
Improving the Efficiency of Gossiping
Christian Esposito

Institute for High Performance
Computing and Networking (ICAR),

Napoli, 80131 - Italy
christian.esposito@na.icar.cnr.it

Roberto Beraldi
Dept. of Computer and Systems Engineering

University of Roma La Sapienza,
Roma, 00185 - Italy

beraldi@dis.uniroma.it

Marco Platania
Dept. of Computer Science
Johns Hopkins University,

Baltimore, MD 21218 - USA
platania@cs.jhu.edu

Abstract—In the current industrial practice, there is an in-
creasing demand for an effective communication infrastructure
to interconnect several heterogeneous systems. The effectiveness
of the adopted communication infrastructure is defined in terms
of the provided reliability and timeliness despite manifestations of
failures within the network. Current approaches do not address
both these aspects [7], but one aspect is generally assured at the
expense of the other. Our driving idea is to take the best solution
to achieve reliability and to improve its achievable performance
so as to guarantee timely deliveries. Specifically, we propose
to introduce determinism within the gossiping approach and to
combine push and pull schemes. We have experimentally assessed
such solutions through simulations, so as to find which is the one
that best achieves both reliability and timeliness.

Index Terms—Publish/Subscribe Middleware; Reliable Event
Notification; Gossiping

I. INTRODUCTION

Current software systems are characterized by a progressive
increase in their scale and by a high demand for cooperation
among their constituents, so as to adopt a “system of systems”
perspective. The current literature is rich in practical examples
of this novel generation of large-scale systems. The most
demanding challenge that they have to face is to be able
to interconnect several heterogeneous components in a large-
scale setting, where the system is not limited within rack
cabinets but spans over different distinct geographical sites
and administrative domains. Therefore, the key component in
these systems is the middleware solution adopted to enable
the communication among their distributed components. Due
to the required cooperation, the communication patterns that
we can infer by analyzing the data flows within these systems
do not consist of a naive request-respond communication style,
where there is a client invoking a service upon a server and
waiting for the result of such invocation. In most cases, we
find a publish/subscribe communication style [1], where one,
or even more, publisher asynchronously provides data to a set
of interested subscribers.

The applications running on top of these systems present
very strict non-functional requirements, e.g., applications run-
ning on top of Grid or Cloud Computing typically can be
assumed as business-critical, while the ones running on top of
LCCI are mission-critical. Such application-level requirements
are translated down to the middleware level in a set of
proper constraints on the offered Quality-of-Service (QoS) in
terms of reliability and timeliness. When considering large-
scale systems, it is not practical to deploy a dedicated and

proprietary network among interacting components. Therefore,
communication can be only realized by means of the avail-
able IP-based network infrastructures, such as the Internet.
However, such networks are typically affected by routing
phenomena and failures that compromise the correctness of the
packet delivery [2], which have a negative impact on the QoS
experienced by users. Therefore, the adopted middleware has
to be equipped with proper reliability enforcement methods to
face such failures. In addition, the time to deliver information
matters, since a message delivered too late can be useless or
even dangerous for the system. Current approaches are not able
to provide both reliability and timeliness, since recovering data
dropped by the network typically implies some performance
fluctuations. For a concrete example, a well-known approach
called Gossiping [3] provides a high degree of reliability,
while exhibiting a considerable worsening in performance. On
the contrary, a distributed coding approach, called Network
Coding [4], can present a more stable and predictable latency,
while offering lower reliability guarantees.

Our driving idea is to select the best available solution to
provide a high degree of reliability and to propose suitable
methods to reduce its performance deficiency, so as to meet
both reliability and timeliness. In a previous preliminary and
theoretical work [5], we have shown that it is possible to
combine the two mentioned approaches to obtain the best from
both, i.e., high reliability with no severe performance penalty.
Such an intuition has been further proved by an experimental
campaign in [6]. This previous work presents a significant
flaw: the random nature of gossiping causes a high number of
un-needed messages being exchanged among the nodes. This
implies both a considerable traffic load on the network, which
can cause congestion phenomena, and a non-optimal recovery
time of lost data by wasting gossip messages sent towards
nodes that do not require them. Our solution is to limit such
random behaviour by forcing the protocol to prefer gossiping
only with the nodes requiring a recovery action.

This paper is structured as follows. Section II provides
a background on the current literature and describes our
approach in combining coding and gossiping by highlighting
open issues that we left untreated in our previous works.
Section III presents our solution to introduce determinism,
and Section IV proves the quality of our approach by means
of simulations run in OMNET++. Last, we conclude with
Section V, where we present the lessons learned with this
work and its possible future evolution.

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

II. BACKGROUND

As analyzed in details in [7], there are several approaches
available in the current literature that can be used to pro-
vide reliability by tolerating data losses. On one side, we
have approaches based on temporal redundancy, which use
retransmissions to recover dropped messages. While, on the
other side we have the one based on spatial redundancy, which
send additional information along with application data. This
applied redundancy is used to reconstruct the lost information
without requiring any retransmission.

The best known example of a reactive approach for multi-
casting in large-scale systems is Gossiping [3]: a node stores a
received message in a buffer with a size b, and forwards it for
a limited number of times fin (called fanin) to a randomly-
selected set of nodes of size fout (called fanout). Many vari-
ants of gossiping algorithms exist, which can be categorized
as follows. In the Push Approaches, when a node receives a
new message, it is immediately retransmitted to the randomly-
selected nodes (i.e., fanin is constant and implicitly equal to
1). On the other hand, in Pull Approaches, after a proper
timeout t expires, nodes periodically send a list of recently-
received messages. If a lost message is detected by comparing
the received list with the history of messages received by
the given node, then a retransmission of the lost message
is requested. As we have experimentally shown in [6], these
reactive solutions achieve a high degree of reliability. However,
this gain is obtained at the cost of a reduced performance and
timeliness, since latency exhibits severe fluctuations due to
the high number of retransmissions needed to recover from
consecutive losses, quite frequent in the current Internet [2].

A concrete example of a proactive approach is represented
by Network Coding [4], which allows the generation of
redundant information from the content of the application
packets as a set of the linearly independent combinations. The
benefit of proactive approaches is to reduce the performance
worsening caused by the use of a reliability enforcement
method. However, they offer a lower reliability degree since,
if the redundancy degree is not properly set, data can be
irremediably lost.

In [6], we have taken the gossip protocol, and enhanced it by
introducing coding in two precise points of its algorithm: when
data is transmitted disseminated among the members of a given
group, and when data is gossiped to the randomly-selected
nodes, i.e., coding generates new packets both at the push
delivery and at the pull-based retransmission. We have proved
that a proper combination of gossip and coding is able to
realize an optimal trade-off between reliability and timeliness
with limited overhead worsening. Since the nodes receiving a
gossip message are randomly chosen, there is a non-negligible
probability that gossip messages may reach nodes that do not
need them. To demonstrate this we have defined an utility
function, namely U , and indicate a gossip message as useful if
it is able to detect and recover a data loss. For a push gossip, U
is the number of push messages that have allowed to recover
a loss over the total number of received push messages per

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6

U
til

ity

Fanout

Pull
Push

Fig. 1. Utility of the Gossip approaches from simulations in [6]

each node. For a pull gossip, U is the number of push calls
that have triggered a retransmission over the total number of
received pull calls per each node. In Fig. 1, we see that U has
a low value, which further decreases when fout is increased.
This implies that a considerable part of the traffic generated by
a gossip scheme is unneeded and optimizable, leaving space
for improvements.

III. DETERMINISM IN GOSSIPING

We believe that the efficiency of gossip schemes in terms of
performance and overhead can be improved by selecting nodes
in a more deterministic manner. We refer to this approach as
Polarized Gossiping, where node selection is not random, but
based on a proper criterion. This solution is already present
within the current literature, for example in [8] to reduce the
overhead of gossiping in large-scale networks by allowing
nodes to only gossip with other affine nodes, where node
affinity is decided on the base of proximity or workload
and information update frequency. However, our intention
is different: we aim to speed up the recovery of lost data
by preferring nodes with a high probability that the gossip
message will be useful, so as to reduce the overall number of
attempts to fully recover lost data.

We define as optimal node selection the approach to forward
push messages only to those nodes for which such messages
are useful. In the case of the push gossip, after the reception of
a given event, a node will gossip with nodes still waiting for
packets related to that event. Similarly, after the expiration of
the timeout, a node will send a pull call message to the nodes
that are still missing one, or even more, of the notifications
contained in that pull call. Such a selection approach is not
feasible in a large-scale system, since it requires complete
knowledge of all the received notifications by each node within
the system, which is not easily obtainable in most of the
cases. Therefore, we propose proper heuristics for the node
selection. Specifically, the driving idea is to assign a weight
to each candidate to receive a gossip message, and those with
the highest weights are selected for gossip. In particular, we
describe two different methods for calculating such weights:
in the first case, the weight is assigned based on the estimated
overlay link status, expressed in terms of loss patterns; while
in the second the weight assignment is based on the position
of nodes within the tree. We conclude with several possible
selection criteria based on the weights assigned to the nodes.

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

A. Labeling Nodes within the Multicast Tree

Our approaches for deterministic node selection require the
knowledge of the topology within the multicast tree. This is
typically a troublesome issue to be addressed in large-scale
systems. However, we propose a method to handle it in a
distributed and easy manner by assigning labels to each node.
Specifically, each node has a label Φ of length l, where l is
the level of that node in the tree. Each label is composed by
l digits belonging to an m-ary alphabet, i.e., a digit assumes
a value in the range [0;m− 1]. This label is assigned by the
parent of the node: for each child in the tree, the parent adds
a new progressive digit as the most significant one, while the
root has Φ = null. Labels are available to all the nodes thanks
to a proper peer sampling service.

B. Weight Based on Loss Patterns

We assume that the links among nodes are not reliable,
and exhibit a loss pattern characterized by the Packet Loss
Rate (PLR), which is the probability of losing a packet. In
particular, the adopted network model is the Gilbert-Elliott [9],
one of the most-commonly applied in performance evaluation
studies due to its analytical simplicity and the provided good
results. PLRx is continuously monitored by each node x over
the overlay link that connects itself with its parent, e.g., using
the approach in [10], and disseminated towards the other nodes
of the same group at the beginning, e.g., after the node joins
the group, and when there is a change in their value.

Such information on the link quality represents a valuable
element for computing the weights for selecting nodes during
a gossip round. Specifically, a given node x uses the PLRx

and the PLR estimated along the path between the root and its
parent to compute the probability that it looses a packet along
that path. We indicate this value with px, while qx = 1−px is
the probability of node x receiving a certain packet. Node x
maintains information about all nodes along the path toward
the root in a list called ancestors (easily computable in an
iterative manner: when a node joins the tree, its parent passes
to it its ancestor list). If the level of x in the tree is n, then the
ancestors list contains n entries z0, z1, ..., zn, where i indicates
the level of a node in the tree and z0 is the root and zn is the
node x itself. For each node zi in this list, there is an associated
packet loss rate PLRzi

of the overlay link that connects zi

with its parent zi−1 (clearly, the packet loss rate associated to
zn is PLRx, being zn = x). Thus, the probability for node x
of receiving a packet is the following one:

qx =

nY
i=1

(1− PLRzi) (1)

Such a value is continuously kept updated with the current
value of PLRzi

; if a node x communicates a change in its
measured PLR, every node has to recompute its qx, and
relative weight, if the ancestors list contains the node x.

Based on these considerations, we define a formula that
allows a node to assign weights to other nodes by considering
the probability that those nodes have to lose packets. In the
following, we describe how this formula is obtained for the

previously introduced gossip strategies; then, we show how it
can be easily modified for a given push/pull gossip strategy.
The basic idea of this approach is that a node that receives a
packet forwards it to the nodes that have a higher probability
of having lost that packet. Thus, we denote with X the event
“node x received the packet”, with Y the event “node y
received the packet” and with Y the event “node y did not
receive the packet”. Then, a node x that has to forward a
received packet assigns to a node y a weight based on the
following probability:

wxy = Pr{Y |X} (2)

Such a value is influenced by the relative position of x
and y in the tree. Let us consider x and y being on two
completely different subtrees, i.e., they share no common
overlay links. Because we are assuming independent loss
patterns, the probabilities of losing a packet at nodes x and y
are totally uncorrelated. Thus, given two nodes x and y on two
completely different branches of the tree, Equation 2 becomes:

Pr{Y |X} = Pr{Y } = py (3)

If the node y is a predecessor of x, which is easily
determined by comparing their labels, then obviously

Pr{Y |X} = Pr{Y } = 0 (4)

Let us now consider nodes x and y in the same subtree.
x has to find in the ancestors list the highest level ancestor
h in common with y (it could be y itself if they are in the
same branch of the tree. By indicating with n and l the level
of y and h respectively, the probability of y having missed
a packet knowing that x has received that packet depends on
the probability of the packet having been lost during the path
from h to y:

Pr{Y |X} =
Pr{Y ,X}
Pr{X} = 1−

nY
i=l+1

(1− PLRzi) (5)

It is easy to see that Equation 5 reduces to Equation 3
when the nodes x and y are on two completely different
subtrees, the root of the tree being the highest level common
ancestor (the root has l = 0). Indeed, in this case we have that∏n

i=l+1 PLRi = px. Thus, the final formula used by node x
to assign a weight wxy to node y includes the contributions
4 and 5:

wxy =

0 if y is predecessor of x

1−
Qn

i=l+1(1− PLRzi) otherwise
(6)

C. Weight Based on a Heuristic Approach

The previously described approach requires nodes to es-
timate the overlay link loss probability and to maintain ad-
ditional information about the network conditions of their
ancestors up to the root. In a large-scale system, it would
generate a high network traffic, in addition to the scalability
and consistency issues to maintain and update network status
information. Thus, we also propose a heuristic approach to

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

assign weights that imposes no additional burden on system
nodes since it is only based on the topological information
extracted from the labels of the nodes. Specifically, this
information takes into account the level of a node in the tree,
referred to as the horizontal cut, and the subtree it belongs to,
referred to as the vertical cut. strategies.

The assignment of wxy is based on two considerations. The
first one is the Horizontal cut: nodes in a lower level are more
useful because they are closer to the source. In fact, nodes
at the bottom of the tree are expected to experience a higher
number of lost packets. The second one is the Vertical cut:
nodes in different subtrees are more useful because, with a
high probability, they experience a different loss pattern. The
higher is the level of the root of the subtree that contains
the two nodes, the more useful is their interaction for a
gossip procedure. These considerations are orthogonal and can
combined to assign a weight to all the nodes. Let us consider
two nodes x and y, with labels Φx and Φy and label sizes sΦx

and sΦy
respectively (remember that they represent their level

in the tree). In addition, let us define ρ(x,y) the length of the
common suffix of Φx and Φy . The formula used by node x
to assign a weight to node y based on the Horizontal cut is

wh
xy = 1− sΦx

sΦx + sΦy

, (7)

while the assignment based on the Vertical cut is as follows:

wv
xy = 1−

ρ(x,y)

sΦx

. (8)

The rationales behind these formulas are the following ones.
With respect to the Horizontal cut, Equation 7 contains a
formula in the form of f(x) = 1−c/(c+d), with c a constant.
Given the two nodes x and y, with x that assigns a weight to
y, c = sΦx and d = sΦy , this formula is such that the value of
f(x) reduces when the variable x decreases. wh(x, y) assumes
a lower value when both sΦx

is high and sΦy
is low, i.e., when

node x is further from the root and, on the contrary, node y is
closer to the source of the information. In this way, node x has
a benefit when it contacts node y for a recovery attempt. With
respect to the Vertical cut, Equation 8 represents the fraction
of overlay paths not in common between the two nodes x
and y. The higher is the value, the higher is the level of their
common ancestor. When wv(x, y) = 1, the common ancestor
is the root, i.e., the nodes are on two completely different
branches of the tree.

The total weight that node x assigns to node y is simply
the product of the two previous equations:

wxy = wh
xy · wv

xy. (9)

D. Polarized Gossip

Thanks to the introduced concepts of weighted selection,
we can formulate two new gossiping schemes. Weighted
Deterministic Polarized Gossip (WDPG) selects the nodes
among the ones with the highest weights. Weighted Random
Polarized Gossip (WRPG) specifies that the nodes with the
highest weights have the highest probability of being selected.
We have noticed that all the nodes with the highest weights

are placed at the bottom of the tree, so nodes at the higher
levels may less frequently receive gossip messages. This can
reduce the loss-tolerant capability of the polarized gossiping;
therefore, we have designed two other schemes for a better
distribution of gossip messages. In Polarized Gossip with
Window (PGW), all the nodes follow the same criterion of
WDPG, while certain nodes at the bottom of the tree (whose
percentage is an algorithm parameter called window) do not
select the nodes with the highest weights, but with the weights
closest to the highest one. With PGW, we allow certain nodes
to send gossip messages to nodes in other parts of the tree and
not only at the bottom. Pull+Push Polarized Gossip (3PG)
combines push and pull gossip schemes by using a push-
based WDPG joint-ly with a pull-based WDPG, where during
the pull rounds nodes are selected by considering the lowest
weights and not the highest ones. Such an approach has also
a window, which indicates the nodes that are not able to
commence a push round. This is meant to reduce the overhead
that characterizes the push gossip.

IV. SIMULATION STUDY

The scope of this section is to present experimental re-
sults that (i) study the impact of different node selection
criteria on the quality of gossiping, and (ii) investigate the
effect on the polarized gossiping when coding is used. To
achieve this aim, we implemented our solution by using the
OMNET++ (www.omnetpp.org) simulator, and decided not to
use any real wide-area networks, such as PlanetLab, due to
the uncontrollable loss patterns that make the obtained results
non reproducible [11]. The workload has been taken from
the requirements of the SESAR project, representative of a
real critical large-scale system. Specifically, the exchanged
messages have a size of 23 KB, the publication rate is one
message per second and the total number of nodes is 40
(i.e., the number of ATM entities involved in the first phase
of the project). The network behaviour has 50 ms as link
delay, and 0.02 as PLR, based on a measurement campaign
described in [11], with message losses not independent as
proved by [2]. We have assumed that the coding and decoding
time are respectively equal to 5ms and 10ms. We have also
considered the block size equal to 1472 bytes, so that an event
is fragmented in 16 blocks. We have published 1000 events
per each experiment, executed each experiment three times
and reported the average.

The metrics evaluated in our study are the following. First,
the Success rate is the ratio between the number of the received
events and the number of the published ones, and this is
referred to as the reliability of the publish/subscribe service.
If the success rate is 1 (i.e., complete reliability), then all
the published events have been correctly received by all the
subscribers. Second, the Performance is expressed as the mean
latency, which is a measure of how fast the given dissemination
algorithm is able to deliver notifications, and the standard devi-
ation of the latency, which indicates the possible performance
fluctuations due to the applied fault-tolerance mechanisms,
highlighting the timing penalties that can compromise the

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

 2

 4

 6

 8

 10

 12

 14

 16

Random Optimal QoS WDPG QoS WRPG Topo. WDPG Topo. WRPG

Fa
no

ut
 fo

r C
om

pl
et

e
R

el
ia

bi
lit

y

Node Selection Schemes

Push Approaches
Pull Approaches

(a)

 2

 4

 6

 8

 10

 12

 14

 16

Topo. PGW 0.25 Topo. PGW 0.5 Topo. PGW 0.75 Topo. PGW 1

Fa
no

ut
 fo

r C
om

pl
et

e
R

el
ia

bi
lit

y

Window Size

Push Approach
Pull Approach

(b)

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

Topo. 3PG 0.25 Topo. 3PG 0.5 Topo. 3PG 0.75 Topo. 3PG 1

Fa
no

ut
 fo

r C
om

pl
et

e
R

el
ia

bi
lit

y

Window Size

(c)

 0

 20

 40

 60

 80

 100

 120

Rand. Push 3PG 0.25 3PG 0.5 3PG 0.75 3PG 1 Rand. Pull

O
ve

rh
ea

d

Approach

With Fanout 2
With Complete Reliability

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Rand. Push 3PG 0.25 3PG 0.5 3PG 0.75 3PG 1 Rand. Pull

M
ea

n
La

te
nc

y
(s

ec
)

Approach

With Fanout 2
With Complete Reliability

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Rand. Push 3PG 0.25 3PG 0.5 3PG 0.75 3PG 1 Rand. Pull

St
an

da
rd

 D
ev

ia
tio

n
of

 L
at

en
cy

Approach

With Fanout 2
With Complete Reliability

(f)

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4

Fa
no

ut
 fo

r C
om

pl
et

e
R

el
ia

bi
lit

y

Coding Rate

Random Push
Random Pull
WRPG Push

WRPG Pull
PGW Push 0.75

PGW Pull 0.75
3PG 0.25

(g)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4

M
ea

n
La

te
nc

y
(s

ec
)

Coding Rate

Random Push
Random Pull
WRPG Push

WRPG Pull
PGW Push 0.75

PGW Pull 0.75
3PG

(h)

 0

 50

 100

 150

 200

 0 1 2 3 4
O

ve
rh

ea
d

Coding Rate

Random Push
Random Pull
WRPG Push

WRPG Pull
PGW Push 0.75

PGW Pull 0.75
3PG

(i)

Fig. 2. Quality of the gossip scheme without and with coding.

timeliness requirement. Last, the Overhead is the ratio between
the total number of datagrams exchanged during an experiment
and the number of datagrams generated by the publisher. This
is a measure of the traffic load that the dissemination strategy
imposes on the network, and should be kept as low as possible,
in order to avoid any congestion.

A. Polarized Gossiping

Let us compare the success rate achievable with random
selection and the one with the introduced deterministic node
selection schemes. A first consideration we can make is that
the topology-based selection allows us to obtain a higher mean
success rate than the QoS-based one. A second consideration
is that polarized gossip, both WDPG and WRPG, allows us
to have a lower mean success rate. The reason behind these
two considerations is related to the fact that the topology-based
heuristics and WDPG imply a strong focus on the nodes at the
bottom of the tree, and losses in the higher levels of the tree
are more troublesome to be recovered since they are selected
less frequently. Such a focus on the nodes at the lower levels
is less tight when applying a weighted random selection or if
weights are computed with topology information, so that the
gossip messages are more distributed, even if the nodes at the

bottom still receive more gossip messages.
Let us consider the two schemes we have designed to deal

with such issue. Fig. 2(b) shows that the windowing scheme
in PGW is able to lower the required fout; but it is not able to
bring a considerable improvement than the cases with random
selection. On the other hand, 3PG represents a better solution,
thanks to its ability to forward pull calls towards the higher
part of the multicast tree. From Fig. 2(c), we can notice that the
fout required by 3PG to obtain a complete reliability is lower
than the one with a random selection. Moreover, lowering the
window size implies a reduction of the obtainable success rate
and a worsening of the convergence to a complete reliability.

Fig. 2(d) shows the experienced overhead for the gossip
approaches with two bars: the first illustrates the overhead
with a fout equal to 2; while the second has the overhead
when complete reliability is achieved. Generally speaking,
there is a difference between these two bars, meaning that
increasing fout implies a growth of the experienced overhead.
With the only exception being 3PG, the other node selection
schemes do not present a lower overhead than the gossip
with random selection, since their needed fanout is higher. As
depicted in Fig. 2(d), lowering the window size allows us to
have a lower overhead (even if the needed fanout is higher),

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

considerably below that experienced with random selection,
as shown in Fig. 2(d): at complete reliability, the overhead of
3PG with a window size of 0.25 is about half of the one with
a random push (but is double than the one of random pull).

Let us consider the performance of the gossip schemes.
Also, in this case we have two bars as in the previous
one; however, in this case the second bar is always lower
than the first, indicating that an increase of fout brings a
decrease in performance. Generally speaking, deterministic
selection exhibits a performance below that achieved with
random selection. However, such an improvement is nullified
by the high number of fout needed to have a complete
reliability. Only 3PG is able to achieve a good performance. In
particular, the increase of the window size in 3PG lowers the
measured performance both in average and standard deviation
(as depicted in Fig. 2(e) and Fig. 2(f)). So, with a window
size of 1, we have that 3PG is very close to the performance
of the random push gossip.

B. Polarized Gossiping with Coding

Coding can improve the quality of the polarized gossip
approaches by exhibiting two kinds of benefits. First, when
applied during dissemination it can help nodes closer to the
root to recover lost events, which is not facilitated by the
proposed deterministic selection modes. Second, when applied
during gossiping it can speed up the event recovery by reduc-
ing the number of needed retransmissions. For these reasons,
we have re-executed some of the experiments presented in
the previous subsection by applying coding with a redundancy
between 1 and 4 (we have considered only the topology-based
weights, since coding has similar effects also on the QoS-
based ones). For all the approaches, we have experienced a
reduction of the value of fout needed for complete reliability,
as illustrated in Fig. 2(g). When random selection is applied,
coding is able to reduce the needed fout by about 25%. As
expected, the improvement is more remarkable in the case of
WRPG and PGW, since it is around 40%. 3PG has the same
trend as random pull gossip. In Fig. 2(i), we can see a limited
improvement of the overhead: the improvements for push
gossip in terms of a lower fout are nullified by the overhead
introduced by coding. Fig. 2(h) shows an improvement of the
experienced performance, even with the delay introduced by
performing coding and decoding.

V. CONCLUSIONS AND FUTURE WORK

The random selection of nodes in gossip schemes implies
a low utility of the exchanged messages, causing some inef-
ficiencies in terms of experienced latency and overhead. As
depicted in Fig. 3, the random push has a higher loss-tolerant
capability than random pull since it requires a lower fout for
complete reliability. This is achieved with a high overhead and
a low performance costs, as opposite to random pull. We have
proposed an improvement by presenting several schemes to
realize what we called a polarized gossip. In particular, we
have shown the pros and cons of such approaches. We have
learnt that the best solution when determinism is introduced

0"

1"

2"

3"
Reliability

Performance Overhead
Random Push Gossip Random Pull Gossip 3PG Gossip

Fanout' Mean'Latency' Overhead'
Random'Push'Gossip' 5" 0,309" 95,11"
Random'Pull'Gossip' 7" 0,752" 22,19"
3PG'Gossip' 5*3" 0,428*0,34" 40,35*78,56"
At"complete"reliability"

Low

High

Medium

Fig. 3. Schematic comparison.

in gossiping is to combine the push and pull approaches. As
summarized in Fig. 3, such an approach has the highest loss-
tolerant capability, and an optimal trade-off between over-
head and performance. Deterministic approaches are further
improved when coding is applied.

ACKNOWLEDGEMENTS

This work has been conducted when Christian Esposito
was affiliated to the Department of Computer and Systems
Engineering (DIS) at the University of Napoli Federico II,
and when Marco Platania was affiliated to the Department of
Computer and Systems Engineering (DIS) at the University of
Roma La Sapienza. In addition, it has been partially supported
by the Italian Project of National Research Interest (PRIN)
DOTS-LCCI and by the BLEND Eurostar European Project.

REFERENCES

[1] P.Th. Eugster et al. The many Faces of Publish/subscribe. ACM
Computing Surveys, 35(2):114–131, June 2003.

[2] A. Markopoulou et al. Characterization of Failures in an Operational IP
Backbone Network. IEEE/ACM Transactions on Networking, 16(4):749–
762, August 2008.

[3] A.-M. Kermarrec, L-Massoulié, and A. J. Ganesh. Probabilistic Reliable
Dissemination in Large-Scale Systems. IEEE Transactions on Parallel
and Distributed Systems, 14(2):1–11, February 2003.

[4] R. Ahlswede, S.-Y.R. Ning Cai Li, and R.W. Yeung. Network Informa-
tion Flow. IEEE Transactions on Information Theory (TIT), 46(4):298–
313, July 2000.

[5] C. Esposito, S. Russo, R. Beraldi, and M. Platania. On the benefit of
network coding for timely and reliable event dissemination in WAN.
Proceedings of the 1st International Workshop on Network Resilience,
October 2011.

[6] C. Esposito, S. Russo, R. Beraldi, M. Platania, and R. Baldoni. Achiev-
ing Reliable and Timely Event Dissemination over WAN. Proceedings of
the 13th ICDCN, - Lecture Notes in Computer Science, 7129:265–280,
January 2012.

[7] C. Esposito, D. Cotroneo, and S. Russo. On reliability in pub-
lish/subscribe services. Computer Networks, 57(5):1318–1343, 2013.

[8] I. Gupta, A.-M. Kermarrec, and A. J. Ganesh. Efficient and Adaptive
Epidemic-Style Protocols for Reliable and Scalable Multicast. IEEE
Transactions on Parallel and Distributed Systems (TPDS), 17(7):593–
605, July 2006.

[9] G. Hasslinger and O. Hohlfeld. The Gilbert-Elliott Model for Packet
Loss in Real Time Services on the Internet. Proceedings of the
14th GI/ITG Conference on Measuring, Modelling and Evaluation of
Computer and Communication Systems, pages 1–15, 2008.

[10] C. Fragouli and A. Markopoulou. A network coding approach to overlay
network monitoring. Allerton, 2005.

[11] C. Esposito. Data Distribution Service (DDS) Limitations for Data Dis-
semination w.r.t. Large-scale Complex Critical Infrastructures (LCCI).
Mobilab Technical Report, 2011.

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

