the 
permanent residence of individuals and not on their actual 
location. To allocate the anonymized trips of the RVU 
dataset to actual individuals from the SCB dataset, we 
randomly match the datasets based on the individuals’ age 
group and home municipality.  

For modeling the inter-arrival time of stroke incidents, 
we used a non-homogeneous Poisson process (NHPP) [28]. 
In contrast to ordinary Poisson processes, that are used to 
model events that occur with a fixed average rate of arrivals 
(λ), the rate of arrivals can vary over time in an NHPP 
where λ(t) is the rate function for time segment t for all  
t ∈ [0, t0] and λu(t) is the maximum number of actions in a 
time series with 0 ≤ λ(t) ≤ λu(t). By this means, we can 
explicitly model the accumulation of stroke events during 
the afternoon. In our NHPP, we divide each day into 24 time 
segments, each equipped with a specific probability that a 
stroke occurs during this hour in relation to the number of 
strokes occurring per day.  

Based on the generated number of daily stroke incidents, 
we define two probability mass functions to distribute 
strokes across age groups and municipalities. These two 
distributions are then used to generate stroke incidents. Each 
generated stroke event consists of the patient’s age group, 
municipality, day of the year, and time of the day. This 
dataset is then matched with the population dataset, to 

13Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-927-0

DIGITAL 2021 : Advances on Societal Digital Transformation



predetermine the stroke patients as well as the point in time 
when the stroke will occur.  

When executing the model, the travel behavior, i.e., each 
trip of an individual, and the resulting locations of each 
individual of the population is simulated over time. The 
generated NHPP events define when the individual stroke 
incidents occur, and, at the generated time of each stroke 
incident, the individual’s current location can be determined 
based on the simulated trips.  

In recent years, ODD (Overview, Design concepts, and 
Details) protocols have been used to describe the structure 
and the dynamics of agent-based models in a standardized 
document [29]. They provide more detailed insights into the 
model and the underlying assumptions, which can be 
relevant for the interpretation of the results as well as for 
replicating experiments. The ODD of the model presented in 
this article can be found in [30].  

 
(a) hour of the day (RSE: 0.026, RRSE: 0.160) 

 

 
(b) municipalities in Skåne (RSE: 0.067, RRSE: 0.259) 

 

 
(c) age group (RSE: 0.002, RRSE: 0.046) 

Figure 2.  Distribution of stroke incidents: (a) per hours of the day (b) per municipality in Skåne (c) per age group. For each distribution, the Relative 
Squared Error (RSE) and Root Relative Squared Error (RRSE) are given as measures of the quality of the generated data. 
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IV. RESULTS OF THE SCENARIO STUDY IN SKÅNE 
We implemented the agent-based model of stroke patient 

travel behavior in the Repast Simphony simulation 
framework [31]. In the simulation, each time unit (tick) 
corresponds to 1 minute in reality. Hence, each day is 
simulated as 1440 ticks. For each tick, it is determined 
whether an individual will go on a trip and move to another 
location. When the predetermined stroke events occur, it is 
checked whether the individual is on a trip, to determine 
where the stroke occurred. 

The probability distributions that we extracted from the 
dataset are shown in Figure 2. The charts show the real data 
(orange) in comparison to the NHPP events we calculated 
(blue). There are only minor deviations from the original 
data for the stroke incidents per hour, per municipality, and 
per age group. To quantify how well the artificial data 
replicates the original data, the Relative Squared Error 
(RSE) and Root Relative Squared Error (RRSE) are given as 
measures. No significant deviation of the generated data 
from the real data can be observed considering the hour of 
the day (RRSE: 0.160) and the age group (RSSE: 0.046). 
Only for the municipalities in Skåne, a difference can be 
observed for Malmö (RRSE: 0.259). This might be due to a 
bias, which results from Malmö’s role as center of the 
region and as the city has notably more inhabitants 
compared to all other cities and municipalities in Skåne.,  

Instead of simulating all inhabitants of Skåne, we only 
simulated the trip activities of those individuals that were 
predetermined to suffer from a stroke. This is to reduce the 
computational complexity of the simulation. To reduce the 
effect of stochastic variations in the results, we replicated 
the simulation five times and calculated the average values 
from these runs. 

On average, 3 912 strokes occur in our simulation. The 
results indicate that 3 839 (98.1%) strokes occur at home 
whereas 73 (1.9%) strokes happen while the individual is on 
a trip and at another location. To check the plausibility of 
these results and to validate the study, we compare them to 
existing data. In the RVU travel data, only 15% of the 
recorded trips are performed by individuals that are 65 years 
of age or older, the main risk group for suffering from a 
stroke. Out of these trips, only 35% are taken in the 
afternoon, which is the time of the day where the occurrence 
of a stroke is most likely. 

Moreover, we analyzed the dataset of stroke incidents 
from SHR. Out of 3 842 stroke incidents of patients that live 
in Skåne, which were recorded within SHR, 3 830 actually 
got their treatment in Skåne. 3 106 (80.84%) of the patients 
that got a treatment in Skåne also got it within their 
municipality or at the hospital that is responsible for their 
municipality. Out of the remaining 736 patients (19.16%) 
that did receive their treatment at another hospital, 497 
patients live in municipalities where the responsible hospital 
does not provide emergency services around the clock. Of 
the remaining 239 patients, 80 were treated at Skåne 
University Hospital, which also provides highly specialized 
treatments for severe cases, 57 received treatment at private 
facilities, whose exact location is unknown, and 59 were 

treated at a hospital in a neighboring municipality, which 
might be due to the patients living closer to the hospital in 
the neighboring municipality. In total, only 46 patients 
(1.2%) receive their treatment obviously outside their home 
municipality, where it can be assumed that they were 
traveling. This corresponds to the results of our simulation. 

V. CONCLUSIONS 
In this article, we address the challenge of generating a 

realistic population of stroke patients, which takes travel 
behavior into account. Such an artificial population of stroke 
patients is required in agent-based simulations and allows 
for the assessment of different stroke logistics policies, such 
as the optimal placement of MSUs across a region. We used 
aggregated and individual-based data from different sources, 
from which we derived probability distributions that were 
then used to generate an artificial population of agents. 

To demonstrate the feasibility of the presented approach, 
we used data from the region of Skåne in southern Sweden. 
In the presented study, we simulated the travel behavior of 
stroke patients to investigate where strokes occur. Through 
this, a better understanding of the spatial distribution of 
stroke occurrence is achieved. This is relevant, for instance, 
for the optimal distribution of MSUs, such that the time to 
treatment is reduced for stroke patients. 

Our results show that the generated artificial population 
corresponds to the real data in terms of the time of the day at 
which strokes occur, the distribution of strokes across the 
municipalities, and the age group of the patients. In total, 
approximately 1.9% of the strokes occur while the 
individual is on a trip and not in their municipality of 
residence. This observation corresponds to data on strokes 
that was provided by the healthcare provider. Hereby, were 
able to show by means of simulation that traveling only has 
a minor impact on where strokes occur and, thus, for policy 
making in stroke logistics. 

The generated artificial population of stroke patients is 
based on socio-demographic, healthcare, and travel data of 
the investigated region, to ensure the realistic representation 
of the real-world population. Yet, the presented model can 
also be applied to other regions, assuming that the required 
input data is accessible. This facilitates the conducting of 
agent-based simulation studies for investigating the effects 
different stroke logistics policies might have. It also 
increases the credibility of the simulation results such that 
conclusions can be drawn regarding the real world. 

As part of future work, we plan to incorporate the results 
from the population generation into simulations for 
assessing and comparing different policies for stroke 
logistics. Moreover, we intend to investigate and include 
seasonality effects into the model, i.e., tourists that come to 
the region and changed travel behavior during weekends. 
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