
Notification Support Infrastructure for
Self-Adapting Composite Services

Erlend Andreas Gjære, Per Håkon Meland and Thomas Vilarinho
SINTEF ICT, Software Engineering, Safety and Security

Trondheim, Norway
Email: {erlendandreas.gjare, per.h.meland, thomas.vilarinho}@sintef.no

Abstract—Building reliable software services based on service
components supplied by partners and third parties in potentially
complex chains of providers, is inherently challenging. In the
case of cloud-based services, providers may offer not only
software (web services) but also infrastructure (e.g., processing
and storage). Making composite services trustworthy and reliable
requires all parties to be open about changes that may impact
their customers, and they must inevitably deal with a fluctuating
threat picture. In this paper, we describe a publish/subscribe-
based notification infrastructure which allows a Service Runtime
Environment (SRE) to receive alerts about changes and threats
in service components. Notifications arise from both human and
automated monitoring, and are published to a notification broker
which handles subscriptions and message distribution. The SRE
is enabled to react to these notifications automatically through
adaptation of the service composition, based on rules that can
syntactically match the contents of received notifications. In
addition to describing the technical implementation, we show
an example of how a composite service from the Air Traffic
Management (ATM) domain can instantly adapt itself when it
receives a notification about a threatened service component. We
also demonstrate how a mobile client app is used to keep humans
aware of the notifications.

Keywords–Security notifications; self-adaptability; accountabil-
ity, composite services.

I. INTRODUCTION

With the emerging paradigm of composite services, i.e.,
software services composed of functionality provided by sev-
eral services components—changes or attacks on a service
component implies an attack or change to the composite
service as a whole. Service compositions in general are highly
distributed and have a complex nature. They expose a greater
attack surface than traditional stand-alone systems, and intro-
duce multiple layers of policies, which may not be compatible.
Web services and cloud-based software components may be
offered by third party parties and potentially in long provider
chains, and can be used in compositions along with other
services. In the age of cloud computing, the importance of
breach notifications is emphasised due to the need for trans-
parency throughout entire chains of service providers—seeking
trustworthiness through accountability [1].

To make these kinds of services reliable enough, we
need a holistic approach to how they are built in terms of
security and accountability. The entire line-up of involved
service components and providers must be considered in terms
of how situations need to be mediated and mitigated where
(unwanted) changes or threats occur [2]. Simply having control
over which relevant third parties (and fourth parties, etc.) our

provider deals with is of course a place to start. Preventive
measures in this context today are to a large extent being
based on risk assessments, contractual relationships and audits.
Reactive measures, on the other hand, include notifications
via email, phone, remote log file-streams and dashboards
for mediating significant changes and security incidents. The
contents of these are however not as predictable as needed
for triggering corrective activities automatically in composite
services. Preparing for “failure” is equally needed to prepare
a composite service for reacting this way.

To be able to respond to changes in an effective and
truly timely manner, we need notifications that are machine-
readable and syntactically clear in such a way that they can be
used to trigger automatic adaptation of a composite service.
This, however, requires a higher level of refinement than
traditional log streams provide, and either automated or human
processing of low-level input may be needed in advance to
infer (and mediate) useful correlations between several more
atomic log events. At the same time, notifications being sent
if only a change or threat is actually encountered, could allow
organisations to exchange more information without revealing
“too much”. We therefore seek a notification infrastructure
where service providers report in a convenient and standardised
way on behalf of themselves, and are equally able to receive
notifications from the others corresponding to which service
components are being used at any time.

There are strong regulatory reasons why such a notifica-
tion infrastructure needs to be realised. The European Union
implemented a breach notification law in the Directive on
Privacy and Electronic Communications (ePrivacy Directive)
in 2009 [3]. In this directive, it is stated under article 4,
paragraph 2 that “In case of a particular risk of a breach of
the security of the network, the provider of a publicly available
electronic communications service must inform the subscribers
concerning such risk and, where the risk lies outside the scope
of the measures to be taken by the service provider, of any
possible remedies, including an indication of the likely costs
involved.” Similarly, security breach notification laws have
been enacted in most U.S. states since 2002 (the only states
with no law are currently Alabama, New Mexico and South
Dakota) [4].

Our main goal with this paper is to describe a notification
infrastructure that can support automatic application of correc-
tive measures to service compositions at runtime. The approach
includes a publish-subscribe based infrastructure for message
delivery, along with a way to prepare rules at design-time for
enabling automated response at runtime. We demonstrate our

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

Figure 1: An outline of how composite services can be prepared and deployed ready for automatic adaptation, supported by an
infrastructure for security notifications.

infrastructure by allowing a composite service in our Service
Runtime Environment (SRE) to dynamically substitute one of
its components without downtime, upon receiving notification
about a threat. We also describe our accompanying mobile
client app, which receives the same notification and can show
them to a layperson, not necessarily a security expert, but for
instance someone who has some kind of responsibility for the
composite service.

Our work complements similar approaches from the past,
such as Zheng and Lyu [5], who propose a user-collaborative
failure data sharing mechanism for service-oriented systems.
What separates our work from the rest is the focus on security
violations and threats, as opposed to reliability in general.

This paper is structured as follows: Section II presents our
approach at a high level including a user scenario that describes
how to prepare for escalations, and what the output might
be. Technical details of our implementation work are provided
in Section III. Section IV discusses various technical design
choices, shortcomings and challenges, related and future work,
before Section V concludes the paper.

II. APPROACH

Figure 1 shows how our notification infrastructure can be
used to support automatic adaptation of composite services. In
this section, we illustrate the approach with a practical use case
example from the Air Traffic Management (ATM) domain: The
pilot of an aircraft uses our composite service to retrieve up-
to-date information about the airport to where the flight is
destined. The airport report is built from data pulled simul-
taneously from several web services and service providers. It
includes both geographical information, the current weather,
a few local observations related to, e.g., oil or water on the

runway, and finally, a map onto which this information is
plotted.

A. Notifications

At the core we have the notification messages, which tie ev-
erything together. These are designed in particular to facilitate
real-time communication of security and change events within
distributed systems (of systems), especially between service
providers and across geographical boundaries. We do not claim
it to be a perfect design—it is a prototype—but we do have
a version, which supports automated adaptation of composite
services based on a number of security requirements [6].

Each notification message needs to identify the resource it
concerns. Since composite services deal with web services, and
all such services each have their own public endpoint Uniform
Resource Locator (URL), we use this URL as the unique
service ID. The service ID is needed to create subscriptions
and to match received notifications with local rules in the SRE.
The notifications are further typed into a specific category,
i.e., one of those specified in Table I (first column). Some
of the notifications types have support for a few sub-types
in a hierarchy below. These sub-types may be essential to
provide an appropriate response to the received notification,
for instance where different sub-types of threats require dif-
ferent countermeasures, and commonly agreed values here
are needed. There is also a value field required for each
notification. The value is needed to specify the actual status
of the notified type (and sub-type), e.g., if a threat is on the
rise or if it has passed, which is expressed with probability
as a float value between 0 and 1. The value can also be a
simple string, or even a Javascript Object Notation (JSON) [7]
object (a human-readable format for transmitting data). Self-
adaptation may be based on the value, so there is a need to

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

TABLE I: NOTIFICATION TYPES AND CONTENT SPEC-
IFICATION

ThreatLevelChange Supports several sub-types of threat families, e.g.,
DDoS attack, Service injection, Vulnerable crypto
library, Trust poisoning, etc. Value specifies the
probability of a threat being encountered (between
0 and 1). Also possible to specify a threat ID from
a common threat repository for linking to a very
specific threat (and more info on-line).

SecurityPropertyChange Supports sub-types with various security proper-
ties to detail how a service is implemented in
terms of security, e.g., Encryption, Backup cycle,
etc. Implementation details are to be provided in
the value field, such as length of backup cycle.

ContextChange Supports sub-types describing the context of the
service, e.g., Server site location, Backup location,
etc. In these particular cases, a location name (e.g.,
country) would go into the value field.

ContractViolation Supports sub-types for violated properties in cases
where a violation is detected during service con-
tract matching with consumer policy, e.g., Sepa-
ration of duty, Binding of duty, etc.

ServiceChange Intended for composite services to provide an up-
date if a recomposition has been made and hence
a service component has been substituted. Sub-
types such as Component added and Component
removed can be used, or even Service not provided
if a service is taken (temporarily) down due to a
vulnerable component that could not be replaced.

TrustLevelChange Specifies a level of trustworthiness (between 0
and 1). The values need to be published by an
authoritative source for trust ratings (not self-
declared).

standardise a format to use for each individual notification type
(and sub-type) here.

B. Composite Service Design and Response Preparation

To create composite services we use the Business Process
Model and Notation (BPMN) [8] and a modified graphical tool
[6] to model the service specification as a process consisting of
BPMN service tasks. In our example shown in Figure 2, visible
as boundary error intermediate events [9], we have modelled
a threat DDoS-attack occurs on service component due to
the importance of high availability. The Distributed Denial of
Service (DDoS) threat can in this case be both monitored and
dealt with quite easily, so we want to be notified whenever an
attack occurs. Instead of just allowing the attacked component
to bring down our entire composition, we need to prepare
the composite service to switch automatically to another map
component not under attack.

Figure 2: A composite service process is modelled in BPMN,
with triggering events for notification on changes and threats.

Based on the triggering events modelled in the composite
service definition, rules can be defined in the model to address
the scenarios we are able to foresee. It is the service tasks,

not the actual web service components, which are targeted in
the scope of these rules. This makes the rules independent of
the actual service component implementations we choose to
deploy, and we do not need to define individual rule-sets for
each potential composition plan.

For each rule, one must define the same properties as a
notification would be expected to carry to get a match. This
includes setting the notification type, sub-type and/or a value
with some comparison of either equal to (also used for string
comparison), larger than (or equal) and smaller than (or equal).
In the scope section of the rule editor, it is further possible to
define where in the process the rule shall apply. If a particular
threat or change occurs for a component, we might not need
to perform reactive measures unless it happens before, after or
during the execution of a particular task in our process. We
also have an option to launch an additional service process,
e.g., one that might initiate hardening of other parts of the
system, and/or send notification messages to clients and/or
service technicians. In the end, we might end up with a list of
several rules for several service tasks, or simply one for the
one we have defined in our case study, as shown in Figure 3.
Recent work by Salnitri et al. [10] goes into more details on
rule definition and execution.

To perform a recomposition in our use case, we need
an alternative service specification ready where another func-
tionally equal service component is used to realise the map
plotting task. We define one composition plan where the report
generation is done based on the map service from Google, and
we define another where the same responsibility is served by
Bing. One of these plans will be then deployed as default.
When there is a threat notification and the other composition
plan is not affected by it, then this plan is considered more
appropriate and can be deployed immediately in place of the
attacked one. It is, however, not always the case that we have
two candidate components for the same service task. One
might also set the rule to simply stop providing the entire
composite service, e.g., if a non-replaceable component has
changed its policy and becomes no longer compliant.

C. Filtered Input From Sensors and Community

In order to generate notifications in the first place, there
must obviously be some kind of monitoring in place for
service components. In the case of cyber-threats, some service
providers have dedicated security operations to monitor and
process low-level input from e.g., syslog. Security Informa-
tion and Event Management (SIEM) systems are used to
gather and correlate security events from multiple logging
sources both in real time and aggregated from previous events,
and are sometimes purchased as a service from third party
providers. This, however, does not normally involve logs from
other organisations, except when changes are already publicly
disclosed. Some monitoring efforts are also performed on a
national level or sometimes by joint efforts across, e.g., an
entire business sector, such as the Norwegian financial sector
cybercrime unit [11]. Such intelligence could be a valuable
source of input for an even wider community in the global
service market. Apart from trustworthiness ratings, which need
to come from an independent source, it should at least be
possible to publish alerts for services provided by oneself.

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

Figure 3: A rule has been defined for responding to a DDoS-attack on the map service.

Figure 4: The SRE has replaced the Google map service with
Bing Maps through a recomposition.

In the security community, there are also people who
for instance create scanner bots, which are used to check
the Internet for particular vulnerabilities, such as in the case
of the Heartbleed bug [12]. A threat “Vulnerable crypto
library” could then be warned against with the notification
infrastructure, both when it is publicly disclosed and detected
on a particular server, as well as immediately when the server
has been patched (with a 0 value). In the particular case
of Heartbleed, it would also be possible to add a threat ID
referring to, e.g., the Common Vulnerability and Exposures
(CVE) database [13] (in this case CVE-2014-0160), which
would provide a pointer to more specific information. Assur-
ance from the security community would however be necessary
to validate the notifications, or else it would be easy to inject
malicious notifications and cause severe business disruption
for service providers who are shut out.

Regardless of input source, notifications are collected
through the common web service interface provided for pub-
lishers. For SIEM or Security-as-a-Service (SaaS) products, it
is easy to add support for invoking this notification service
by an operator. We have implemented a web interface to
be available for manual reporting, and have integrated other
independent monitoring platforms, such as a threat monitoring
module [14], which is able to infer the required level of
semantics and trigger appropriate notifications. As long as the
format can match what the SRE is able to interpret from the
notifications, the rules are in practice agnostic to monitoring
implementations.

D. Notification Receivers

In order to trigger events in the self-configuring service
process, the SRE must be able to receive such notifications
and align these with the previously defined and deployed rules.
Since a threat monitor has now purportedly detected that the
original map service used in our case study is hit by a DDoS-
attack, the SRE is notified about this through subscriptions
based on the deployed service composition. As it can find a
match with the rule we previously defined on DDoS-attacks,
the SRE initiates the specified action according to that rule,
which is here to try a recomposition.

Since we had support for two different map services
providing the same functionality, we have in practice prepared
an additional composition plan for the airport report composite
service. When the notification concerning a DDoS-attack on
the map service is triggered and received by the SRE, a
service verification mechanism [15] can tell us that the first
plan no longer satisfies our security requirements. The rule
in Figure 3 will initiate a recomposition accordingly. The
original composition plan with the DDoS-ed map service will
be ignored, and the second plan becomes the top-ranked. The
recomposition proceeds with deploying the second composi-
tion plan, containing the alternative map service instead of the
original one. Nevertheless, the same level of functionality is
provided, as illustrated with Figure 4 where the airport reports,
before (to the left) and after recomposition, are lined up next
to each other.

While monitoring and responding to changes and threats
in real time is our main goal, we also need to store the
notifications for future reference. A common repository for
historical security and service change notifications is valuable
for doing research on previous events. There are of course
questions to answer in this respect, e.g., how the repository
should be managed and to what level of explicitness historical
data should be made accessible over time. A repository could
provide insights on questions like, e.g., cascading events be-
tween service providers, temporal aspects of incident/response,
etc. Issues that must be dealt with in this context, as well as for
the industry as a whole, is about the fear of negative publicity,
customer repercussions and lost revenue caused by being “too”
open. Instead of being seen as accountable, some may see
service providers that do their job on reporting incidents as
having inferior security.

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

TABLE II: MESSAGING PATTERNS APPLIED IN OUR
IMPLEMENTATION

Event message Notification messages are used to transmit events
from one service to another. These notifications
are reliable and asynchronous.

Publish-Subscribe Channel The provider of the notification sends the event
on a publish-subscribe channel, which delivers a
copy of a particular event to each receiver. The
receivers must have expressed an interest in such
event on beforehand.

Data-Type Channel The different notification types enables the re-
ceivers to easily interpret the incoming events.

Guaranteed Delivery The notification infrastructure uses a store and
forward mechanism to ensure message durability.

Message Bus Independent systems and services of various types
are able to communicate in a loosely coupled
fashion through the use of the message bus pattern.

Event-Driven Consumer The receving parties automatically consume mes-
sages as they become available.

III. IMPLEMENTATION DETAILS

To operate a self-adapting distributed service infrastruc-
ture at runtime, a supporting system for Machine-to-Machine
(M2M) messaging across networks was needed. Since there
may be an endless number of services and SREs utilising this
infrastructure, we cannot provide all messages to everyone.
A publish-subscribe channel pattern was found suitable for
this, since each service provider already needs to define which
service components are to be used in a service composi-
tion. Appropriate subscriptions can be derived automatically
from these service specifications. Registering the subscriptions
should be handled by the SRE, which will then receive
notifications only about threats for relevant services.

In addition to publish-subscribe, we have designed the
notification infrastructure according to a number of messaging
patterns in service-oriented architectures. Table II gives an
overview of these, based on Chatterjee [16].

A. Notification Message Broker

The entire infrastructure relies on the delivery of noti-
fications to subscribers. In a publish-subscribe architecture,
this is the responsibility of the message broker. In addition
to dispatching the messages and providing an endpoint for
subscriptions, the broker will receive notifications to publish
from authorised publishers.

Our implementation builds on Apache ActiveMQ [17] in
this role, utilising the de-facto standard Java Message Service
(JMS) [18] specification to provide compatibility with many
platforms and messaging protocols. A broad variety of wire
level protocols are supported, meaning that brokers can be
connected to clients built with any programming language or
platform with a compatibility for just one of these protocols.
The performance of ActiveMQ brokers can be scaled up
horizontally by configuring several instances in a network of
brokers, if needed. Our broker is in addition deployed on a
cloud-based infrastructure, for further increase in scalability.

The notifications are organized in a hierarchy of JMS topics
and sub-topics, in practice building a single subscription string.
The first part of the subscription string contains the service ID.
Then, below that topic there are different sub-topics mapping
to the different security notification types, each part of the

subscription string separated with a dot ’.’. With this hierarchy,
one could decide to subscribe to all notifications from a service
or particular types or sub-types within that service. If no type
or sub-type is specified, the wild-card ’>’ will match all topics
from that character and onwards in the subscription string.
In this way, topics for each of the notification types can be
created dynamically, without needing to explicitly subscribe to
all of them individually, and without risking topics that no-one
subscribes to. Hence, new sub-topics can be added and those
subscribing to the main topic will start receiving notifications
from the new sub-topic as well.

In addition, the entire hierarchy has common root nodes
where one can set the access control level for all notifi-
cations below them. With that in mind, we created an en-
tirely public channel (“pub”) that anyone can subscribe to
anonymously, but not publish through. For publishing noti-
fications, the publishing client needs to authenticate to the
broker. Apache ActiveMQ authentication/authorization con-
figuration capabilities offer the possibility of implementing
authentication able to access/subscribe to notifications from
another channel, e.g., a service level that for instance would
require formal contracts to be established between partici-
pating parties in advance. An ActiveMQ JMS topic corre-
sponding to a service notification will finally have the for-
mat pub.[serviceName].[notificationType].[subType]. So, for
example, the topic pub.http://demo-aniketoswp6.rhcloud.com/
googlemap/service.ThreatLevelChange.DDoS attack on ser-
vice component would map into:

• Channel: Public

• Service ID: http://demo-aniketoswp6.rhcloud.com/
googlemap/service

• Notification Type: ThreatLevelChange

• Sub-Type: DDoS attack occurs on service component

In our implementation, we have granted subscription and
notification retrieval access to all clients (anonymous access),
and publish access only to authorized users. However, this
set-up could be configured differently on the broker, allowing
specific settings per topic or subtopic. For the authentication
regarding the authorized access, we have used a simple XML
configuration file, mainly because it was just a prototype
implementation. In a real deployment, one could have relied on
ActiveMQ support for Java Authentication and Authorization
Service (JAAS) [19] or LDAP. When it comes to encryption
of the messages, we have been using Transport Layer Security
(TLS) encryption towards both publishers and subscribers.
However, due to a limitation of the Android mobile client
library used for the wire protocol, we had to support messaging
in clear text towards the mobile client app.

B. Service Runtime Environment

The SRE is responsible for executing the composite service
at runtime. We have implemented ours using the Activiti En-
gine [20], which can take BPMN composition plans as input,
as they have been built with our graphical modelling tool. In
the runtime engine, all BPMN is converted to executable code,
based on the standard and without further manual work.

For the SRE, we have a plug-in [6] that is able to
connect to the notification broker and create subscriptions

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

based on the rules attached to a service deployment. Whenever
a composition plan is deployed, it includes all service IDs
needed to create the subscriptions. For each service ID in
the composition, there is a corresponding JMS topic being an
individual channel of notifications, which a client can subscribe
to. Accordingly, when subscribing to notifications for several
services, there must be registered individual subscriptions
for each of these services. The granularity of the rules will
determine the relevance in cases of, e.g., slight variations in
threat levels (not all changes will actually trigger an action).

The plug-in is a Java client implementation using the
ActiveMQ library to connect to the broker. When subscriptions
are made, the plug-in starts to listen for incoming notifications
according to the made subscriptions. When a notification
arrives, it compares it with all active rules for a potential
match. The rules are simple XML-representations of what
was described at design-time, having elements for each of
the notification properties to match, as well as an element
controlling scope and one controlling action(s) to perform.

Figure 5: Screenshot of the Android client app for receiving
notifications on-the-go.

C. Android Client App

The client app is perhaps not a critical part of the infras-
tructure, but might indeed be a useful one. While we have
a reference implementation available for a regular Java-based

subscription client—and any client can subscribe to the topics
using any one of the protocols supported by the ActiveMQ
broker—this does not fit very well with the usage scenario of
receiving updates at any time. A mobile client app, on the other
hand, can always be brought along by the person(s) responsible
for monitoring a service, listening silently in the background
and then notifying when something happens.

A working implementation of our client app for the An-
droid mobile operating system has been made. Its functionality
is currently rather simple, just enabling users to subscribe
(and unsubscribe) to services, and show a feed of the updates.
The app does not support choosing the exact type or sub-
type of notification of each service to subscribe to, but this
is a limitation set to simplify the graphical user interface. The
notification feed is a vertical time-line where new notifications
are placed on top, much like in social media. Notifications are
filtered on either service alone (by tapping from the unfiltered
list, which is seen in Figure 5) or both service and notification
type together (by tapping from the service filtered list). The
app allows the broker address to be customised.

In terms of connecting to and communicating with the
ActiveMQ broker, our app utilises the binary MQ Telemetry
Transport (MQTT) protocol [21]. MQTT is designed with a
simple API, a fixed header of just 2 bytes length and a light
keep-alive mechanism. MQTT is with its very small overhead
especially suitable for small-footprint devices, as witnessed
by its use in Facebook’s mobile messenger application [22].
MQTT has support for publish-subscribe, and its community
develops client libraries for several platforms. When our
notification app was implemented, the most popular MQTT
client library was the Java-based MQTT-Client library from
Fusesource [23]. This library does however not support TLS,
but since integration worked out-of-the box, we decided to
use it for our initial implementation. The MQTT connection
is handled by a service, which maintains the connection even
if the app is not running in the foreground.

The app creates subscription strings for topics in the broker
based on service ID, and receives notifications as soon as they
are published. The performance can however depend on the
available data connection speed, as the case always is for
mobile devices. If the mobile client has been offline, any noti-
fications that have been published during this time-frame will
be received immediately upon re-connection. This is achieved
with durable subscriptions (using a customisable time-out).
The notifications are delivered according to the quality of
service specified when either establishing the connection or
publishing the message, depending on the protocol used. In
order to identify anonymous subscribers between sessions, the
app identifies itself with the unique device ID provided by the
operating system, each time it connects to the broker.

IV. DISCUSSION

The challenges of the notification infrastructure presented
in this paper are very much similar to the ones ENISA [24]
has identified for the European Union (EU) with data breach
notification requirements for the electronic communications
sector, in the ePrivacy Directive [3]. The bullets below explain
our view on how these are or should be handled:

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

• Risk prioritisation: The seriousness of a breach should
determine the level of response, and breaches should
be categorised according to specific risk levels. With
our solution, the first prioritisation is done by the
receiver when he determines which notifications he
wants to subscribe to—as is the nature of a publish-
subscribe architecture. Secondly, there are dedicated
notifications for changes in threat level, and the re-
ceiver can specify threshold values for when corrective
actions should be applied. If the receiver has missed
out on subscribing to certain threats these notifications
will never be received. This is a weakness in cases
where entirely new threats appear.

• Communication channels: Operators want assurances
that notification requirements will not negatively im-
pact their brands. Here, the objectives should be
to prevent tampering of messages and ensure that
false breach reports are not submitted. The current
implementation of our notification infrastructure have
several weaknesses, e.g., there is only a weak authen-
tication scheme for the notification source, and noti-
fications are not signed. However, the authentication
scheme could be improved by configuring LDAP or
JAAS on the ActiveMQ broker, and the encryption
of the messages exchanged with the mobile client
could be achieved by using a MQTT client library
with TLS support, e.g., IBM’s MQTT SDK [25].
A comprehensive list of requirements for a secure
logging infrastructure has further been described by
the Common Event Expression (CEE) project [26],
which should be taken into account in future work.

• Resources: Budgetary allocations for regulatory au-
thorities should reflect new regulatory responsibilities.
The notification infrastructure itself is cloud deploy-
able and can be scaled up and down according to
needs. The cost of brokering notifications is very low.
If the reporting from service providers is handled
automatically by sensors, this cost is negligible as
well, while involving manual human labour increases
cost. These costs could in turn be reduced with par-
ticipation from Computer Security Incident Response
Teams (CIRTs), collaborating across sectors or even
across borders, such as within the EU.

• Enforcement: Data controllers will be less incentivised
to comply with regulations if regulatory authorities do
not have sufficient sanctioning powers. In addition to
regulatory authorities, sending out breach notifications
should be motivated by contractual terms between
the service provider and consumer, audits from an
independent third party, as well as a genuine desire
to achieve trust by being open. A late disclosure of
incidents will in many cases damage the reputation of
a service provider more than the incident itself.

• Undue delay in reporting: Regulatory authorities want
to see a short deadline for reporting breaches to
authorities and data subjects [..] Service providers,
however, want their resources to be focused on identi-
fying if the problem is serious and solving the problem,
instead of spending time reporting details, often pre-
maturely, to regulatory authorities. Our notifications

are primarily short messages that can be distributed
rapidly. Due to the nature of publish-subscribe, mes-
sages will be delivered as soon as they are published
and the subscriber is online. Such messages takes
little time and effort to create, especially if done
automatically. Therefore, delays are not considered a
major obstacle. Within the EU, telecommunications
operators and ISP providers must inform national
authorities within 24 hours after breach detection with
at least an initial set of information, with more details
to follow within three days [27].

• Content of notifications: Operators want to make
sure that the content of the notifications does not
impact negatively on customer relations. Regulatory
authorities, however, want to see that the notifications
provide the necessary information and guidance in
line with the rights of the data subjects. As stated
above, our messages as short, early warnings that do
not contain much information by themselves. More
detailed content can be sent out at later stage through
other means. Since we can send notifications wrapped
entirely as JSON objects, we are also able to extend
the value of the notification messages as a JSON ob-
ject with additional properties to enable customisation
as needed. A potential threat to all notification systems
is related to fake notification and manipulation of
reputation based systems. We refer to one of our
previously published paper for a deeper discussion on
this [28].

A few related efforts have been made on standardising
security event message content and formats, but we are un-
aware of efforts with the purpose of supporting automated
service composition. While our work started in the experi-
mental end with self-adaptable service compositions in mind,
standardisation is needed at some point. There will definitively
be potential to learn from similar initiatives, however at the
time of writing there seems to be little activity in the area.
The already mentioned CEE project [26] was for instance
initiated to standardise event descriptions to support auditing
and users’ ability to comprehend event log and audit data.
CEE defines both delivery methods and filtering, as well
as an event structure—although in a flat manner. CEE is
extensible in a way that can redefine any part of the taxonomy,
although that might not be a good thing for a publish-subscribe
infrastructure. The project has however been shut down due to
a lack of financial support. The Distributed Audit Services
(XDAS) specification [29] was similarly created to support
the principle of accountability and detection of security policy
violations in distributed systems. XDAS defines a taxonomy
of events categories (layers) comprising varying levels of
semantics and context, but is very focussed on recording events
for correlating audit trails. The specification is hence largely
targeted at auditing and compliance, and has not become a
formally approved standard. Work on XDAS v2 appears to
have been initiated in recent years, but without publishing any
significant progress.

Having a notification infrastructure by itself is obviously
of little value if there are neither agents creating notifica-
tions nor anyone receiving them. Together with academia and
industry (18 partners in total), we have evaluated the API,

23Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

integration and performance with others tools for monitoring
and adaptation service-oriented systems. Results from this
evaluation shows high levels of satisfaction for installation,
documentation, integration and stability [30]. Our focus for
future work evolves around integration with new tools and
securing the infrastructure itself.

V. CONCLUSION

We have demonstrated a distributed notification infrastruc-
ture that facilitates runtime management and adaptation of
service compositions. Though a service component may be
regarded as reliable and secure enough when the composite
service is designed, its security and privacy properties and
attributes for quality of service can change during its life-time.
In addition, risks are not static, and threats and vulnerabilities
in service components can impact the overall security level of
a composite service. Due to regulatory pressure and a need for
trustworthiness through accountability in service composition
chains, we believe that the concept of a common notification
infrastructure is needed. Further work is however needed in
terms of securing the infrastructure, research is needed on how
it could be managed in practice, and standardisation work is
needed to agree on notification content descriptions.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grants no 257930 (Aniketos), 317631
(OPTET) and 371550 (A4Cloud). The authors are not affiliated
with any of the service providers referenced in the use case,
and the events described are purely hypothetical.

REFERENCES

[1] S. Pearson et al., “Accountability for cloud and other future Internet
services,” 4th IEEE International Conference on Cloud Computing
Technology and Science Proceedings, Dec 2012, pp. 629–632.

[2] E. A. Gjære and P. H. Meland, “Threats management throughout the
software service life-cycle,” EPTCS, vol. 148, 2014, p. 114.

[3] European Commission, “Directive on privacy and electronic communi-
cations,” Tech. Rep., 2002.

[4] National Conference of State Legislatures. Security
breach notification laws. [Online]. Available: http://www.
ncsl.org/research/telecommunications-and-information-technology/
security-breach-notification-laws.aspx [retrieved: September, 2014]

[5] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of
service-oriented systems,” in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 35–44. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806809

[6] Aniketos project. AniketosEU on GitHub. [Online]. Available:
https://github.com/AniketosEU [retrieved: September, 2014]

[7] ECMA International, ECMA-404 The JSON Data Interchange Standard,
Std., October 2013.

[8] Object Management Group, Business Process Model and Notation
(BPMN) Version 2.0, Std., January 2011.

[9] P. H. Meland and E. A. Gjære, “Threat Representation Methods for
Composite Service Process Models,” International Journal of Secure
Software Engineering, vol. 4, no. 2, 2013, pp. 1–18.

[10] M. Salnitri, E. Paja, and P. Giorgini, “Preserving compliance with
security requirements in socio-technical systems,” in Proceeding of
Cyber Security and Privacy (CSP) forum 2014, 2014.

[11] FinansCERT. Norwegian financial sector cybercrime unit. [Online].
Available: http://www.finanscert.no/engelsk.html [retrieved: September,
2014]

[12] Riku, Antti, Matti and Neel Mehta. Heartbleed bug. [Online]. Available:
http://heartbleed.com/ [retrieved: September, 2014]

[13] MITRE Corporation. Common vulnerabilities and exposures
(cve) database. [Online]. Available: http://cve.mitre.com/ [retrieved:
September, 2014]

[14] Aniketos project, “Deliverable D4.3 Algorithms for responding to
changes and threats,” Tech. Rep., August 2013.

[15] B. Zhou et al., “Secure service composition adaptation based on
simulated annealing,” in 6th Layered Assurance Workshop, 2012, p. 49.

[16] S. Chatterjee. Messaging Patterns in Service-Oriented Architecture,
Part 1. [Online]. Available: http://msdn.microsoft.com/en-us/library/
aa480027.aspx [retrieved: September, 2014]

[17] The Apache Software Foundation. Apache ActiveMQ website. [Online].
Available: http://activemq.apache.org/ [retrieved: December, 2014]

[18] Oracle, Java Message Service Specification, Std., November 1999.
[19] Oracle. Java Authentication and Authorization Service (JAAS)

Reference Guide. [Online]. Available: http://docs.oracle.com/javase/
8/docs/technotes/guides/security/jaas/JAASRefGuide.html [retrieved:
September, 2014]

[20] Activiti. Activiti bpm platform website. [Online]. Available: http:
//www.activiti.org/ [retrieved: September, 2014]

[21] IBM and Eurotech, MQTT V3.1 Protocol Specification, Std.,
July 2014. [Online]. Available: http://public.dhe.ibm.com/software/dw/
webservices/ws-mqtt/mqtt-v3r1.html

[22] L. Zhang. Building Facebook Messenger. [Online].
Available: https://www.facebook.com/notes/facebook-engineering/
building-facebook-messenger/10150259350998920 [retrieved: Septem-
ber, 2014]

[23] Fusesource. MQTT-Client An Open Source Java MQTT v3.1
Client. [Online]. Available: http://mqtt-client.fusesource.org/index.html
[retrieved: September, 2014]

[24] S. Górniak et al., “Data breach notifications in the eu,” ENISA, Tech.
Rep., 2011.

[25] IBM Corporation. Getting started with the MQTT client for Java
on Android. [Online]. Available: http://www-01.ibm.com/support/
knowledgecenter/SS9D84 1.0.0/com.ibm.mm.tc.doc/tc10130 .htm [re-
trieved: September, 2014]

[26] MITRE Corporation, “CEE Log Transport (CLT) Specification,”
Tech. Rep., 2012. [Online]. Available: https://cee.mitre.org/language/1.
0-beta1/clt.html

[27] European Commission. Digital Agenda: New specific rules for
consumers when telecoms personal data is lost or stolen in EU.
[Online]. Available: http://europa.eu/rapid/press-release IP-13-591 en.
htm [retrieved: September, 2014]

[28] P. H. Meland, “Service injection: A threat to self-managed complex
systems,” in Dependable, Autonomic and Secure Computing (DASC),
2011 IEEE Ninth International Conference on, Dec 2011, pp. 1–6.

[29] The Open Group, Distributed Audit Services (XDAS), Std., January
1997.

[30] Aniketos project, “Deliverable D7.3 Results of the final validation and
evaluation of the ANIKETOS platform,” Tech. Rep., May 2014.

24Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

