
An Approach for the Reliability Analysis of Automotive Control Systems

Mikhail Glukhikh, Mikhail Moiseev
St. Petersburg State Polytechnical University

St. Petersburg, Russia
glukhikh@mail.ru, mikhail.moiseev@gmail.com

Harald Richter
Clausthal University of Technology

Clausthal, Germany
hri@tu-clausthal.de

Abstract—In this paper, we present an approach and a
tool that automates and thereby accelerates the most time-
consuming phases of reliability engineering. In this approach,
an operational function is computed automatically from a
high-level system description by using of system components’
properties, fault types propagation rules and other auxiliary
information. The tool allows arbitrary component types, any
component couplings and failure types and covers thus manda-
tory features for a profound reliability analysis. It calculates
the mean time to failure, the mean fault number and the
components’ influence on the overall reliability as system
reliability characteristics. This tool was tested by a major
car manufacturer in an embedded electronic system of a car.
The main advantage of the developed tool is that it simplifies
reliability analysis of complex-structured systems using a novel
method for system operational state description.

Keywords-reliability analysis; automotive control system.

I. INTRODUCTION

In reliability engineering, there are two different tasks
to accomplish: the analysis of the reliability of a given
system, and the synthesis of a successor system that is more
reliable than the first one, under the boundary conditions of
the costs needed to produce it. Reliability analysis is used
iteratively many times in the process of system design. It is
thus important to evaluate the reliability parameters quickly
and accurately with minimal effort [1][2].

This paper presents a new approach and a tool for
automating the reliability analysis of complex-structured
control systems. Our approach is based on a system meta-
model, which allows to represent many classes of control
systems. As an example, the application of this approach
for automotive control systems is given in this paper.

Analyzing the reliability of car electronics becomes more
and more important because of two reasons. First, the
number of Electronic Controller Units (ECUs) that are built
into contemporary cars has already reached the amount of
100, thus reducing the mean time to failure (MTTF) by the
pure quantity of components. Second, the passengers’ safety
depends more and more exclusively on the reliability of
ECUs’ hardware and software, together with other compo-
nents such as sensors, actuators, cable trees and connectors,
power supplies, generator and battery [3][4].

Because of the used general methodology our approach
is not restricted to cars only but can also be applied to

other technical systems, such as in medicine, aerospace and
nuclear power plants, where harsh environment conditions
are prevailing or where system breakdown is unacceptable.

The rest of the paper is organized as follows: Section 2
shows state-of-the-art, Section 3 summarizes related work
in this field, Section 4 describes the main idea of our
approach, Section 5 presents its specialization for automotive
applications, Section 6 describes the used reliability analisys
methods, the tool itself is explained in Section 7, the paper
ends in Section 8 with a conclusion and an outlook to future
work.

II. STATE-OF-THE-ART

The goal of reliability engineering is to achieve either
a prescribed reliability for a planned system or a higher
reliability at lower costs. State-of-the-art to achieve this
is to change the system structure, to add more reliable
components, or to add redundancy such as standby reserve,
hot reserve, standby containers and load sharing containers.

Reliability analysis of a technical system normally needs
many iteration cycles in which the so-called survival or
reliability function is calculated multiple times, together with
other important parameters such as the MTTF, the mean
fault number and the components’ influence on the overall
reliability. These parameters allow to identify weaknesses in
the system design. The reliability function is a probabilistic
function over time that is based on the individual failure
rates of the system components. For the calculation of the
reliability function, the system has to be modelled first.
Standard models are reliability block diagrams (RBDs), as
well as fault trees (with or without Markov chains) and
event trees as alternatives [5]. Another common model is
the operational function [6] which is used by our approach.

In practice, automotive control systems are complex with
respect to their interconnect topology between components
and because of the sheer amount of parts. High-end cars
have already several thousands of cables and connectors.
Furthermore, there are different types of data paths and
power lines that couple the components together, and many
component types that have to be differentiated as well.

Typical automotive control systems can not be decom-
posed into a set of elementary serial or parallel circuits of
components. Instead, loops and crossings of links exist in

51

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

the interconnect topology. The system topology is thereby
considered to be a general graph.

State-of-the art in current tools is that the constructing
of reliability models is hardly automated yet. However, the
manual constructing of the models mentioned is too time-
consuming in practice because of the large size and the
high complexity of real-world system topology. We propose
an automated approach based on a configurable high-level
system description and component parametrization.

III. RELATED WORK

Beside research projects, there are several commercially
avaliable tools for the reliability analysis of complex systems
such as [11][12][13][14][15].

Usually, these tools support a comprehensive range of
analysis methods. According to [5], the most common meth-
ods are fault tree analysis (FTA), which may be preceded by
an RBD system model, and event tree analysis (ETA). FTA
can be combined with Markov chains (MC) too. The most
important features of these commercial tools are depicted in
Table 1.

Table I
RELIABILITY ANALYSIS TOOLS

Tool RBD ETA FTA MC
ITEM ToolKit + + + +
RAM Commander + + + +
Isograph FaultTree+ – + + +
PTC Relex – + + +
ReliaSoft BlockSim 7 + – + –

All tools suffer from the manual definition of the fault tree
for FTA. Already from 10 components on, the effort for fault
tree construction by hand is high because its time-complexity
grows exponentially. In some cases known from practice, a
preceded RBD with subsequent conversion into a fault tree
may simplify this task [9]. However, in complex cases, the
RBD construction complexity is already comparable with
fault tree construction complexity.

The other model used for fault tree synthesis automation
is Fault Tolerant Data Flow (FTDF) [10]. Fault tree synthesis
algorithm traverses FTDF graph finding all event combina-
tions which lead to system failure. However, this algorithm
does not support cyclic dependencies between elements and
uses exhaustive search for synthesis.

Reliability parameters are usually calculated by using the
system reliability function. There are several possibilites to
obtain the reliability function out of a previously established
fault tree or out of an operational function. These possibilites
are:

1) Selection of a minimal-cut set in the disjunctive
normal form of the boolean description of the fault
tree and subsequent use of the inclusion/exclusion
principle as described by [5][7].

2) Establishing a binary decision tree as an intermediate
data structure of the fault tree as proposed by [7][8].

3) Using a substitution form of the operational func-
tion, together with boolean-probabilistic transforma-
tion rules that are described in [6][1].

All three ways exhibit in the general case an exponential
complexity as soon as the system size increases. However,
we found out that in practice the boolean-probabilistic
method has good scalability which is why we used it in
our tool.

IV. SEMI-AUTOMATED ANALYSIS

We suggest a new approach for the semi-automatic relia-
bility analysis that consists of three major steps:

1) An abstract meta-model.
2) An application-specific configuration of the meta-

model by a so-called pattern.
3) A set of boolean-probabilistic transformations.
Our first step employs an abstract meta-model instead of

a concrete RBD, fault tree or structure graph. This meta-
model is defined by the tuple M = 〈T,G, I, F,O〉, with T
is the set of component types, G is the graph of the system
topology, I is the set of failure types each component type
can have, F is the set of failure propagation rules for every
failure type, and O is a set of rules for constructing the
operational function.

Step 2 in our approach yields a concrete description of a
given system from the meta-model, after having configured
the model with an application-specific pattern. The pattern
has to be created by hand, together with the system’s topol-
ogy. The pattern we used for automotive control systems
is given in detail in Section 5. Other control systems need
different patterns but the meta-model can remain the same.

Because of the time-consuming manual definition of a
fault tree its generation should be automated. We decided
to use an operational function for the system operability
description (see Section 6). From the operational function, a
reliability function can be derived automatically. To achieve
this, boolean-probabilistic transformations are employed.

The approach requires in detail the following 6 phases:
1) Definition of all component types, failure types, failure

propagation rules and operational function construct-
ing rules as the application-specific pattern.

2) Construction of the graph of the system topology.
3) Definition of all failure rates.
4) Derivation of the operational function.
5) Conversion of the operational function into the relia-

bility function.
6) Computation of the MTTF, the mean fault number and

the components influence on the overall reliability.
The first phase must be performed once by hand for each
application-specific pattern. Furtherfore, for any given sys-
tem, phases 2-3 also have to be performed manually once.

52

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

Phases 4-6 are computed automatically. These are the steps
that are repeated multiple times for reliability engineering
which is why we automated their execution.

V. PATTERN FOR AUTOMOTIVE APPLICATIONS

Modern cars may contain the following assistance systems
for driver and infotainment: motor management, electronic
stabilization (ESP) with or without active steering, adaptive
cruise control (ACC), speed control, distance control, rear
vision, night vision, lane keeping, lane changing, parking,
navigation etc. These systems can be analysed by the sub-
sequently described pattern.

A. System elements

There were the following element types defined by us:
1) Electronic Controller Units (ECUs).
2) Active and passive gateways and connection lines that

provide for data propagation.
3) Power supply generators, batteries, power lines, con-

nectors and fuses that provide for power propagation.
4) Sensors and actuators.

B. System Topology

In this pattern, the system topology is defined via two
subgraphs, one for the data paths and one for the power
lines of the system. Both graphs have the same instances of
component types.

C. Failure Types

The automotive pattern defined by us contains the follow-
ing failure types:

1) Internal Error. This type is valid for ECUs, active and
passive gateways and data paths. In case of an internal
error, the component does not perform its function. It
outputs therefore no data or even wrong data.

2) Silence Error. This type is again valid for ECUs,
active and passive gateways and data paths. In case of
silence error, the component outputs no data although
it should. However, it does not output wrong data.

3) Babbling Error. This type is valid for ECUs and active
gateways. In case of babbling error, the component
continuously outputs data although it should not. Most
or all data are wrong.

4) Short Circuit Error. This type is valid for power
supplies, power lines, generator, battery, fuses and data
paths.

D. Failure Propagation Rules

Some failure types can propagate through the system.
Their propagation characteristics are predefined in the au-
tomotive pattern as:

1) The babbling error propagates through data paths and
passive gateways. It can not propagate through ECUs
and active gateways.

2) The short circuit error propagates through power lines
and data paths. It does not propagate through fuses.

3) The internal error and the silence error can not prop-
agate.

E. System Operational Function

In the following, it is assumed that all tasks of the control
system can represented by a set of functions. Then, the
system operational function is the boolean AND of all
these functions. This means that the system function Fsys
is defined by the functions of its components, according to
Fsys =

∧
Fi. Every function Fi in turn relies on the well-

functioning of one or several ECUs. Finally, each ECU needs
a power supply and may need input data from other ECUs.

VI. RELIABILITY ANALYSIS METHODS

A. Operational Function

The system operational function is a boolean expression,
that represents the operational states of its individual com-
ponents. In this function a ”1” denotes an operable state. For
the calculation of the operational function, let us consider a
system comprising of n elements – Cj , j ∈ 1, 2, . . . , n.

Let Xj be the boolean variable that indicates whether the
element Cj of the system is operational. Then, the system
operational function is constructed by the means of the basic
rules O, the component types T (∀Cj : ∃!Ti ∈ T : Cj ∈ Ti –
Cj of type Ti) and the component connection graphs G for
power and data lines. Also the operational functions Fi of
the individual components are constructed by G, as well as
by the failure types I and the failure propagation rules F .
Additionally, it has to be taken into account that there are
dependencies between components, and as a consequence,
a linear system of equation has to be set-up and solved (the
unknown variables in this system are the Xj). Every Fi in
turn is determined by its corresponding ECU type Ti. Fi
is ”1” if there is at least one operable component Cj of
type Ti: Fi =

∨
∀j:Cj∈Ti

Xj , Xj = xjX
power
j Xdata

j . In this
equation, the used variables have the following meaning:
• xj – is operable state of element Cj .
• Xpower

j depends on the power supplies that are con-
nected to Cj by power lines and fuses. The analysis
of the power supplies must take into account that short
circuits can propagate.

• Xdata
j is ”1” if input is available from all necessary

providers. Let Ck be a data provider for component
Cj then Xdata

j contains the component XkPk,j , where
Pk,j is the operable function of the data paths. In addi-
tion, Pk,j must consider babbling errors that propagate
through data lines and passive gateways.

Subsequently, the equation system of all Xj has to be
set-up. In the left part of each equation is a Xj according
to Xj = F(X1, ..., Xn). However, Xj can also be an
independent variable of F on the right side of the equation.

53

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

The system of equations is therefore solved by exclusion-
of-unknowns method which means that Xj in F is replaced
by ”1” (correctness of this action is proven). An example of
this process is given in Section 7.

B. Reliability Function

The reliability function has independent stochastic vari-
ables that denote probabilistic failure events of components.
For the computation of the reliability function out of the
operational function, a boolean-probabilistic method [6][1]
is used. This method includes the following two steps:

1) Conversion of the operational function into an equiv-
alent form called ”substitution form”.

2) Conversion of the substitution form to the reliability
function by applying boolean to probabilistic transfor-
mation rules according to [6][1].

1) Substitution Form: The substitution form of the oper-
ational function Fsys is the boolean sum of the orthogonal
and repetition-free summands that are concatenated with
AND/NOT only. To explain that, let us consider the con-
junctive form (which is not normalized) of the operational
function Fsys =

∧
Fi, where Fi =

∨
∀j:Cj∈Ti

Xj . This
form is converted into the disjunctive normal form by
applying the distributivity law. After that, each summand
is made orthogonal to every other such that the boolean
multiplication of any summand pair yields ”0”. After that,
the orthogonal disjunctive normal form is augmented by the
property that every xk occurs only once in a summand.
This is achieved by successively factoring out all xk in each
summand that occurs more than once. Finally, all xk have
to be concatenated with AND and NOT operators only. This
is accomplished by applying de Morgan rules. For example,
Fsys = x1 · x2 · x3 is a repetition-free form with AND/NOT.
This example is also considered to have orthogonal sum-
mands because it consists only of one summand.

For the computation of the reliability function, that sub-
stitution form of Fsys is used because it allows boolean to
probabilistic transformations. However, the described proce-
dure to obtain the substitution form is too time-consuming
in practice which is why we use a shortcut to obtain it. This
shortcut is called Cutting Algorithm [6].

2) Cutting Algorithm: The goal of the Cutting Algorithm
is to reduce in every step the number of arguments xk of
the operational function Fsys by one. The general form of
the cutting algorithm is:

f(x1, x2, ..., xi, ..., xn) =
= xif(x1, x2, ..., xi−1, 0, xi+1..., xn) +

+xif(x1, x2, ..., xi−1, 1, xi+1..., xn), (1)

Every reduction step is applied to that argument which
occurs most often in Fsys. This argument is factored out
according to (1).

For example, Fsys = x1x4 +x2x5 +x1x3x5 is a boolean
function of 5 independent variables x1 to x5 comprising of
3 summands from which x1 and x5 are the most frequent
ones. The algorithm factors out x1 in the first step according
to: Fsys = x1x2x5 +x1(x4 +x3x5 +x2x5). Now, x5 is the
most frequent variable, etc. The algorithm stops after one
more step in which x5 have also been factored out, yielding
the result: Fsys = x1x2x5 + x1x5x4 + x1x5(x2 + x3 + x4).

Finally, AND/OR is replaced by AND and NOT giving:
Fsys = x1x2x5 + x1x5x4 + x1x5x2 · x3 · x4. This is the
desired substitution form of Fsys, i.e. of the operational
function. Each summand is orthogonal to every other, and
each xk occurs only once in every summand.

As one can see, factoring out is achieved at the expense of
doubling the number of summands. If N is the number of
arguments in Fsys, then the algorithm terminates at most
after N steps. Therefore, after N steps, the number of
summands can be grown by a factor of 2N . In order to
make the cutting algorithm usable, some optimizations have
to be introduced additionally.

3) Optimization: Two kinds of optimizations are used to
reduce the execution time and memory requirements of the
cutting algorithm. These two optimization types are:

1) Simplification of the operational function by boolean
algebra rules.

2) Idenfifying independent segments in the system model.
The boolean simplifications have to be employed in every
step of the algorithm, while the identifying of independent
segments happens only once.

Independent segments are parts of the system which
have an own power supply or parts of the system who
have regions with local data traffic only. Each segment
corresponds to independent part of the operational function.
Independent parts can be obtained formally by the following
procedure:

1) Find in Fsys boolean expressions that occur more than
once.

2) Exclude from them those expressions who have the
same arguments xi also in other expressions of Fsys.

3) Replace the remaining expressions by substituting
them with new functions yi.

4) Treat yi as new independent argument in Fsys.
For example: f = (x1+x2x3+x4x5x6)(x1x2+x3+x4x5x6)
can be converted into f = (x1 +x2x3 + y)(x1x2 +x3 + y),
with y = x4x5x6 as new function.

The result of the optimization is that in a system of 100
components, for example, segment splitting reduces time
and space complexity by a factor of 5-10, and function
simplifying accelerates by an other factor of 3-5, resulting
in a cycle time that is 15-50 times quicker than before.

4) Boolean to Probabilistic Transformation: For the sub-
sequent computation of the reliability function, two more
phases have to be accomplished. These phases are:

54

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

1) Replacement of all variables xk and boolean operators
by stochastic variables pk and probabilistic operators.

2) Replacement of all pk with e−λkt, where λk is the
failure rate of component Ck and t is the independent
variable, i.e. argument of the reliability function.

For the replacement of boolean variables and boolean oper-
ators, all ANDs in the substitution form of the operational
function are replaced by the multiplication of probabilities,
all boolean ORs are replaced by the addition of probabilities,
and all boolean NOTs are replaced by the 1 − P operator,
where P is the probability that an event occurs.

These rules are based on the addition and multiplication
rules for independent events. Finally, every stochastic vari-
able pk is replaced by e−λkt thus obtaining the reliability
function R(t). For example, f = x1x2 + x1 is transformed
first into P = (1 − p1)p2 + p1, and then into R(t) =
(1− e−λ1t)e−λ2t + e−λ1t.

Out of the reliability function, the MTTF, the mean
fault number MFN in the interval [Tmin, Tmax] and the
components influence CIk on the system reliability are
automatically computed by the following formulas:

MTTF =
∫ ∞

0

tR(t)dt (2)

MFN =
(R(Tmin)−R(Tmax))(Tmax − Tmin)∫ Tmax

Tmin
R(t)dt

(3)

CIk(t) = R∗k(t)−R(t) (4)

R∗k(t) is the reliability function of the system under the
assumption that Ck is 100% reliable, i.e. xk = 1. So, for
the computation of CIk(t), R(t) has to be computed twice,
one time with Ck in the system, the other time without.
Furthermore, all CIk(t) are calculated at the time point T
of MTTF and are subsequently normalized to [0, 1].

VII. RELIABILITY ANALYZER TOOL

The reliability analyzer tool implements the meta-model
with the automotive pattern. All pattern data can be conve-
niently entered, extended or modified. This is accomplished
by means of several menus based on tabs for defining pattern
values, as well as by a graph editor, by a component type
editor and by other features. All patterns are stored in XML
format. Analysis results can be displayed by a chart viewer.
The components influence CIk on the system reliability is
color-coded in the viewer in order to inform the users eyes
quickly.

Let us consider as an example Figure 1 which contains 4
ECUs (E1 - E4), 2 batteries (A and B), one active gateway
(G), one passive gateway (P) and 2 fuses (U1 and U2).

The elements E1 and E2 are of type T1, E3 and E4 are of
type T2. The system operational function is Fsys = F1, F1 =
X1 +X2, where Xi is the operational function of element
Ei. The elements E1 and E3 have no input data from other

Figure 1. Example of an automotive control system

elements. Element E2, however, uses data from elements of
type T2, Element E4 uses data from other elements of type
T1. Under the assumption that all data paths are absolutely
reliable, the operational functions of these elements are:

X1 = E1 · (A · U1),

X2 = E2 · (A+B · U2)(X3 +X4 ·G · P),

X3 = E3 ·B,

X4 = E4 ·B · (X1 +X2) ·G · P.

This equation system is solved first for the unknowns X2

and X3 by applying the mentioned exclusion-of-unknowns
method:

X2 = E2 · (A+ U2) ·B · (E3 + E4 · P ·G),

X4 = E4 ·B(E1 ·A ·U1 +E2(A+U2)B(E3 +E4 ·P ·G)).

From that, the system operational function is achieved
which is afterwards converted into substitution form, and
then into the reliability function. All other reliability pa-
rameters are computed out of the latter. The result of the
example is shown in Figure 2. The chosen example was
simple but it showed the main points. The analysis of larger
systems is accomplished accordingly. Our tool was tested
with real-world automotive control systems, that were given
to us by one of the leading car manufacturers. It has helped
to compare various alternative control system architectures
and to select the one with the needed reliability.

The current implementation of the tool can analyze sys-
tems of up to several hundreds of components on a PC with
AMD Athlon CPU with 2,4 GHz and 256 MB of RAM. We
measured the following computation times for systems of
different sizes (Table II).

The tool has some overhead compared to commercial
tools because of the automated construction of the system

55

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

Figure 2. MTTF and the reliability function

Table II
ANALYSIS TIME

Number of components 10 20 30 50 100
Analysis time, sec 1 3 11 57 292

operational function and the automatic conversion of the
operational function into the reliability function. However,
this overhead can be neglected.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach and tool for re-
liability engineering. Our approach is based on a meta-model
that allows to many classes class of systems by configuring
the model with so-called patterns. The pattern for automotive
applications are given by us. It was implemented in our
reliability analyzer tool. The tool was used by a large car
manufacturer to improve the control system of a automobile.
The approach constructs semi-automatically the operational
function of the system under test by using information about
the system’s structure. Our tool computes the operational
function, performs an automatic conversion to the reliability
function and determines the mean time to failure, the mean
fault number and the components’ influence on the overall
reliability as reliability parameters.

In the future, we will extend the tool to further accelerate
the design cycle for reliability engineering by automating the
synthesis of redundant systems. Furthermore, we will extend
our approach and tool to other application areas outside of
automotive control systems.

REFERENCES

[1] G.N. Tcherkesov, Hardware-software systems reliability.
St. Petersburg: Piter, 2005.

[2] M. Rausand and A. Hoyland, System Reliability Theory.
Models, Statistical Methods and Applications. Hoboken,
NJ: John Wiley & Sons, Inc., 2004.

[3] R. Bosch, Automotive Electrics and Automotive Electronics,
Completely Revised and Extended. Hoboken, NJ: John
Wiley & Sons, Inc., 2007.

[4] T. Denton, Automobile Electrical and Electronic Systems.
Burlington, MA: Elsevier, 2004.

[5] C. Ericson, Fault Tree Analysis – a History. Proceed-
ings of the 17th International Systems Safety Conferencem,
1999, pp. 1-9. http://www.fault-tree.net/papers/ericson-fta-
history.pdf. – Retrieved 2011-06-04.

[6] I.F. Ryabinin, Reliability and safety of structural-complex
systems. St. Petersburg: Polytechnika, 2000.

[7] J.D. Andrews, An Analysis Strategy for Large Fault Trees.
Proceedings of the 21st International System Safety Confer-
ence, August 2003, pp. 375-386.

[8] L.M. Bartlett, Progression of the binary decision diagram
conversion methods. Proceedings of 21st International
System Safety Conference, August 2003, pp. 116-125.

[9] ReliaSoft Corporation. Comparison of RBD and Fault
Tree Simulation. HotWire Issue 44 (October 2004).
http://www.weibull.com/hotwire/issue44/ relbasics44.html. –
Retrieved 2011-06-04.

[10] M. McKelvin, G. Eirea and C. Pinello et al., A Formal Ap-
proach to Fault Tree Synthesis for the Analysis of Distributed
Fault Tolerant Systems. Proceedings of the 5th ACM
international conference on Embedded software, ACM Press.,
2005, pp. 237-246.

[11] Isograph. Isograph Reliability Analysis Software.
http://www.isograph-software.com. – Retrieved 2011-06-04.

[12] ITEM. Reliability Software from ITEM.
http://www.itemsoftware.com. – Retrieved 2011-06-04.

[13] ALD. Advanced Logistics Development.
http://www.aldservice.com. – Retrieved 2011-06-04.

[14] PTC. The Product Development Company.
http://www.ptc.com. – Retrieved 2011-06-04.

[15] Reliasoft. Reliability Software. http://www.reliasoft.com. –
Retrieved 2011-06-04.

56

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

