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Abstract—We have proposed to perform statistical model
checking by combining perfect sampling and statistical hypothesis
testing based on single sampling plan method in order to verify
steady-state formulas. This approach allows us to consider very
large monotone models and to verify rare event properties
efficiently. In this paper, we extend our proposed approach by
implementing different statistical methods in our verification
engine and by comparing their efficiency when we verify steady-
state dependability properties for large non monotone models.
We show that SPRT statistical method is generally more efficient
than the other statistical methods. Moreover, we show that our
statistical verification approach is efficient and scalable when we
consider large non monotone models.

Index Terms—Statistical model checking, Perfect simulation,
Dependability verification, Continuous Stochastic Logic (CSL)

I. I NTRODUCTION

Probabilistic model checking is an extension of the formal
verification methods for systems exhibiting stochastic behav-
ior. The system model is usually specified as a state transition
system, with probabilities attached to transitions, for example
Markov chains. A wide range of quantitative performance,
reliability, and dependability measures can be specified using
temporal logics such as Continuous Stochastic Logic (CSL)
defined over Continuous Time Markov Chains (CTMC) [2]
and Probabilistic Computational Tree Logic (PCTL) defined
over Discrete Time Markov Chains (DTMC) [2]. There are two
distinct approaches to perform probabilistic model checking:
the numerical model checking based on the computation of
transient-state or steady-state distributions of the underlying
Markov chain and the statistical model checking based on
statistical methods and on sampling by means of discrete event
simulation or by measurement. Statistical model checking
techniques constitute an interesting alternative to numerical
model checking techniques for large scale systems. In the last
years, different statistical model checkers have been proposed
[6][15][20] especially for properties specified by time-bounded
until formulas. In the statistical model checker MRMC [8]
statistical model checking of CSL steady-state property has
been also considered.

We have proposed in [13][14] to perform statistical proba-
bilistic model checking by combining perfect simulation and
statistical hypothesis testing based on the single sampling
plan method in order to check steady-state properties of
large Markovian models. Perfect simulation is an extension
of Monte Carlo Markov Chains (MCMC) methods allow-

ing to obtain exact steady-state samples of the underlying
Markov chain thus it avoids the burn-in time problem to
detect the steady-state. Propp and Wilson have designed
the algorithm of coupling from the past to perform per-
fect simulation [9]. A web page dedicated to this approach
is maintained by them (http://research.microsoft.com/en-
us/um/people/dbwilson/exact/). As a perfect sampler, we use
ψ2 proposed in [18], designed for the steady-state evaluation
of various monotone queueing networks [19]. This tool [18]
permits to simulate the stationary distribution or directly a cost
function or a reward of large Markov chains. The significant
advantage of perfect sampling is that it provides anunbiased
sampling of the steady-state distribution, hence the accuracy
of the verification result only belongs to the statistical testing.
In other words, we ensure the correctness of our results
considering a specified precision level. We have compared
in [10][11][12], the numerical model checker PRISM [7], the
statistical module of MRMC [8] and our statistical verification
engine when they are applied to the verification of steady-
state properties for very large models. We have shown the
efficiency and the scalability of our approach to consider very
large monotone models and to verify rare event properties
efficiently.

In this paper, we extend our proposed approach by imple-
menting in our verification engine other statistical methods
existing in the litterature and by comparing their efficiency
when we verify steady-state dependability properties. In fact,
we consider two non-monotones queueing networks, such as
network of queues with negative clients, and with coxian
phase-type servers to show the efficiency and the scalability
of our proposed approach also in the case of non monotone
models. This paper is organized as follows: Section 2 briefly
presents the temporal logic CSL, the perfect sampling and our
proposed approach for statistical verification based on perfect
sampling. We give a brief introduction of the implemented
statistical methods in Section 3. Section 4 is devoted to the
case studies. First we present the models. Next, we compare
and analyze the results of our experiments. Finally, in Section
5 we summarize the conclusions and provide the future works.

II. STATISTICAL MODEL CHECKING BY PERFECT

SAMPLING

A. Continuous stochastic logic (CSL)

CSL is a branching-time temporal logic with state and path
formulas and it is a powerful mean to state properties over
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CTMCs. Thus it is useful to specify and to verify performance
and dependability measures as logical formulas over CTMCs
[1]. The steady-state operator (formula)ψ = S⊲⊳θ(ϕ) lets us
to analyze the long-run behaviour of the system. The steady
state formulaS⊲⊳θ(ϕ) asserts that the steady-state probability
for the set of the states satisfyingϕ meets the bound⊲⊳ θ,
whereθ is a probability threshold,⊲⊳ a comparison operator,
for example⊲⊳∈ {<,>,≤,≥}, ϕ is a state formula (a boolean
expression of state properties).

B. Perfect sampling and statistical verification

Propp and Wilson [9] have introduced the perfect/exact
sampling method, which is based on the backward coupling,
also called the coupling from the past: by coming from a
distant time−τ sufficiently far in the past, if all trajectories
(trajectories that come from all possible initial states inX
at time −τ ) are coupled in one state at time 0, then the
sampled state is exactly distributed according to the station-
ary distribution. The backward coupling provides steady-state
sample in a controlled finite number of steps, that could not be
obtained by a forward coupling scheme unless the model have
a strong stationary time, which is rare in our examples [17].
Let {Xn}n∈N be an irreducible and aperiodic discrete time
Markov chain with a finite spaceX and a transition matrix
P = pi,j . Let π denote the steady-state distribution of the
chain:π = πP . The evolution of the system can be given by
a stochastic recurrence:

Xn+1 = η(Xn, en+1) (1)

with {en} an independent and identically distributed sequence
of events (en ∈ ǫ). The transition functionη : X × ǫ → X
verifies the property thatPr(η(i, e) = j) = pi,j for every pair
of states(i, j) and each random evente. An execution of the
Markov chain is defined by an initial statex0 and an sequence
of events. The sequence of states given by Eq. 1 is called a
trajectory. Trajectories are generated with the same sequence
of events and if at timet = 0, two trajectories are in the
same state, we say that they couple. The backward coupling
is especially efficient when the underlying system is monotone.
When the system is not monotone it is shown in [3] that the
backward coupling can also be efficient. Given a partial order
� on X , an evente is said to bemonotone if it preserves the
partial ordering� on X :

∀(x, y) ∈ X x � y ⇒ η(x, e) � η(y, e) (2)

If all events are monotone, the global system is said to be
monotone. According to an order� on X , there exists a
set M� ⊂ X of extremal states (maximal and minimal
states). When a Markov chain is monotone, all trajectories
issued fromX are always bounded by trajectories issued from
M�. Thus, it is sufficient to compute trajectories issued from
M� since when they couple, global coupling also occurs. As
the size ofM� is usually drastically smaller than the size
of X , monotone perfect sampling significantly improves the
sampling time [9]. Efficiency of simulations is also improved
by functional perfect sampling [19]. The algorithm samples
a reward value, according to a user defined reward function

r : X → R; The algorithm stops when all trajectories are
in a set of states at time 0 that belongs to the same reward
value (going further in the past will inevitably couple in a
state that belong to this reward value). To combine monotone
and functional perfect sampling, the reward functionr must
be monotone, that isx � y ⇒ r(x) � r(y). As |R| is smaller
than |X |, this technique may lead to an important reduction
of the coupling time. In a property verification context, since
we focus on reward functions that correspond to properties
we want to check,R = {0, 1}. In our statistical verification
method we propose to apply functional perfect sampling, so
at time0, we test if the rewards are coupled at reward 0 or 1.
In other words, we test if it is a positive or negative sample.
Thus we associate the rewardrϕ(x) to each statex ∈ X for
a given propertyϕ: rϕ(x) = 1 if x satisfiesϕ, otherwise
rϕ(x) = 0. Note that, as the reward function is monotone,
values 0 and 1 cover contiguous zones of the state-space. Then,
an interesting phenomenon happens when the property to be
checked has a small set of positive states{x ∈ X |rϕ(x) = 1}
(ϕ corresponds to a rare property / event): coupling frequently
occurs in reward value0 and the coupling time is very short.
Moreover, if|{x ∈ X |rϕ(x) = 1}| does not depend onX (case
of saturation properties for example), then the performance of
perfect sampling algorithm will be as good for very large state-
spaces as for small ones. This intuition is validated by results
of Section 4.

The decision method tests ifϕ is satisfied (positive sample)
or not (negative sample) on each generated sample path by
counting the number of positive samples. Then it provides
decision eitherYesif the number of positive samples is greater
or equal to m (ψ is satisfied) orNo otherwise (ψ is not
satisfied). The input parameters of the algorithm are: the model
defined by a labelled CTMC,M , the propertyϕ (to be verified
on each sample), the threshold parameterθ, the indifference
region parameterδ, and α, β for the strength of statistical
hypothesis testing. In our work, we consider ergodic Markov
chainsM, hence there is a unique steady-state distribution
independent of the initial state. The satisfaction property is
assigned to the model but not to an inital state. (we check
whether the underlying modelM satisfies the steady-state
formula or not).M |= S⊲⊳θ(ϕ), if the property specified by
the steady-state operatorS is satisfied by the modelM. Note
that the verification ofS≥θ(ϕ) is the same asS<1−θ(¬ϕ) and
also is the same as¬S<θ(ϕ).

III. STATISTICAL METHODS

The statistical decision method we have used in [11][12]
when performing our statistical hypothesis testing is inspired
from the Single Sampling Plan (SSP) method. In this section
we present the different statistical methods we implement in
our statistical verification engine.

A. Current methods

a) Statistical hypothesis testing
Suppose that we have generatedn samples (simulations), and
a sampleXi is a positive sample(Xi = 1) if it satisfiesϕ and
negative(Xi = 0) otherwise.Xi is a random variable with
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Bernoulli distribution with parameterp. Thus the probability
to obtain a positive sample isp. In practice, two thresholds,
p0 andp1 are defined in terms of the probability thresholdθ,
and the half-widthδ of the indifference region:p0 = θ + δ
andp1 = θ - δ. Then instead of testingH : p ≥ θ againstK
: p < θ, we testH0 : p ≥ p0 againstH1 : p ≤ p1. In fact,
the strength of the statistical test was determined by two error
bounds,α and β, whereα is a bound on the probability of
acceptingH1 whenH0 holds (known as a type I error, or false
negative) andβ is a bound on the probability of acceptingH0

whenH1 holds (a type II error, or false positive). There are
several methods for statistical hypothesis testing decision with
constraints on error bounds(α, β) [22][21][16]:

a.1) Single Sampling Plan (SSP): It is based on the
acceptance sampling with fixed sample size (n): if

∑n
i=1Xi ≥

m, then H0 is accepted otherwiseH1 is accepted, where
m is the acceptance threshold. The hypothesisH1 will be
accepted with probabilityF (m,n, p) and the null hypothesis
H0 will be accepted with the probability1 − F (m,n, p),
where F (m,n, p) is a binomial distribution:F (m,n, p) =∑m

i=1 C(n, i)p
i(1− p)n−i with C(n, i) is the combination of

i from n. It is required that the probability of acceptingH1

whenH0 holds is at mostα, and the probability of accepting
H0 when H1 holds is at mostβ. These constraints can be
illustrated as below:

• Pr[H1 is accepted| H0 is true] ≤ α, which implies
F (m,n, p0) ≤ α (C1)

• Pr[H0 is accepted| H1 is true] ≤ β, which implies1−
F (m,n, p1) ≤ β (C2)

The sample sizen and the acceptance thresholdm must be
chosen under these constraints and their formulas for optimal
performance are given in [22].

a.2) Sequential Single Sampling Plan (SSSP):If we use
a single sampling plan(n,m) and the sum of the firsti
observations,di=

∑i
j=1Xj , i < n, is already greater thanm,

then we can acceptH0 without making further observations.
Conversely, ifdi+n−i ≤ m, regardless of the outcome of the
remainingn− i observations we already know that the sum of
n observations will not exceedm, then we can safely accept
H1 after making onlyi observations. In the modified test
procedure, after each observation, we decide whether sufficient
information is available to accept either of the two hypotheses
or additional observations are required.

a.3) Sequential Probability Ratio Test (SPRT): This
method is based on the sequential probability ratio test
[21][22]: after making theith simulation (generating theith

sample), one computes the following quotient:

qi =

i∏

j=1

Pr[Xj = xj | p = p1]

Pr[Xj = xj | p = p0]
=
pdi

1 (1− p1)
i−di

pdi

0 (1− p0)i−di

where di denoting the number of positive samples.H0 is
accepted ifqi ≤ B, andH1 is accepted ifqi ≥ A. FindingA
andB with a given strengthα, β is non trivial, in practiceA
is chosen as (1-β)/α andB asβ/(1-α). Then a new test whose
strength is (α∗, β∗) is obtained, but such thatα∗+β∗ ≤ α+β,
meaning that eitherα∗ ≤ α or β∗ ≤ β. In practice, it is
often found that both inequalities hold. When implementing

the sequential probability ratio test, it is computationally more
practical to work with the logarithm ofqi. Then we acceptH0

if fm ≤ log β
1−α

, we acceptH1 if fm ≥ log 1−β
α

.
Note that, the sample size for a sequential test is a random

variable, meaning that the required number of observations
can vary from one use of such a test to another. Furthermore,
the expected sample size typically depends on the unknown
parameterp, so we cannot report a single value as was the case
for acceptance sampling with fixed-size samples. The expected
sample size varies with the distance ofp from the indifference
region (p1, p0). It tends to be largest whenp is close to the
center of the indifference region, and decreases the further
awayp is from the indifference region.

b) Statistical estimation
An alternative statistical solution method, based on estimation
instead of hypothesis testing [6]. This approach usesn obser-
vationsx1, ..., xn to compute an estimate ofp: p′=

∑
n

i=1
Xi

n
.

The estimate is such thatPr[|p′ − p| < δ] ≥ 1 − α (E4).
Using a result derived by Hoeffding [[21], Theorem 1], it can
be shown thatn = ⌈ 1

2δ2 log
2
α
⌉ (E5)

is sufficient to satisfy(E4). If we acceptψ as true whenp′ ≥
θ and rejectψ as false otherwise, then it follows from(E4)
that the answer is correct with probability at least 1 -α if
either s|= ψ or s 6|= ψ holds. Consequently, the verification
procedure satisfies(C1) and (C2) with β = α. As with the
solution method based on hypothesis testing, a definite answer
is always generated (there is no undecided results).

c) Confidence interval
Another alternative statistical solution method based on con-
fidence intervals has been proposed in [8]. To check whether
s |= P>θ(ϕ), an estimatep̃ of the probability p starting
in s is determined using standard discrete event simulation
techniques. Letξ be the user-specified confidence of the
result andδ

′

the maximum width of the confidence interval.
The probability of obtaining a correct answer to the model
checking problems |= P>θ(ϕ) is now guaranteed to be at
least ξ provided δ

′

≤ |θ − p̃|. In this solution method, a
slight adaptation of standard sequential confidence intervals is
exploited in which the sample size and simulation depth can
be adapted on demand. Althoughδ

′

> |θ − p̃|, this solution
method provides more accurate answers as its algorithm first
simulates until the confidence interval is tighter thanδ

′

and
then continues simulation until it reaches the definite answer
to the model checking problem. This strategy increases the
accuracy because the width of the resulting confidence interval
can be much smaller thanδ

′

. The penalty for this increased
accuracy is an increase in the simulation times thus larger
model-checking times.

B. Performance comparison of statistical methods

The estimation-based approach had been compared with the
approach based on hypothesis testing in [21], by considering
m = ⌊nθ+1⌋ andd=np′=

∑n
i=1 xi. It had been demonstrated

that p′ ≥ θ ⇐⇒ d > m. This means that the estimation-
based approach can be interpreted as a single sampling plan
(n,m). Therefore the approach proposed in [22], when using
a single sampling plan, will always be at least as efficient
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as the estimation-based approach. In fact, it will be more
efficient because: (i) the sample size is derived using the true
underlying distribution, (ii)m is not restricted to be⌊nθ+1⌋,
and (iii) β = α can be accommodated. The last property, in
particular, is important when dealing with conjunctive and
nested probabilistic statements. The advantage of hypothesis
testing is demonstrated numerically in [21]. Note, also, that
the SPRT method often can be used to improve efficiency for
the approach based on hypothesis testing. In fact, if a single
sampling plan is used with strength(α, β) and indifference
region of half-width δ, then the sample sizen is roughly
proportional to logα and log β and inversely proportional
to δ2 [22]. Using the SPRT method instead of a single
sampling plan can reduce the expected sample size by orders
of magnitude in most cases, although the SPRT method is not
guaranteed always to be more efficient.

On the other hand, the method proposed by Sen et al. in [16]
is not more efficient than the methods proposed by Younes et
al. in [22]. In fact, Sen et al. manually selected the sample sizes
for their single sampling plans. The selected sample sizes are
not sufficient to achieve the same strength as used to produce
the results for the SPRT method reported by Younes et al.
in [22]. Finally, the confidence intervals statistical technique
requires to use confidence interval of the width< δ, whereas
under the same conditions in hypothesis testing we would have
to use the indifference region of the width less than only 2.δ.
This can cause confidence intervals algorithms to require more
samples than needed for the ones based on the hypothesis
testing.

C. Statistical model checking complexity

The time complexity of any statistical solution method for
probabilistic model checking can be understood in terms of
two main factors: the number of observations (sample size)
required to reach a decision, as well as the time required to
generate each observation that depends of perfect simulation
effort (coupling time). If an observation involves the verifica-
tion of a path formula over a sample trajectory then the time
complexity depends also of the length of trajectory prefixes
(in terms of state transitions) required to determine if a path
formula holds. The sample size depends on the method used
for verifying probabilistic statements, as well as the desired
strength(α, β) and of θ and δ. In fact, the sample size for
a single sampling plan SSP is approximately proportional to
the logarithm ofα andβ, and inversely proportional toδ2 . If
we use a sequential test SPRT, then the expected sample size
also depends on the unknown probability measurep of the set
of trajectories that satisfyϕ. Moreover, the perfect simulation
effort (coupling time) can be both model and implementation
dependent, then it can be state space dependent, but models
often have structure (monotone structure) [4] that can be
exploited by the simulator to avoid such dependence. The
length of trajectories depends on model characteristics and
the property that is being verified but may be independent
of the size of the state space. The space complexity of
statistical probabilistic model checking is generally modest. It
is needed to store the current state of a sample trajectory when

generating an observation for the verification of a probabilistic
statement, and this typically requires O(log|X |) space where
|X | is the size of state space. For systems that do not satisfy
the Markov property, it may also be needed to store additional
information to capture the execution history during simulation.

IV. EXPERIMENTAL STUDY

We now evaluate two non monotone models, taken fromΨ2

and PRISM benchmarks, on which we will base our efficiency
and scalability comparison. In fact, we verify the steady-
state formula for these two case studies using the numerical
verification approach implemented in PRISM tool and our
statistical verification approach implemented inΨ2 tool using
different statistical solution methods (Section 3), by varying
the problem size (state space size related to the maximal queue
capacity). We illustrate the statistical verification time(≈
Nsamp*coupling time) in seconds, whereNsamp is the sample
size, for these case studies as a function of the maximal queue
capacity (state space size) and we determine the memory limit
for each case when using the verification tools. Since the
considered Markovian models are ergodic (by construction),
thus the steady-state probabilities are independent of theinitial
state. Thus, the considered steady-state formula is satisfied or
not whatever the initial states.

a) Negative clients queueing network
We consider the following queueing model with both positive
and negative clients (Figure 1). The non-monotonicity of this
model (negative clients) is shown and its perfect sampling
by envelope functions is given in [3]. We have implemented
this non monotone model as aΨ2 model as explained in [3]
and we have validated the correctness of our implementation.
In fact, queueing models with negative clients, have found
applications in computer communications and manufacturing
settings. When a negative client arrives at the queue, it has
the effect of a signal, which kills ordinary (positive) clients
in the node. An example of a queueing system with both
positive and negative clients (jobs) is computer networks with
virus infection, which deletes jobs or failures, which causes
other failures and removes jobs. LetNmax to be the maximal

Fig. 1. Negative clients queueing network

capacity of each queue then the state space isO((Nmax+1)6).
Jobs arrive from exterior at the first queue with ratesλ+1
(positive clients) andλ−1 (negative clients), and exit the system
from the second queue with rateµ1 and from the sixth queue
with rateµ2. Jobs arrive also to the first queue from feedback
link with rate λ+feed and λ−feed. Jobs arrive to theith queue
where 2 ≤ i ≤ 6 with rates λ+i (positive clients) and
λ−i (negative clients). Also negative clients can arrive from
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exterior to theith queue where2 ≤ i ≤ 6 with ratesκ−i . Letxi
denote the number of jobs currently in queuei. We define the
atomic proposition that one queue of the system is full with the
formula negsysfull= (x1 = Nmax) ∨ (x2 = Nmax) ∨ (x3 =
Nmax) ∨ (x4 = Nmax) ∨ (x5 = Nmax) ∨ (x6 = Nmax).
Based on this atomic proposition, we check the following
Steady-state formula:S≤θ (negsysfull) to check whether the
probability that the system is full in steady-state is less than
θ or not.

b) Tandem Queueing Network with coxian phase (TQN)
The TQN model (Figure 2) is taken from PRISM benchmark
that consists of anM/Cox2/1 queue sequentially composed
with an M/M/1 queue . In [11], we have implemented this
non monotone model as aΨ2 model by using non monotone
techniques (envelope function) such as defined in [3] and we
have validated the correctness of our implementation. The non-
monotonicity of this model is shown in [5][11]. We consider 4
TQN connected in series then our considered system consists
of 4 M/Cox2/1 queues. LetNmax be the maximal capacity
of each queue then the state space isO((Nmax + 1)2) for
each TQN. In each TQN, jobs arrive at the first queue with
rateλ, and exit the system from the second queue with rate
κ. If the first queue is not empty and the second queue is not
full, then jobs are routed from the first to the second queue.
In each TQN, the routing time is governed by a two-phase
Coxian distribution with parametersµ1, µ2, anda. Here,µi

is the exit rate for theith phase of the distribution, and 1
- a is the probability of skipping the second phase. Letxj
denote the number of jobs currently in queuej, andxphk

∈
{1, 2}, for 1 ≤ k ≤ 4, denote the current phase of the Coxian
distribution. We define the atomic proposition that one TQN
component of the overall system is full with the formulasys-
full = [(x1 = Nmax) ∧(x2 = Nmax) ∧ (xph1

= 2)] ∨ [(x3 =
Nmax) ∧ (x4 = Nmax) ∧ (xph2

= 2)] ∨ [(x5 = Nmax) ∧
(x6 = Nmax) ∧ (xph3

= 2)] ∨ [(x7 = Nmax) ∧ (x8 =
Nmax) ∧ (xph4

= 2)]. Based on this atomic proposition,

Fig. 2. Tandem queueing network with Coxian phase

we check the followingSteady-state formula:S≤θ (sys-full)
to check whether the probability that the system is full in
steady-state is less thanθ or not.

A. Experimental results

a) Negative clients network verification results: We
considerλ+1 =0.8, λ−1 =0.2, λ+feed=0.7, λ−feed=0.3, all service
rates will be state-independent with rateµ1 = µ2 = 1;
λ+i =0.6, λ−i =0.4 andκ−i =0.1 for 2 ≤ i ≤ 6. We give in
Table I for θ = 0.001 and ǫ = 10−4, the verification time
for the considered steady-state formulaS<θ (negsysfull) by
using PRISM Hybrid engine and Jacobi iterative method.
Also we give in the same table forθ = 0.001, δ = 10−4/2

respectively, andα = β = 10−2 the verification time for the
same steady-state formulaS<θ (negsysfull) by using statistical
verification methods implemented inΨ2 (Section 3). In fact,
for Nmax = 21 we obtain an out of memory message with
PRISM. In all of the tables we denote by:
PRISM : numerical verification time in seconds for the

steady-state formula by using PRISM hybrid engine.
outm : an out of memory message in PRISM tool.
The statistical verification time in seconds is given by

combining with statistical techniques given in Section 3:
Ψ2(SSP ) for SSP, Ψ2(SPRT ) for SPRT, Ψ2(SEst) for
statistical estimation,Ψ2(CI) for confidence interval.

Nmax |X | PRISM Ψ2(SSP )Ψ2(SPRT ) Ψ2(SEst) Ψ2(CI)

2 7.29 ∗ 102 0.04 4.1 1.3 5.5 6.8
3 4.09 ∗ 103 0.05 5.4 2.1 8.6 9.1
5 4.66 ∗ 104 0.10 9.4 4.4 15.6 21.5
7 2.62 ∗ 105 1.32 14.4 9.6 19.7 25.8
9 1.00 ∗ 106 98.67 24.2 15.3 29.3 34.9
12 4.82 ∗ 106 276.6 33.2 20.1 39.5 43.4
14 1.13 ∗ 107 9213 42.6 29.7 54.7 67.1
21 1.13 ∗ 108 outm 65.9 42.2 73.1 81.7
99 1.00 ∗ 1012 outm 98.1 53.1 126.1 155.4
999 1.00 ∗ 1018 outm 365.3 173.3 422.4 485.2
9999 1.00 ∗ 1024 outm 1315 633 1713 1929

TABLE I
NEGATIVE CLIENTS NETWORK: VERIFICATION TIME AS A FUNCTION OF

STATE SPACE SIZE|X | FORS<0.001 (negsysfull)

b) Tandem network with coxian phase (4 TQN)
verification results: For numerical application, for each
TQN in the overall system (4 TQN in series) we consider
λ = 4×Nmax, µ1 = 2, µ2 = 2, a = 0.1 andκ =4. We give
in Table II for θ = 0.001 and for ǫ = 10−4, the verification
time for the considered steady-state formulaS<θ (sys-full)
by using PRISM Hybrid engine and Jacobi iterative method.
Also we give in the same table forθ = 0.001, δ = 10−4/2
respectively,α = β = 10−2, the verification time for the
same steady-state formulaS<θ (sys-full) by using statistical
verification methods implemented inΨ2 (Section 3). In fact,
for Nmax = 10 we obtain an out of memory message with
PRISM.

Nmax |X | PRISM Ψ2(SSP )Ψ2(SPRT ) Ψ2(SEst) Ψ2(CI)

2 6.5 ∗ 103 0.4 7.1 4.22 8.5 9.8
3 6.5 ∗ 104 0.5 9.4 5.12 11.4 17.1
4 3.9 ∗ 105 1.93 17.9 8.14 20.3 22.8
5 1.6 ∗ 106 33.2 21.8 12.3 23.6 26.4
6 5.7 ∗ 106 150.6 34.3 21.3 39.6 44.2
7 1.7 ∗ 107 290.6 53.2 34.1 60.9 71.5
8 4.3 ∗ 107 476.6 78.6 57.3 98.7 117.1
9 1.0 ∗ 108 8615 265.9 153.3 329.1 371.3
10 2.1 ∗ 108 outm 386.6 233.1 422.6 492.6
99 1.0 ∗ 1016 outm 498.1 263.3 547.1 605.4
999 1.0 ∗ 1024 outm 565.3 302.1 626.3 715.2
9999 1.0 ∗ 1032 outm 1415 565.3 1826 2153

TABLE II
TQN: VERIFICATION TIME AS FUNCTION OF STATE SPACE SIZE|X | FOR

S<0.001 (sys-full)

B. Discussions

In Tables I and II, we have illustrated the statistical ver-
ification time (≈ Nsamp*coupling time) in seconds for two
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non monotone models as a function of the maximal queue
capacity (state space size), whereNsamp is the sample size.
In fact, the sample size,Nsamp is the only factor that varies
between the different statistical solution methods, regardless
of implementation details. The sample size depends on the
method used for verifying probabilistic statements, as well as
the desired strength(α, β) andθ andδ. Note that, the coupling
time of the perfect simulation varies with the state space size,
with the implementation and with the verified property.

In Tables I and II, we show that the Single Sampling
Plan (SSP) method is at least as efficient as the statistical
estimation method and it will be more efficient since the
sample size of the SSP method is derived using the true
underlying distribution [21] (Section 3). We show also in these
tables that the Single Sampling Plan (SSP) method is more
efficient than the confidence intervals method, since the last
method requires a smaller width of the confidence interval
(Section 3). This can cause confidence intervals method to
require more samples than needed for hypothesis testing based
method (SSP method).

Moreover, we show in these tables that the Sequential Prob-
ability Ratio Test (SPRT) method is more efficient than the
Single Sampling Plan (SSP) method. In fact, the sample size
for a single sampling plan SSP is approximately proportional
to the logarithm ofα and β, and inversely proportional to
δ2 [21]. In our work, for SSP method we have determined
the sample size using the approximation formulas given in
[21]. For sequential test SPRT the expected sample size also
depends on the unknown probability measurep of the set
of trajectories that satisfy the propertyϕ. In fact, for SPRT
method the sample size is computed during the verifica-
tion process. We show in tables I and II that using SPRT
method instead of SSP method can reduce the verification
time (depending on sample size) by an order of magnitude
in most cases. Thus we show that SPRT statistical method
is generally more efficient than the other statistical methods
when performing steady state dependability verification for
very large models and we show that the hypothesis testing
based methods are generally more efficient than the estimation
and the confidence intervals based methods. We also see in
these tables that our statistical verification approach is efficient
and scalable when we consider large non monotone models
and it allows us to verify rare event properties efficiently on
these models.

Finally, in Tables I and II we have determined the memory
limit for each case when using the verification tools. There
is no memory limit when using our statistical verification
approach implemented inΨ2 tool, since the space complexity
of statistical model checking is generally modest. In fact,in
statistical model checking it is needed to store the current
state of a sample trajectory when generating an observationfor
the verification of a probabilistic statement, and this typically
requires O(log|S|) space where|S| is the size of state space.

V. CONCLUSION AND FUTURE WORKS

In this paper, we extend our proposed approach [12][13][14]
by implementing different statistical methods in our verifica-
tion engine and by comparing their efficiency when we verify

steady-state dependability properties for large non monotone
models. We show that SPRT statistical method is generally
more efficient than the other statistical methods when per-
forming steady state dependability verification for very large
models. Moreover, we show that our statistical verification
approach is efficient and scalable when we consider large non
monotone models and lets us to verify rare event properties
efficiently on these models. Also we have found that our
statistical verification approach scales better with the state
space size and it is faster than PRISM tool especially for large
models. In the future, we plan to complete our verification
results for the CSL unbounded until formulas [14].
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