

Timing Failures Caused by Resource Starvation in Virtual Machines

Sune Jakobsson

NTNU, ITEM

Trondheim, Norway

e-mail: sune.jakobsson@telenor.com

Abstract—This paper discusses cascading effects of resource

starvation in virtual machines, and how that affects end-user

experiences in certain cases. The paper presents the occurring

issues on an N-tier server system, and the way the starvation

causes unexpected delays in a service for an end-user. The

initial observations were on unexpected communication delays,

and by using a simplified test system, this behaviour can be

confirmed. The delays can traced back to memory

management in the individual servers, causing the timing

failures.

Keywords- Java virtual machines; garbage collection;

application servers; resource starvation.

I. INTRODUCTION

This paper addresses cascading effects of resource
starvation, in particular where a server side system is built
using multiple tiers, and they call each other in a serial
fashion to a depth of N. This effect is observed by end-users
intermittently, where their service fails once, and by
reloading their browser or application the service is restored.
The definition of timing failures is from [3] and is defined
as: “The time of arrival or the duration of the information
delivered at the service interface (i.e., the timing of service
delivery) deviates from implementing the system function.”
A Cascading Effect is an unforeseen chain of events due to
an act affecting a system [9].

 A typical service would consist of a client running in a
terminal, accessing a server frontend exposed on the internet.
The underlying system is often a multi-tier system consisting
of one or more application servers and one or more
databases. The frontend, does load balancing, and then
passes the request to a HTTP server, which in turn forwards
the request to a Servlet container. The Servlet processes the
requests, and in turn will contact other servers on the
Internet, databases, etc. Once all the information is returned
the Servlet builds the response page to the requesting user,
and the information is returned.

Each server uses a dynamic amount of memory for their
task, and with modern programming languages the memory
is allocated when needed and freed when the virtual machine
is running low on the free memory pool, or is idle and
decides to clean up its memory pool [6]. This process is
referred to as garbage collection, and there are many
strategies for this mechanism [7]. If one observes the amount
of free memory on a virtual machine over time, the
waveform is an inverse saw tooth form with a maximum
value matching the total amount of free memory, and the

minimum values when the garbage collection mechanism is
run.

Figure 1. A server system.

Fig. 1 shows how a mobile client interacts with an
application server, marked “A”, and how this server in turn
interacts with the other servers, the blue dotted line is the
path used when checking the availability. The figure also
gives an indication on how the servers are deployed, but they
might belong to different administrative domains on different
networks. Fig. 2 is a sequence diagram, showing how the
HTTP invocations in the test system are chained together,
when they are called form each server to the next server,
starting from server A, until they reach the depth of N
servers, where the result is returned. It is assumed that the
servers are instances of application servers like Tomcat [5].

II. MEMORY ALLOCATION

Applications need memory for their task and the
communication requires buffers to store data. When new
objects are allocated they are taken from the memory pool.
When the available memory runs low, a garbage collector
inspects and frees objects that are no longer in use, and if one
observes the available free memory on a typical virtual
machine this shows an inverse staircase pattern. Fig. 3 shows
a set of available free-memory patterns, showing how they
are allocated and garbage collected over time. The amount of

88

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

free memory available is collected from the JVM, using
system calls on each application server. The figures are
normalized, so that they can be compared, and the x-axis
shows a cycle time of approximately 9 minutes for the
servers in blue and brown, whereas one of the servers shown
in purple has a cycle time of 23 minutes. The frequencies of
the cycles depend on the load of each individual virtual
machine. The load impacts the memory usage, and when
observing the graphs they show a frequency modulated
inverse saw tooth shape.

Figure 2. Cascaded HTTP invocations.

From a dependability point of view, the interesting point

in time is when the garbage collection is running and hence

the requests for free memory are stalled. Since the

frequency this occurs at does not happened at regular

intervals, and one single run of garbage collection does not

impact the overall service execution time. The cascading

effect occurs when multiple garbage collectors run right

after each other effectively stalling the ability to reserve

resources in the virtual machines involved. This condition is

a late timing failure as shown in Fig. 8 in [3]. For each

virtual machine the probability that the garbage collector

runs is px. If we number the probabilities p1 to pn the

interesting scenario occurs when multiple garbage collectors

run after each other in a close sequence, effectively stalling

the response back to the end-user. For all garbage collectors

to run the probability is the product of the individual

probability, and for all but one, the probability is sum of the

individual probabilities but one, and so on. Given that the

number N is small, one can construct a formula and find the

N with the biggest likelihood for performance failure.

III. A TEST SYSTEM

To model a real service that would exercise as many
parts as possible of an N-tier system, a simple test system has
been programmed, which uses the involved virtual machines,
and invokes each other into N levels with using a fixed
amount of memory in each level. This test system therefore
mimics the behaviour of a hypothetical service including a
number of servers interacting, communicating over the
Internet to provide a composite service. The core issue of

application availability is trying to establish a method that
ensures that the individual nodes are able to communicate,
and that their application servers are functional and
available, when they interact as shown in Fig. 2. A typical
service would run in an application, and retrieve
miscellaneous data from other servers connected to the
internet, like group information, location, and maps.

Figure 3. Plotted set of free memory samples (normalized).

Each node communicates with the next node defined by a
data object consisting of a fixed list of URL’s that is passed
between all servers. As part of the local logging process of
each node they also collect the amount of free memory
available in the virtual machine, and the data object also
contains timestamps for later correlation of the results. The
list is continually passed around at fixed intervals (30
seconds), and when there are delays or processing issues this
impacts the amount of free available memory. This logged
data on each node can then be post-analyzed and the real
cause can be determined, for the failure of the hypothetical
service. The interesting part here is the strong correlation on
how many buffers are occupied due to delays or errors in the
transmission between the participating nodes. When there
are HTTP messages that are not acknowledged, they use up
the common memory of the system, and this can be
measured with the available free memory. The amount of
free memory can be obtained directly from a Java virtual
machine if the application is implemented in the Java
programming language or from the operations system when
other programming languages are used. The elegance of this
approach is that the measurements are non-intrusive to the
application, and eliminates other hooks into the
communication channel or their respective drivers.

IV. OPERATION

Each node, when invoked, obtains a time reference and
the amount of free memory, and when the communication is
done with the next node, these values are written to the
standard output file of the application server. At the sending

89

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

end there is a standalone program issuing the requests at
fixed intervals as shown in Fig. 1, from server marked “A”.

If the transmitted URL list makes it all the way to the
destination the sender receives an acknowledgment in the
form of HTTP status (200) OK, but there are plenty of
observations where the list is delayed or its acknowledgment
is delayed, but not lost. If the list is lost that is an obvious
case, and also indicated in the HTTP status from the
underlying TCP implementation in the operating system, but
there is a group of cases where the list is not lost and makes
it all the way to the last node, and the acknowledgment is
returned, and all seems fine, yet the time seen from the
initiating node is unacceptable long, and we have a case of
timing failure. The term “unacceptable long” varies from
case to case, but if a human does the interaction a delay for a
second on a response from a service might be unacceptable.

Figure 4. Time between timing failures.

By post-processing the log files from each node, more
details about the cause can be obtained. The graph in Fig. 4
shows the time between failures for a period of a month,
where only a few other errors occurs, where the data object
fails on its route, and in this period only timing failures
occurred. The steps on the x-axis are 3000 seconds each. The
number samples with timing failures is 212 out of totally
80624 data objects dispatched. In this period there are also
15 cases of halt failures in the data set. The shape of the
graph indicates that it resembles a Poisson distribution, with
a λ of approximately 0.955. This fits well with the
assumption that the events occur continuously and
independently at a constant average rate.

V. STATE OF THE ART

In closed and well monitored systems, with probes and

other means of surveillance there are many commercial

available solutions to detect timing failures and other

failures and faults. However when it comes to distributed

systems across different domains where there is no common

administration, there is little material available. Several

authors have studied causes of catastrophic failures in Web

Applications [8] and the failures impacts on operation and

how the failure has impacted the companies’ respective

brand. Porter defines a system called X-Trace [1], to collect

trace data to figure out what went wrong in an Internet scale

system. This is done by adding extensions to HTTP headers

in the requests, in order to be able to trace or locate them

afterwards. His approach has some scaling issues, and also

requires insertion of monitoring nodes or additional SW on

the servers.

In the approach we propose, one would add the proposed

minimalistic test application on each node one has control

over and call the other nodes with some dummy data, in

order to decide if the communication and the application

servers are indeed available.

VI. CONCLUSION

This paper showed the cascading effect of the individual

memory allocation processes, and how they do affect the

performance and availability for a service using multiple

serves loosely connected over the Internet. The data

collected also supports the assumption that the occurrence

of timing failures occur continuously and independently at a

constant rate. This paper outlines one of the issues observed

on practical data collected in my research work, and will be

further validated and modelled in my thesis work.

ACKNOWLEDGMENT

I would like to thank Professors Rolv Bræk and Bjarne
Helvik at Department of Telecommunication at NTNU, for
their advice and guidance in my research work.

REFERENCES

[1] G. Porter, “Improving Distributed Application Reliability with End-

to-End Datapath Tracing”, PhD at Electrical Engineering and
Computer Sciences, University of California at Berkeley Technical
Report No. UCB/EECS-2008-68
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-
68.html (last seen Jul. 2011)

[2] W. G. Bouricius, W. C. Carter and P. R. Schneider, “Reliability
Modelling Techniques for Self-Repairing Computer Systems”
Proceedings 24th National Conference ACM, 1969.

[3] A. Avižienis , J. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,”
IEEE Trans. Dependable and Secure Computing, vol. 1,no. 1,pp. 11-
33, Jan.-Mar. 2004.

[4] J. Engel: “Programming for the Java Virtual Machine”, Addison-
Wesley, 1999. ISBN 0-201-30972-6

[5] Tomcat application server. http://tomcat.apache.org/ (last seen Jul.
2011)

[6] Java virtual machine. http://java.sun.com/javase/ (last seen Jul. 2011)

[7] R. Jones, “The Garbage Collection Page”,
http://www.cs.kent.ac.uk/people/staff/rej/gc.html (last seen Jul. 2011)

[8] S. Pertet and P. Narasimhan, “Causes of Failure in Web Applications
(CMU-PDL-05-109)”. Parallel Data Laboratory. Paper 48.
http://repository.cmu.edu./pdl/48 (last seen 2011)

[9] Cascading effect: http://en.wikipedia.org/wiki/Cascade_effect (last
seen 2011)

Article in conference proceedings:

[10] S. Jakobsson, “A Token Based Approach Detecting Downtime in
Distributed Application Servers or Network Elements”, Networked
Services and Applications - Engineering, Control and Management,
16th EUNICE/IFIP WG 6.6 Workshop, EUNICE 2010, Trondheim,
Norway, June 28-30, 2010. ISBN 978-3-642-13970-3 Proceedings,
pp. 209-216

90

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

91

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

