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Abstract—This paper introduces different views for under-
standing problems and faults with the goal of defining a method
for the formal specification of systems. The idea of Layered
Fault Tolerant Specification (LFTS) is proposed to make the
method extensible to fault tolerant systems. The principle is
layering the specification in different levels, the first one for the
normal behavior and the others for theabnormal. The abnormal
behavior is described in terms of an Error Injector (El), which
represents a model of the erroneous interference coming from
the environment. This structure has been inspired by the notion
of idealized fault tolerant component but the combination of
LFTS and El using Rely/Guarantee reasoning to describe their
interaction can be considered as a novel contribution. The
progress toward this method and this way to organize fault

tolerant specifications has been made experimenting on case

studies and an example is presented.

Keywords-Formal Methods; Layered Fault Tolerant Specifi-
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I. INTRODUCTION

There is a long tradition of approaching Requirementsg
Engineering (RE) by means of formal or semi-formal tech-
niques. Although "fuzzy” human skills are involved in the

process of elicitation, analysis and specification -

communication teaches us that [9]:

“Human communication is a process during which
source individuals initiate messages using con-
ventionalized symbols, nonverbal signs, and con-
textual cues to express meanings by transmitting
information in such a way that the receiving party
constructs similar or parallel understanding or par-
ties toward whom the messages are directed.”

as in
any other human field - still methodology and formalisms
can play an important role [19]. However, the main RE
problem has always been communication. A definition of

Formal methods in system specification look to be an
approachable solution.

Object Oriented Design [6] and Component Computing
[26] are just well known examples of how some rigor and
discipline can improve the final quality of software artifac
besides the human communication factor. The success of
languages like Java or C# could be interpreted in this
sense, as natural target languages for this way of stragturi
thinking and design. Itis also true - and it is worth remirgdin
it - that in many cases it has been the language and the
available tools on the market that forced designers to adopt
object orientation principles, for example, and not vicesae
This is the clear confirmation that it is always a combination
of conceptual and software tools together that create ¢ffe ri
environment for the success of a discipline.

Semi-formal notations like UML [10] helped in creating a
language that can be understood by both specialists and non
specialists, providing different views of the system thaut c
e negotiated between different stakeholders with differe
ackgrounds. The power (and thus the limitation of UML)
is the absence of a formal semantics (many attempts can be
found in the literature anyway) and the strong commitment
on a way of reasoning and structuring problems which is
clearly the one disciplined by object orientation. Manyesth
formal/mathematical notations existed for a long time for
specifying and verifying systems like process algebras (a
short history by Jos Baeten in [3]) or specification langsage
like Z (early description in [2]) and B [1]. The Vienna
Development Method (VDM) is maybe one of the first
attempts to establish a Formal Method for the development
of computer systems [5]. A survey on these (and others)
formalisms can be found in [22]. All these notations are very
specific and can be understood only by specialists. The point
about all these formalisms is that they are indeed notations

The first thing we have realized in building dependableformal or semi-formal. Behind each of them there is a way

software is that it is necessary to build dependable comef structuring thinking that does not offer complete freedo
munication between parties that use different languagds arand thus forces designers to adhere to some discipline. But
vocabulary. In the above definition you can easily find thestill they are not methods in the proper sense, they are thdee
words”similar or parallel understanding are constructed by languages.

the receiving parties,” but for building dependable systems o

matching expectations (and specification) it is not enougt-ontributions of the paper

to build asimilar or parallel understandingsince we want The goal of this paper is providing a different view for

a more precise mapping between intentions and actionsnterpreting problems and faults. The overall result wi#l b
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4. Assure nothing

the definition of a method for the specification of systems was omited
that do not run in isolation but in the real, physical workl. I~ &= :E 3. Salve problems in
[20], we mainly defined a draft of this approach contributing ; _ [
with an understanding of what a method is and an analysis .
of the desiderata. We then presented our method and it e ony at = %
application to a Train System example. We realized that few
points were still at a draft stage and their explanatior stil I
obscure in some paragraphs. In this paper we will provide o osmalpats ﬁ
more details instead and a different example. The main
contributions of this work can be considered:
1) A perspective for describing problems in term of static
view and dynamic view and and a discussion on how Figure 1. The method of science
to combine them
2) A perspective to describe faults in terms of an Error

Injector representing a model of faults (and consequengleriving the final specification from a wider system where

introduction of fault tolerant behavior) assumptions have been understood and formalized as layers
3) The organization of the specification in terms of layersof rely conditions. Here the difference between assumption
of Rely Guarantee conditions (LFTS) and requirements is crucial, especially when considetieg t

4) The experimentation on a small automotive case studyroper fault tolerance aspects. We could briefly summarize

In particular, in Section 2, problems are described in termshis philosophy as follows:
of static view (based on Problem Frames) and dynamic
view (built on top of rely/guarantee conditions). Section
3 introduces faults and the idea of Layered Fault Tolerant
Specification (LFTS) which is then applied in section 4 on
a very simple example. Section 5 draws conclusions on top
of what has been shown in the paper.

« Not specifying the digital system in isolation

« Deriving the specification starting from a wider system
in which physical phenomena are measurable

« Assumptions about the physical components can be
recorded as layers of rely-conditions (starting with
stronger assumptions and then weakening when faults

[I. AN ANGLE TO SEE PROBLEMS are considered)

Our work in this paper focuses especially on [17] where Sometimes, we have found useful, in the presentation of
the original idea of a formal method for the specificationthese concepts, to use Figure 2. This figure allows us to show
of systems running in the physical world originated. Thathow a computer system can be seen from a different angle,
paper was full of interesting ideas but still was lacking as not consisting of functions performing tasks in isolatio
of a method in the sense we described in [20] and [21]but as relationships (interfaces/contracts) in a widerldvor
Few case studies have been analyzed according to thiscluding both the machine and the physical (measurable) re
philosophy in [7] but still a complete method has not ality. As we will see later, this philosophy has been ingpire
been reached. For this reason we think now that a morby Michael Jackson’s approach to software requirements
structured approach is urgent in this area. Thus, the goalnalysis typically called Problem Frames approach [14].
of the present work is improving our understanding of The Silicon Package is the software running on the hosting
those ideas and incrementing that contribution putting itmachine. It should be clear that the machine itself can aeith
in an homogeneous and uniform way and describing acquire information on the reality around nor modify it.
method featuring the properties we introduced in [20], withThe machine can only operate trough sensors and actuators.
particular attention to fault tolerance. In Figure 1, weasp To better understand this point, we like to use a similar
a graphical synthesis of the Descartes method presented metaphor about humans where it is easier to realize that
[24]. This work presents a method as consisting of a paytiall our brain/mind system (our Silicon Package?) cannot aequir
ordered set of actions which need to be performed and theimformation about the world but it can only do that through
discharged within a specific causal relationship. The ssgce eyes, ears and so on (our sensors). In the same way it cannot
of one action determines the following ones. Furthermoremodify the world if not through our arms, voice, etc (our
the method has to be repeatable, possibly by non experts actuators). So, as we start describing problems in the real
specialists. world in terms of what we perceive and what we do (and

At the moment we have had some progress in thimot about our brain functioning) it makes sense to adopt
direction but we still need more work toward a method fora similar philosophy for computer systems consisting of
the specification of fault tolerant systems. The basic ideaensors and actuators. Around the Silicon Package you can
behind [17] was to specify a system not in isolation butsee a red circle representing the problem world and green
considering the environment in which it is going to run andsmall spheres representing the assumptions that need to be

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-149-6 73



DEPEND 2011 : The Fourth International Conference on Dependability

made regarding it. The arrows and their directions reptesernnstead of "phases” since we do not want to suggest a sort
the fact that we want to derive the specification of the silico of linear process, which is not always applicable, esplgcial
package starting from the wider system. The way in whichwhen coping with fault tolerance (as we will discuss later).
we record these assumptions is a topic for the followingWe imagine, in the general case, many iterations between
sections. the different steps. The idea of the method is to ground
the view of the silicon package in the external physical

assumption (@ @, assumption world. This is the problem world where assumptions about

the physical componentautsidethe computer itself have to
problem world be recorded. Only after this can we derive the specification
- syt omponats for the software that will rurinside the computer. A more
“Silicon . . . .
assumption (@ Package” M@ ) assumption precise formalization of the method and the features it bas t

M exhibit is one of the main contributions of [20]. The reader
is probably realizing that what we are obtaining here is a

method exploiting two different perspectives during theéh

assumption () L) assumption steps

« astatic viewdefining the boundaries of the system and
representing the relationships between phenomena and
Figure 2. Silicon Package, Problem World and Assumptions domains in it. Our reference tools here are Problem
Diagrams [14].
« a dynamic viewrepresenting the interactions between

The method, its Steps and its Views different processes in the system and able to record the
In [20], we analyzed the method introduced in [17] assumptions. Our mathematical reference tools here are
according to the properties described in [24]. To do that, rely/guarantee conditions [16], [15], which regard the
we recognized three macroscopic steps: execution of concurrently executing (and interfering)
1) Define boundaries of the systems processes.
2) Expose and record assumptions Furthermore we need an approach to consider faulty
3) Derive the specification behavior. This will be described later in the related sextio

Our idea is not committing to a single Ianguage/notationThe idea behind having two different views is that different

- we want a formal method, not a formal language - so WE,o_eople (or stakeholders) cp_uld _possibly be interested ionly
will define a general high level approach following theseSingle aspects of the specification and be able to understand
guidelines and we will suggestference toolgo cope with ~ Only one of the possible projections. In this way you can
these steps. It is worth noting that these are only referenc@PProach the specification without a full understanding of
tools that aresuggestedo the designers because of a wider 8Very single aspect.
experience regarding them from our side. A formal notationsiatic View
can be the final product of the method but it still needs to be | ,. . . .
. . : Michael Jackson is well known for having pioneered,
not confused with the method itself. In Figure 3, these steps . , . .
are presented and it is shown how different tools could fit.. the seventies (with Jean-Dominique Warnier and Ken
P . . Orr) the technique for structuring programming basing on
the method at different stages. We call these notations the
lug-ins since thev can be pluaged into the Stens correspondences between data stream structure and program
piug y piugg pS. structure [12]. Jackson’s ideas acquired then the acronym
JSP (Jackson Structured Programming). In his following
contribution [13], Jackson extended the scope to systems.

Derive Jackson System Development (JSD) already contained some
specification

Define
boundaries of

I Expose
)| assumptions

the systems /| of the ideas that made object-oriented program design fa-
/ mous.
= In this section, we describe our reference tool for repre-
@t#r?é.f£gfﬂiiis9“9 Gi‘é‘;é“:’;ﬂ'ﬂ%??f@%) C e e ) senting the relationships between phenomena and domains
of the system we want to specify using Problem Diagrams
Figure 3. Steps and Reference Tools [14]. Context Diagrams and Problem Diagrams are the

graphical notations introduced by Michael Jackson (in the

Figure 3 is a generic representation of the method wheréme frame 1995/2001) in his Problem Frames (PF) approach
we want to emphasize the different steps, which were noto software requirements analysis. This approach consists

clearly defined in [17]. The reader will understand that this a set of concepts for gathering requirements and creating
still a simplification of the process. We use the word "steps”specifications of software systems. As previously expthine
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the new philosophy behind PF is that user requirements are
here seen as being about relationships in the operational
context and not functions that the software system must ‘ Domain
perform. It is someway a change of perspective with respect
to other requirements analysis techniques.

The entire PF software specification goal is modifying the ‘ Domain |—| Domain
world (the problem environment) through the creation of a
dedicated machine, which will be then put into operation
in this world. The machine will then operate bringing the
desired effects. The overall philosophy is that the problem Figure 4. Context Diagram
is located in the world and the solution in the machine. The
most important difference with respect to other requireisien ) )
methodologies is the emphasis on describing the envirorProcess. A problem diagram shows the requirements on the
ment and not the machine or its interfaces. Let us considefYStém, its domains, and their connections. It is still part
for example, the Use Case approach [4]. What is done hergf @ stafuc view of the system but petter _represents the
is specifying the interface, the focus is on the interactio@SSumptions about the system and its environment. They
user-machine. With PF we are pushing our attention beyon@'€ Pasic tools to describe problems. To the information
the machine interface, we are looking into the real world.contained in context diagrams they add:

The problem is there and it is worth starting there. The « dotted oval for requirements

first two points of the ideas taken from [17] (not specifying e« dotted lines for requirements references

the digital system in isolation and deriving the specifizati Figure 5 shows a scenario where the Silicon Package is in
starting from a wider system in which physical phenomenacharge of monitoring the patients conditions. We beliew th
are measurable) can be indeed tracked back, with somtke first step of the specification method (define boundaries
further evolution, to [14]. In this work, we are using PF of the systems) can be accomplished by means of this tools.
to develop a method for specification of systems, i.e., &hus we use Problem Diagrams as a reference tool for our
description of the machine behavior. But, before doing,thatresearch but still, as said, not constraining it to a specific

Domain

Domain —|| Machine

Domain

we need to start understanding the problem. notation or language.
Context Diagrams

The modeling activity of a system should start using this spec intertace dT;;g; I P
kind of diagram in the PF philosophy. By means of it we Monitor - Disply ~ Patent
are able to identify the boundaries of the system, where a MaCh'"e_m e
system is intended as the machine to be designed (software " Sensors |7 Patients “reare
+ hardware) and its domains with their connections (in terms domain interface
of shared phenomena). It is part of what we call a static view
of the system. Figure 5. Problem Diagram

Context Diagrams contain an explicit and graphical rep-
resentation of:

« the machine to be built .
. the problem domains that are relevant to the problem Problem Diagrams taken from the PF approach are a
« the interface (where the Machine and the applicatiod"'Otat'O” that forces us to think about the problem in the
domain interact) physical world instead of focusing immediately on the
. . . solution. We believe that they represent an effective tool
A domain here is considered to be a part of the world we . : ; e
. . . . to define the precise boundaries of the specification we are
are interested in (phenomena, people, events). A domain in- "~ S i
, . . working on. Summarizing they represent:
terface is where domains communicate. It does not represent .
data flow or messages but shared phenomena (existing in 1) thé machine _
both domains). Figure 4 shows a simple scenario. The lines 2) the problem domains

represent domain interfaces, i.e., where domains overidp a  3) the domain interfaces

Dynamic View

share phenomena. 4) the requirements to bring about certain effects in the
problem domains

Problem Diagrams 5) references in the requirements to phenomena in the
The basic tool for describing a problem is a Problem problem domains

Diagram, which can be considered a refinement of a Context Once the domains of the context we are working on, their
Diagrams. This should be the 2nd step of the modelingphenomena and the relative overlap have been understood,
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it will be necessary to focus on the "border” between the

Silicon Package and the real world. It is necessary to distin I/0:P(N)—N

guish between assumptions and requirements and we need )

a tool to record assumptions. Our system will be compose% Now, you expect your input to be a set of natural numbers,

of interacting parts and each of these parts will also ictera ut to b? able to CquUte the min such a set has to be non
with the world. The world itself has to be understood in MPY since the min is not def”_]ed for empty sets. So the
term of assumptions about normal/abnormal behavior and Brecondltlons that has to hold will be:

model of fault need to be considered. For all these reason we

introduce the concept afynamic viewwhich represents the P(S):5#0

interactions between processes in the system and betweenpyrgyided that the input is a set of natural numbensl

the system and the world. To record our assumption (as WR is not empty, the implementation will be able to compute

will see layers of assumption for fault tolerance) we use ahe min element, which is the one satisfying the following:
mathematical reference tool, i.e., rely/guarantee cardit

[16], [15], which regard the execution of concurrently exe- Q(S,r):reSA(Vee S)(r<e)

cuting processes. R/G conditions are a powerful abstractio

for reasoning about interference and they originated in the Given this set of rules, the input-output relation is given

Hoare logic idea of preconditions and postconditions [11].by the following predicate that needs to be satisfied by any

The purpose is providing a set of logical rules for reasoningmplementationf :

about the correctness of programs. We will explain the

idea through examples, for more details please consider the

literature. As the reader will realize in this section, rely vS € PIN)(P(S) = £(5) € NAQ(S, f(5)))

conditions can be used to record assumptions in the overalhterference

context of the proposed method. pre_ver, as sta_ted in 23], The example just shown summarizes the power (and the

when they show too much complication this might be ajimitations) of this kind of abstractions. To better unders

warning indicating a messy interface. the limitations consider Figure 6 where interference and

Preconditions and Postcondition global state are depicted. The two processes alternate thei

To understand the power of the R/G reasoning it iSexecution anq access the state. The global state can consist
%f shared variables or can be a queue of messages if message

necessary to realize how preconditions and postcondition assing is the paradiam adooted. This figure shows exactl
can help in specifying a software program when interferenc&iJ 9 P 9 pted. g y

does not play its role. What we have to describe (by mean he situations described in [16], quoting precisely thatkvo
of logical formulas) when following this approach is: As soon as the possibility of other programs
1) the input domain and the output range of the program (proczsses) ru?rll_ng '? paraII?I (')Sf admltte_d, there
2) the precondition, i.e., the predicate that we expect to IS a danger of “inter erence. more mteres.t
be true at the beginning of the execution are the places where it is required to .permlt
3) the postcondition, i.e., the predicate that will be trtie a parallel processes to cooperate by changing and

the end of the execution provided that the precondition referencing the same variables. It is thef‘ necessary
holds to show that the interference assumptions of the

. . arallel processes coexist.
Preconditions and postconditions represent a sort of con- P h P ; _
tracts between parties: provided that you (the environment Another quote from [8] says: o
the user, another system) can ensure the validity of a pertai ~ The essence of concurrency is interference:

condition, the implementation will surely modify the stéte shared-variable programs must be designed so as
such a way that another known condition holds. There is no ~ to tolerate state changes; communication-based
probability here, it is just logic: if this holds that will tah concurrency shifts the interference to that from
And the input-output relation is regulated by a predicas# th messages. One possible way of specifying inter-
any implementation has to satisfy. ference is to use rely/guarantee-conditions.

We show the example of a very simple program, the In case we consider interfering processes, we need to
specification of which in the natural language may‘#énd accept that the environment can alter the global state. How-
the smallest element in a set of natural numbers” ever,the idea behind R/G is that we impose these changes to

This very simple natural language sentence tells us thabe constrained. Any state change made by the environment
the smallest element has to be foundanset of natural (other concurrent processes with respect to the one we are
numbers So the output of our program has necessarily toconsidering) can be assumed to satisfy a condition called R
be a natural number. The input domain and the output rangé@ely) and the process under analysis can change its state
of the program are then easy to describe: only in such a way that observations by other processes will
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consist of pairs of states satisfying a condition G (gua@nt for which the solution is already known. There are four main
Thus, the proceseelying on the fact that a given condition patterns plus some variations:

holds canguaranteeanother specific condition. An example , required behavior (the behavior of a part of the physical

is now presented. world has to be controlled)
« commanded behavior (the behavior of a part of the
i physical world has to be controlled in accordance with
guues I e L L L L L CELLELRLD . commands issued by an Operator)
: N\ « information display (a part of the physical world states
: ‘ : and behavior is continuously needed)
x \‘ « simple workpieces (a tool is needed for a user to
R IR LR create/edit a class of text or graphic objects so that
they can be copied, printed...)
: _ : Our perception is that, when describing the behavior of
/\ interfering processes - especially when faults are consitie
‘ as a special case of interference (see next section) - the
@J diagrams and the patterns provided are not powerful enough.

Interference on the state . .-
We need further refinement steps filling the gap between the
‘ - .:—:- static and the dynamic view to complete the specification
process. Now we briefly describe these ideas that needs
Figure 6. Interference trough global state further work and can be considered an open issue.

o Interface Diagram
Greates_t Common D'V'SOT _ _ In a 3rd step of the modeling process, we want to represent
Consider the two following simple pieces of code, the co-an external, static view of the system. We need a further
operation of which calculates the Greatest Common Divisoriefinement of the Problem Diagram able to identify the op-
erations of the system and its domains, and the input/output

P1: P2: data of these operations (with their types). The relatigmsh

V‘h.';e(afg){ V‘h_']!et()afb){ of these with the requirements identified in the Problem
' a(:a: a- z); ' é - g?a; Diagram has to be represented at this stage.

} ' Process Diagram

Plis in charge of decrementiagand P2 of decrementing | g 4th step of the modeling process, the whole system is
b. Whena = b will evaluate to true it means that one is the represented as a sequential process and each of its domains
Greatest Common Divisor fa andb. The specification of 55 5 sequential process. Concurrency within the system or
the interactions is as follows: within its domains is modeled by representing these as
two or more subcomponents plus their rely and guarantee

Ri:(a=a)A(a>b=b=b)A(GCD(a,b) = GCD(G,b) conditions. This is an external, dynamic view of the system
Gi:(b=B)A(a<b=a=0)A(GCD(a,b) = GCD(@b) 00 oo i -y y

Ry =Gh '

G2 =R

IIl. AN ANGLE TO SEE FAULTS

Here the valueg andb are used instead afandb when we Testing can never guarantee that software is correct.
want to distinguish between the values before the executiohlevertheless, for specific software features - especiblly t

and the values after. P1 relies on the fact that P2 is nodnes involving human actions and interactions - rigorous
changing the value o& anda > b means no decrements testing still remains the best choice to build the desired
for b have been performed. Furthermore the CGD did nosoftware. We know very little about human behavior, there
change. Specular situation is for the guarantee conditiorare few works trying to categorize, for example, human
Obviously, what is a guarantee for P1 becomes a rely foerrors in such a way that we can design system that can

P2 and vice versa. prevent bad consequences [25] but this goes far beyond the
) . scope of this work. Here we want to focus on the goal of
Need for Extension (of Jackson's Diagrams)? deploying highly reliable software in terms of aspects that

The objective of a PF analysis is the decomposition ofcan be quantified (measured), for example the functional
a problem into a set of subproblems, where each of thesmput/output relation (or input/output plus interferenaes
matches a problem frame. A problem frame is a problemwe have seen). In this case, formal methods and languages
pattern, i.e the description of a simple and generic problenprovide some support. The previous sections discussed how
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to derive a specification of a system looking at the physicah situation in which a message has been intentionally sent
world in which it is going to run. No mention has been madeonce (or a variable update has been done once) but the actual
of fault tolerance and abnormal situations which deviateresult is that it has been sent (or performed) twice because
from the basic specification. The reader will soon realizeof a faulty interference. The last case is the malicious one,
that the method we have defined does not directly deale., it has to be done intentionally (by a human, it cannot
with these issues but it does not prevent fault tolerancéappen only because of hardware, middleware or software
from playing a role. The three steps simply represent whamalfunctioning). In this case a fake message (or update) is
you have to follow to specify a system and they do notcreated from scratch containing unwanted information.
depend on what you are actually specifying. This allows us Our model of fault is represented by a so-callgdor
to introduce more considerations and to apply the idea to #jector (El). The way in which we use the word here is
wider class of systems. Usually, in the formal specificationdifferent with respect to other literature where Fault the
of sequential programs, widening the precondition leadsr similar are discussed. Here we only mean a model of
to make a system more robust. The same can be dortae erroneous behavior of the environment. This behavior
weakening rely conditions. For example, if eliminating awill be limited depending on the number of abnormal cases
precondition the system can still satisfy the requirem#éiniss ~ we intend to consider and the EI will always play its role
means we are in presence of a more robust system. In thigspecting the RG rules we will provide. In the example we
paper we will follow this approach presenting the notion ofwill show in the following we are only considering the first
Layered Fault Tolerant Specification (LFTS) and examiningof the three cases, i.e., the Fault Injector is only opegatin
the idea of fault as interference [8], i.e., a different &gl  through lost messages.
perceive system faults. Quoting [8]: A contribution of this work is the organization of the spec-
The essence of this section is to argue that faults ification in terms of layers of Rely/Guarantee conditioms. |
can be viewed as interference in the same way that  order to do this we introduce the idea of El as a model of
concurrent processes bring about changes beyond the environment and we need to describe how the EI will
the control of the process whose specification and behave and how we can limit it. Here a process will rely on
design are being considered. a specific faulty behavior and, given that, will guarantes th

The idea of Layered Fault Tolerant Specification (LFTS)ability to handle these situations. More in detail:
is now presented in combination with the approach quoted « Rely: the Error Injector (environment) interferes with
above making use of rely/guarantee reasoning. The principl the process (changing the global state) respecting his
is layering the specification, for the sake of clarity, in (at G (superset of the program’s R) — for example, only
least) two different levels, the first one for theormal “lost messages” can be handled (next example)
behaviorand the others (if more than one) for thenormal o Guarantee: The process provided this kind of (re-
This approach originated from the notion of idealized fault stricted) interference is able to handle excep-
tolerant component [18] but the combination of LFTS and tional/abnormal (low frequency) situations
rely guarantee reasoning can be considered one of the mamn || the possibilities of faults in the system are described

contributions of this work. in these terms and the specification is organized according
Fault Model to the LFTS principle we are going to describe.

First, when specifying concurrent (interfering) processe
we need to define which kind of abnormal situations we
are considering. We basically need to define a Fault Model, The main motto for LFTS is: "Do not put all in the
i.e., what can go wrong and what cannot. Our specificatiomormal mode”. From the expressiveness point of view, a
will then take into account that the software will run in monolithic specification can include all the aspects, fault
an environment when specific things can behave in amnd non faulty of a system in the same way as it is not
"abnormal” way. There are three main abnormal situationshecessary to organize a program in functions, procedures
in which we can incur, they can be considered in both theor classes. The matter here is pragmatics, we believe that

LFTS: how to organize a clear specification

shared variables and message passing paradigm: following the LFTS principles a specification can be more
« Deleting state update: “lost messages” understandable for all the stakeholders involved.
« Duplicating state update: “duplicated messages” The specification has to be separated in (at least) two
. Additional state update (malicious): “fake messagedayers, one for thé&lormal Modeand one (or more) for the
created” Abnormal Mode More specifically:

The first one means that a message (or the update of a« Normal mode: an operation usually runs in normal
shared variable) has been lost, i.e., its effect will notaden mode respecting his “interface” with the world deter-
into account as if it never happened. The second one regards mined by P/Q
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« Fault interference: in “low” frequency cases the abnor- The input ) and the outputdoun) are natural numbers.
mal mode is “activated” (exception handler, forward The precondition that has to hold is:

recovery)
Figure 7 shows the organization of a process (dashed P(count) : count = 0

rectangles) in a main part andecovery handlepart where since we expect the counter to be zero at the beginning.
both interact through the global state with other processeproyided that the input is a natural numtzard the counter
and the Error Injector (represented by a devil here). is zero, the execution will satisfy the following:

[ Normal mode F Recovery mode ] [7 Error Injector j Q(na Count) : count =nAn= 0

, J S ,

\ | 7 |/ Without any interference, the specification of C only

....... \\f/ \/ requires that the input-output relation satisfy the pratic

Increments with Faulty Interferencd:et us consider the
same piece of code:

&) Va € N(P(a) = C(a) € N A Q(a, C(a)

C(n):
n:=n;
while (n’>0){
n :=n-1;
nt ++
Figure 7. Error Injector } count

return count;

It is worth noting the limitations of this way of operating. L . i )
Self error detection and self recovery cannot be addressed but running in-an environment where the following El is
by this model since El is a representation of the environmen‘?lISO running:
external to the process itself. So faulty behavior due tcEl (n’):
internal malfunctioning is not what we want to representi f (2 >0) {

here. ) =oAL

Example of Specification of Interference The role of this El here is to model the deletion of state
For a better understanding of how we can exploit thisuPdates as in the first of the three cases discussed above. The

idea of treating faults as extraordinary interference with SPecification of C as expressed so far is too simple to be able

low frequency, we introduce a very simple example Firstl© Mmanage this kind of situations. Even if we are not handling

we consider an even simpler example without interferencen@licious updates, the basic formulation we provided so

then we introduce interference to investigate the diffeesn far needs to be properly incremented because without any
and how we cope with them changes the desired implication cannot be satisfied:

Increments without InterferencelLet us consider the

following piece of code: Va € N(P(a) 7 C(a) € NAQ(a, C(a)))

What we have to do is restructure the implementation and

nC(n) = n: to pass from pre and postconditions to rely/guarantee in the
whi l e (n’ >0){ specification. Let us consider the following modification:
n :=n-1, c(n):
count ++ N
} n:=n;
while (n'>0){

return count; if nn+ count = n then {

C is a very simple program, which decrements its in- ™ :t= 2;'1?
put while reaching zero. While decrementing the input it } elcggn{
increments a counter with the effect that, at the end, the” v .= nh.count-1

counter will obviously reach the original value of the input }
The specification of C in terms of pre and postconditions is
given as follows: return count;
As the reader will understand what we have done is simply
I/O:N—N add a recovery handler and a recovery mode based on the
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evaluation of the conditiom + count = n which is able  now consider a simplified automotive case study. The Cruise
to flag the presence of an unwanted interference (a deletioBontrol is a system able to automatically control the rate of
of an increment). The recovery block is able to cope withmotion of a motor vehicle. The driver sets the speed and the
abnormal situations provided that faults are restricted irsystem will take over the throttle of the car to maintain the
behavior (and that it is known in advance). Thus, providedsame speed. One of the requirements of the cruise control
that a restricted interference happens the program is stils to be switched off when an error in the engine speed
able to satisfy the postcondition (and the specificatiohp T sensor is detected. This has to be taken into account in the
normal mode here is the simple code: specification. We use the CrCt to show how the idea of LFTS
can be applied in (semi)realistic systems (simplificatiohs

noi=a-d real system for the sake of experimenting with new ideas but

count ++ . ) .
still not mere toy examples). Let us consider the following

while the recovery handler is ideal piece of CrCt code:

n" := n-count-1

while (target <> current){

and, as represented in Figure 7, C is running in an U¢'ta := smooth(target, current);
A o . e o result := set_eng(delta);

environment which is shared with El. The specification we

want in this case is different from the previous one and it

is expressed, in terms of R/G conditions, as follows: The car speed is acquired isnooth(target,
current) and then a delta is calculated for the car

Rc : (m=n) A (count = count) A (n’ > n') to have a smooth acceleration (smoothness has to be

Ge :n' =n — count — 1 determined by experience). The specification of this code in

R; = true term of P,Q,R,G is the following (it is expressed in natural

Gr=n'>n language since we are not giving a mathematical model of

the car here):
It is worth noting that there is no rely condition (to
be precise there is one always true) for the Error Injector,
indeed it would not be reasonable to expect that the
processes we are specifying would behave in a way so
as to satisfy the needs of a fault model. Instead, El is
guaranteeing that it will only increment’ - it is the case
of having only state update deletion (an increment deletes
a decrement) as pointed out previously. Decided the ElI
behavior limitation (and thus decided the fault model) we The requirement mentioned above is not taken into ac-
can design our specification. From the EI specificationcoynt in this ideal piece of code, so in case the speed
C can rely on the fact thanh and count will be never  acquisition goes wrong the guarantee will not hold and
modified while n* will be only modified in a specific the apsolute value of delta will not be decreased. Indeed,
way (incremented). Now, with the addition of a layer foowing the LFTS principle we should organize it in

in the program and in the specification we are still ableyyg |ayers: a normal mode and an abnormal one (speed
to guarantee an (extended) desired behavior by meangquisition goes wrong):

of the G¢ condition, which says thab’ will always be

consistent with the value afountpreserving the invariant while (target <> current){

n’ = n — count — 1, i.e., the summation ofi’ and count delta := snooth(target, current);

will always be equal ton — 1. This will ensure that the result := set_eng(delta);

postconditioncount = n A7 = 0 will hold at the end like H ;\?\‘S;’LL ::f K then

in the case without interference. This simple example show§ -

how the LFTS principles can provide a clear specification

(with respect to a monolithic one) ensuring, at the same This means adding a weaker layer of conditions for the

time, that a desired postcondition holds. “abnormal case” being still able to guarantee “something”.

If speed acquisition goes wrong we do not want to force

the engine following the delta since it would imply asking
The progress toward this way of layering specificationsfor more power when, for example, the car speed is actually

has been made by experimenting few case studies. Fatecreasing (maybe an accident is happening or it is just out

example, the one presented in [20] showed the power of thef fuel). Switching the engine off we avoid an expensive

LFTS principle when applied to train systems. Instead, weengine damage.

« P: target has to be in a given range

o Q: delta is zero and the driver has been comfortable
with the acceleration

« R: the engine is adjusted (smoothly) according to delta

« G: the absolute value of delta is decreasing

IV. THE AUTOMOTIVE EXAMPLE
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V. CONCLUDING REMARKS AND FUTURE WORK

In this work, we provided a different view for interpreting

(8]

problems and faults and we worked toward an improvement
of the ideas presented in [17]. Our goal was to start an

investigation leading to a method for the formal specifaati

9]

of systems that do not run in isolation but in the real,
physical world. To accomplish the goal we passed trough10]
a non trivial number of steps including the discussion in
[20] of the concept of method itself (computer science has

a proliferation of languages but very few methods). Then wey 1j
presented how we intend to proceed to represent the static

and the dynamic view of the problem. A section is dedicate

to faults and the following to a case study.

Gz

Of course this work is not exhaustive and many aspects

need more investigation. Especially the possibility ofihgv

Jackson’s diagrams extensions working as a bridge betwe
the static and the dynamic view in the way we describe

(13]

3?4]

them. Although a small example of static and dynamic

views is presented in this paper and a way to combin

them idealized, more work is needed in combining the

15]

in a coherent and readable notation. Jackson’ diagrams
extensions are only one of the possible solutions anyway16]
Indeed another point we have just sketched here but that
needs more work is about the the plug-ins and how to
permit the practical use of different tools/notation. More[17]

investigation regarding the case studies is also needed.
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