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Peter Tröger, Andreas Polze
Operating Systems and Middleware Group

Hasso-Plattner-Institute at University Potsdam, Germany
{peter.troeger,andreas.polze}@hpi.uni-potsdam.de

Abstract—Virtual machine environments like VMware, XEN,
KVM, and Hyper-V support live migration of guest operating
systems, which is used in data centers to provide uninterrupted
service during maintenance or to move computation away from
failure-prone hosts. The duration of migration, as well as the
virtual machine downtime during this process are essential
when assessing if service availability agreements might be
violated.

We present the result of an experimental study that analyzed
virtual machine live migration downtime and duration. We
show that total migration time as well as downtime are
dominated by specific memory utilization patterns inside the
virtualized guest. We experienced that downtime involved by
live migration can vary by a factor of more than 23, which
can have significant impact on service availability.
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I. INTRODUCTION

Virtualization as a concept for isolation and multiprogram-
ming has been known since the late 60’s [1]. Today, many
virtualization products for commodity server and desktop
environments exist. Most platforms support live migration,
which allows to move a running virtual machine (VM) to
a new physical host with minimal service interruption. This
renders live migration a very attractive tool for various sce-
narios in dependable computing. Currently the predominant
use of live migration is in data centers or compute clouds
where VMs can be moved across physical hosts for load
balancing, server consolidation or maintenance. In all these
cases knowing the downtime involved by moving the VM
is essential when service availability guarantees have to be
fulfilled: the time of service interruption must not exceed
the clients retry intervals.

A second area where live migration is used is proactive
fault management. VMs are moved away from a physical
node that has been predicted to show a failure in the near
future (see, e.g., [2]). In addition to the downtime involved
in moving the VM, the total duration of migration is an
important characteristic. This is because the entire migration
has to have finished before the failure occurs.

However, the majority of existing work that builds on live
migration of VMs simply assumes some fixed (in many cases
arbitrary) duration of the live migration and the downtime
involved by it. According to the experiments presented in
this paper, such an assumed value has to be chosen very

carefully since migration time as well as downtime can vary
by an order of magnitude or more, depending on the memory
workload. It is the goal of this paper to systematically
investigate the factors determining the time needed for VM
live migration.

II. VIRTUAL MACHINE LIVE MIGRATION

Within the different existing virtualization frameworks
with live migration support, the basic principle is that the
virtualization cluster management actively moves a virtual-
ized system while it is still executing and is still changing
the hardware’s and software’s state. Today’s products realize
this by a delta-copying approach where modified memory
regions are incrementally transferred until a lower threshold
for data to be moved is reached. In the subsequent phase in
which the VM is stopped, the remaining resources are copied
and reconfigured and the VM is resumed on the destination
host. This leads to the two characteristics investigated in this
paper:

• migration time is the time from start of the live migra-
tion process until the virtualization framework notifies
that the source host can be deactivated.

• downtime or blackout time is the phase during migration
when there is a user-perceptible service unavailability.

The most difficult procedure in live migration is the trans-
fer of main memory state. As live migration environments
typically share storage within the migration cluster, swapped
out memory pages do not have to be considered. Read-only
pages from the working set (such as code pages) need to be
migrated only once, whereas data pages could be modified
again after their initial transfer. Transfer of writable memory
can happen theoretically in three phases [3]: In the initial
push phase, in which the source machine’s actively used
set of pages is copied to the destination host in rounds. In
the subsequent stop-and-copy phase, in which the source
VM is suspended, remaining memory regions are transfered,
and the VM is resumed again on the destination host. The
length of this phase is the VM downtime. The last step is the
pull phase, where the VM running on the destination host
might access memory regions that are still not migrated,
which are then pulled from the source host. The end of the
pull phase marks the end of the migration time. The time
of transition from one phase to the next is controlled by
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adaptive algorithms that take into account various aspects
such as the number of dirty memory pages, etc. Most live
migration products combine the first two phases in a so-
called pre-copy approach.

III. EXPERIMENT DESIGN AND LOAD MODEL

Live migration duration is influenced by load factors from
inside the VM and from the underlying physical host. For
our investigations we assumed a typical (and recommended)
setup where applications only run in VMs and there are no
applications running on the physical host directly (except for
the hypervisor).

Experiments carried out prior to the ones presented here
have shown no impact on migration time and downtime
when running multiple VMs on one physical host. Results
shown here have therefore been measured with just one VM
per physical host. We assumed a model of VM operation
without over-commitment, which is a VM configuration
where the sum of virtual memory of all VMs on a host
does not exceed the amount of physical memory.

The focus of this work is on application-specific effects
on live migration. Since in most scenarios the migration net-
work is not a controllable parameter we did not investigate
effects of the migration network on migration performance.
Additional tests investigating network usage showed that
the migration frameworks handle network capacity issues
carefully so that this assumption appears valid.

The goal of our experiments are to investigate the effects
of the following factors on migration time as well as down-
time: CPU load, configured memory size of the VM, utilized
amount of memory, and memory modification pattern for
two different virtualization products.

A. Load Generators

In order to be able to analyze the effects of each factor
and its combinations we used three different load generators
- one for CPU load and two for memory load.

The CPU load generator was based on burnP6 and
cpulimit generating a controllable CPU utilization in the
running VM.

The locked pages generator is used for analysis of static
memory allocation that cannot be swapped out. This is
achieved by allocating a given amount of memory, writing
random data to it and locking it in physical memory using
the according system call.

In order to investigate the effect of modifying memory
pages while the VM is migrated, we programmed a dirty
pages generator, simulating memory write access of appli-
cations running in the VM. It implements a cyclic memory
modification pattern by continuously writing pre-computed
random data to locked memory locations. This pattern is
motivated by server applications, which modify memory
regions based on incoming requests. These modifications
can be expected to have comparable characteristics for the

Table I
INVESTIGATED PARAMETERS

HYPERVISOR The virtualization framework used
VMSIZE Amount of main memory statically config-

ured for the VM
LOAD CPU utilization of the virtualized operating

system
WSET Working set, the sum of utilized memory
PERIOD The period for one memory modification

cycle
BPC Blocks per cycle. Number of modified blocks

per cycle
FILL Filling degree. The average percentage of a

memory block being actively modified

majority of requests, e.g., by always reading some data,
storing logging information, and returning the result.

A list of all parameters investigated in our experiments is
provided by Table I.

B. Technical Setup and Issues

All tests were performed on two Fujitsu Primergy RX300
S5 machines with a shared iSCSI drive, the migration
was performed for a VM running Linux 2.6.26-2 (64 bit).
All VMs were configured to have one virtual CPU and
a varying amount of (virtualized) physical RAM. In all
cases, the virtualization guest tools / drivers were installed.
Native operating system swapping was activated, but not
aggressively in use due to the explicit limitation of the
allocated amount of memory.

We conducted all experiments with the two hypervisors
VMware and Xen. Experiments for VMware were performed
with ESX 4.0.0, using the vCenter server software for
migration coordination. High availability features were de-
activated. Experiments for Xen were performed with Citrix
XenServer 5.6 (Xen core 3.4.2). Both Xen hosts were
configured to form a pool, the test scripts were executed
in the dom0 partition of the pool master.

Total migration time was measured by capturing the
runtime of the product command-line tool that triggers a
migration. Downtime was measured by a high-speed ping
(50 ms) from another host, since the virtualization products
do not expose this performance metric by themselves. The
downtime is expressed as the number of lost Ping messages
multiplied by the ping interval.

Live migration, similar to every performance-critical soft-
ware feature, is influenced by a manifold of hardware /
software factors. We are aware of the fact that new product
versions, node and networking hardware as well as special
optimization switches can lead to better or worse results.
Nevertheless, the point of our investigations is to identify
major impact factors when using live migration for depend-
ability purposes.
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IV. SINGLE VARIABLE EXPERIMENTS

Since the number of parameters (also called factors)
is too large for an investigation of all combinations of
factors with each factor tested at multiple levels, we first
aimed at reducing the set of factors. In order to do so, we
investigated each parameter individually. As will be shown
in this section, this analysis helped to eliminate the two
parameters LOAD and FILL.

In order to investigate a single factor we set all but the
investigated parameters to fixed values and measured both
downtime and total migration time at various levels of the
investigated parameter.

A. VMSIZE

We investigated the influence of the configured VM main
memory with different settings for both products. Specif-
ically, we have investigated idle VMs with VMSIZE set
to 512MB, 1GB, 2GB, 4GB and 8GB RAM. The virtual
machines were idle, so no load generator was used. While
VMware showed a nearly constant migration time, Xen had
a linearly growing migration time with increasing VMSIZE.

B. LOAD

For the investigation of the influence of CPU load on
migration time, we performed at least 10 migrations per
CPU utilization degree, ranging from 0% to 100% artificial
CPU load in steps of size ten using the CPU load generator.
Results showed almost no impact with a 95% confidence
interval of not more than -/+ 1s for all load values.

Both products also showed a constant (significantly
smaller) downtime in all constellations, with a 95% con-
fidence interval of not more than +/- 10% of the average
downtime.

The results suggest that both virtualization frameworks
reserve enough CPU time for their own management (mi-
gration) purposes. Live migration scenarios seem to only
depend on non-CPU utilization factors. We could hence
safely drop CPU load as an influencing factor in subsequent
experiments.

C. WSET

Using the locked pages generator, we varied the size of
the working set from zero to 90% of the virtual memory
available to the VM. Results show that VMware downtime
as well as migration time depend on WSET. Xen also shows
dependency on WSET so that the effects of WSET are
analyzed further in Section V.

D. FILL

In order to rely on the trap and page table mechanisms
of the operating system, all VM migration approaches copy
memory content in pages. Hence an entire page has to be
migrated even when only a fraction of a page is written.
We tested this assumption by “filling” pages to a varying

degree using the dirty page generator. As expected, both
virtualization toolkits showed no effect on downtime or
migration time.

E. PERIOD and BPC

The parameters PERIOD and BPC determine how fre-
quently memory pages are modified. In order to assess how
total migration time and downtime are affected by them we
conducted a series of experiments where we varied PERIOD
for a number of settings for BPC using the dirty page
generator. Results show that both downtime and migration
time are strongly affected by the two parameters. To check
for stochastic variability, we determined 95% confidence
intervals, which never exceeded 5% of the average value.
However, the influence of PERIOD and BPC are complex
and will be further investigated in Section V.

To better understand the complex behavior we performed
a source code analysis of Xen and had personal commu-
nication with VMware representatives. The behavior seems
to be mainly related to the rate-adaptive migration control.
The relevant aspect here is the dirty page diff set, the
fraction of pages that are scheduled to be copied in each next
round of the pre-copy phase. Both virtualization products
obviously identify ”hot pages” in this set and shift such
pages more aggressively to the stop-and-copy phase because
for hot pages a block transfer in the stop-and-copy phase
is potentially more effective (depending on “hotness” of
the page, network link speed and other factors). Akoush et
al. [4] made similar investigations in their live migration
performance analysis.

F. Summary

Summing up these experiments, we observe that live
migration duration as well as downtime can depend heavily
on the investigated factors. On the other hand we saw that
CPU load as well as the degree to which memory pages are
filled do not influence migration performance significantly
which allows us to exclude them from further investigations.

In order to deal with the mutual non-trivial dependencies
seen in this section we subsequently devised experiments
that investigate all combinations of factors, as will be
presented in the next section.

V. MULTI PARAMETER EXPERIMENTS

From the experiments shown in the previous section we
were able to conclude that the factors LOAD and FILL can
be omitted from further analysis.

A second reduction in the number of factors can be
achieved by leveraging on the fact that BPC (blocks per
cycle) and PERIOD (duration of one cycle) can be combined
into one factor RATE = BPC

PERIOD , which denotes the
number of blocks that are modified per millisecond.

We have hence reduced the number of factors to the
following three parameters: VMSIZE, WSET, and RATE.
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Figure 1. Mean downtime for Xen plotted over WSET and RATE for VMSIZE=4096 (left) and VMSIZE=8192 (right)
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Figure 2. Mean migration time for Xen plotted over WSET and RATE for VMSIZE=4096 (left) and VMSIZE=8192 (right)

We performed experiments according to a full factorial
design, meaning that all possible combinations of parameter
levels have been measured in the experiment. More specifi-
cally, for Xen we investigated a total number of 528 param-
eter combinations (treatments), each with 20 measurements
resulting in an overall number of 10560 migrations. In each
experiment we measured migration time and downtime as
response variables. In case of the VMware hypervisor, we
performed experiments for 352 combinations resulting in
7040 migrations.

In the following we will discuss results for each virtual-
ization framework separately.

A. Analysis of XenServer

As we have three factors (plus a response variable) we
cannot present the entire results in one plot. Since VMSIZE
has the least number of levels, we decided to plot the mean
response, i.e. mean migration time or downtime, over WSET
and RATE for fixed values of VMSIZE (see Figures 1 and 2).
Comparing the two figures, we can see that downtime shows
a very different behavior in comparison to migration time,
although the first is part of the latter.

Downtime (Figure 1) in general increases with increasing
WSET and increasing RATE. This is not surprising as
an increased usage of memory (more pages written at an

increasing rate) requires more memory to be transferred in
the stop-and-copy phase. We can also conclude from the
figure that WSET seems to have a linear effect on downtime,
regardless of the values of VMSIZE and RATE.

Turning to total migration time (Figure 2) we observe
that the mean migration time is more irregular. It came
as a little surprise to us that for RATE levels ”above the
jump” total migration time decreases with increasing RATE.
In order to check that this behavior really occurs we have
carried out separate experiments specifically targeted to this
question with the same consistent result. The behavior can
be explained by the documented stop conditions for the pre-
copy phase in these products. The precopy phase of Xen
stops (1) when a sufficiently small amount of memory is
left on the source or (2) if an upper limit for the transferred
data was reached or (3) if the time taken becomes too
long (measured by the number of pre-copy rounds) [4].
Hence if the modification rate grows beyond a certain value
close to the link speed, the algorithm will end the pre-copy
phase earlier resulting in the observed behavior of constant
downtime and decreasing overall migration time.

One peculiarity in Figures 1 and 2 is the abrupt change
at a RATE level around 30,000 1

s . In order to analyze this
further, we conducted additional “zoom-in” experiments that
investigated a sub-range of values for RATE at greater level
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Figure 3. Mean downtime (left) and migration time (right) for Xen with
additional WSET and RATE levels in the ”zoom-in area”, VMSIZE=4096

of detail (see Figure 3). As it can be seen from the plot,
the change is not as abrupt as might have been concluded
from Figures 1 and 2 and only appears to be abrupt due
to the scale of the plot and due to a lack of intermediate
measurement points.

The effect of VMSIZE can be observed by comparing the
two plots in Figure 2. It can be seen that VMSIZE has a
non-trivial effect on migration time: since the shapes look
very different at different levels of VMSIZE, the effect does
not appear to be linear, except for the case where RATE
equals zero. There is no effect of WSET if RATE is zero.

The plots in Figures 1 to 3 show times averaged over all 20
measurements. In order to assess the variability in the data,
we report the ratio of maximum to minimum values as well
as standard deviations for the data in Table II. Specifically,
two ratios and two standard deviations are reported: the ratio
of the maximum treatment mean to the minimum treatment
mean and the ratio of the maximum to the minimum values
across all measurements. Regarding standard deviations we
report the largest standard deviation computed within each
treatment as well as the standard deviation for the overall
data set. In addition, the table reports the mean time averaged
across all measurements.

The table quantifies what has also been observable from
the plots: Both migration time as well as downtime vary
tremendously depending on the three investigated parame-
ters.

B. Analysis of VMware

Due to space limitations we report results for VMWare
only for VMSIZE equal to 4GB (see Figure 4). This is no
severe limitation as the behavior is very similar for other
values of VMSIZE.

As can easily be observed the behavior differs signif-
icantly from the one of Xen, which emphasizes that the
choice of the hypervisor product can have significant impact
on availability. The main reason for the different behavior
seems to be the different rate-adaptive algorithms employed
in the two virtualization products.

Variability of the data for VMware is also listed in Ta-
ble II. Regarding the max:min ratio of downtime computed
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Figure 4. Mean migration time (top) and downtime (bottom) for VMware
plotted over WSET and RATE, VMSIZE=4096

from treatment means we have observed a ratio of 16.27.
This shows that due to different memory load the maximum
mean downtime can be 16.27 times as large as the minimum
mean downtime. If we instead consider the maximum and
minimum value observed across all experiments, the factor
even goes up to 23.83! The conclusion from this observation
is that if service downtime is critical for meeting availability
goals, a realistic assessment of availability can only be
achieved if the maximum downtime for the application-
specific memory load is used.

VI. RELATED WORK

In the area of dependable computing, VM live migra-
tion has primarily been used as a tool. Two examples are
proactive fault tolerance [2] and the approach to resource
allocation proposed in [5].

A second group of related work deals with various aspects
of implementing VM live migration. Hines and Gopalan [6]
discuss the modification of Xen for post-copy live migra-
tion. Sapuntzakis et al. [7] introduced several optimization
approaches for VM live migration, among which ballooning
is best-known, which forces the VM to swap out as much
memory as possible.

This work, however, is somewhere in between using
live migration as a tool and investigating aspects of its
implementation: We have focused on the factors determining
downtime and migration time from an application’s perspec-
tive. A work that is closer related to ours is [3], which
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Table II
DATA VARIABILITY

Hypervisor / Guest time Mean time [s] Max:Min Ratio Standard Deviation
Mean Overall Treatment Max [s] Overall [s]

XenServer / CentOS migration 89.73 9.01 9.10 6.32 39.08
downtime 7.69 3.17 3.46 0.62 2.94

VMware / Linux migration 30.93 2.24 2.96 7.72 7.51
downtime 3.10 16.27 23.83 0.50 1.80

investigates the effect of the size of the writable working
set. The migration times reported are much smaller than the
ones reported here. This is probably due to the fact that
the workloads used in their experiments do not result in
significant memory load.

VII. CONCLUSION

With growing capacity of commodity server hardware and
increased consolidation efforts, virtualization has become a
standard approach for data center operation - not only on
the mainframe and for UNIX systems, but also in the world
of Intel servers. Live migration of virtual server workloads
can be employed to implement workload-driven system
management as well as mechanism to free server hardware
that is due for maintenance and repair. However, in order to
give guarantees on application availability or responsiveness
as well as for proactive fault management, solid estimations
either about the total duration of live migration or the length
of service downtime are mandatory.

In this paper, we have reported about our research on
major factors that influence migration time and migration-
induced downtime. Our measurements are based on two
representative virtualization products, namely VMware ESX
4.0.0 and Citrix XenServer 5.6. By carrying out a wide range
of experiments, our analysis shows that performance of live
migration can vary significantly depending on the memory
load and memory access patterns of the guest system.

The results can be used, e.g., to investigate the appli-
cability of VM live migration in the context of proactive
fault management: If VMs are to be migrated away from
failure-prone hosts the failure prediction algorithm needs to
predict failures further in the future than the total duration
of migration. Our results also help to assess if service avail-
ability assertions are violated by the downtime introduced
by live migration of a VM running the service. Even if the
absolute numbers may be different for future versions of the
virtualization products our results highlight that application-
specific investigations are crucial to assess the feasibility of
live migration in a particular scenario.

A second area where our results are useful is to help to im-
prove live migration features of virtualization products. For
example, the observation that Xen migration time depends
on the size of virtual RAM configured might be an indicator
how live migration can be improved futher, or might even
stimulate new ideas for VM live migration.

Future work will involve investigation of other virtual-
ization approaches (e.g., KVM and Microsoft Hyper-V).
We will also focus on the relationship between the load
generators used in this work and real-world applications.
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