

Abstract—A case study on the application of Communicating

Sequential Processes (CSP) to the specification and verification

of fault tolerant systems is presented. The Triple-Modular

Redundancy (TMR) mechanism is a classical design technique for

tolerating hardware errors. By specifying the behavior of the

faultless module as a CSP process, the behavior of TMR system

suffering from hardware errors can be verified as a refinement of

the one of the faultless module.

Index Terms—TMR System; fault tolerance; verification; CSP

I. INTRODUCTION

Fault tolerance is generally accomplished by using

redundancy in hardware, software or combination. There are

three basic types of redundancy in hardware and software:

spatial redundancy, time redundancy, and hybrid. TMR scheme

has been one of the most popular fault tolerant mechanisms

using spatial redundancy [1]. In TMR systems, computions are

replicated into three modules running in parallel and their

outputs are voted using a voter circuit. A single fault in any of

the redundant modules will not produce an error at the output as

the voter will select the correct result from the two working

modules and recover the fault. There are numerous examples of

dependable systems using the TMR technique [2].

 Though the principle of TMR fault tolerant system is

straightforward, evaluating system's behavior in the presence of

faults constitutes another significant problem, especially for the

complicated systems[8][9][10]. In other words, it was not

possible to determine whether the behavior described in these

requirements would provide the desired level of fault tolerance.

Fault injection techniques have emerged as an important method

for evaluating fault tolerant systems. However, they cannot

cover all fault scenarios. Therefore, they cannot guarantee that

all fault consequence has been investigated. This motivates us

to explore a formal verification approach that targets a complete

validation.

In [3], temporal logic of actions (TLA) [4] is used to specify

and validate TMR fault tolerant system. The programs running

on three processors are represented as transition systems.

Physical faults in the system are modelled as a set of “fault

actions” which perform state transformations in the same way as

the other program actions. Assuming that errors will not occur

on two modules synchronously, the fault tolerance property of

TMR system can be verified as the refinement of a

non-fault-tolerant program.

In this paper, we propose an approach for the formal

verification of TMR fault tolerant systems using CSP [5], which

is a member of a class of formal methods known as process

algebras. By specifying the property of a faultless module with a

CSP process, we prove that TMR fault tolerance system can still

satisfy the property in spite of hardware errors. The verification

process can be absolutely automatic based on model checking

support tool FDR2 [6] of CSP.

The rest of this article is organised as follows. The next

section briefly introduces the language of CSP used in this paper;

Section III considers the specification for a faultless module;

Section IV describes the TMR fault tolerance system suffering

from hardware errors; Section V verifies the effectiveness of

TMR mechanisms and discusses the use of model checking tool

FDR as an automated means of verifying the fault-tolerant

design; Section VI concludes with some remarks on the use of

CSP in formal verification of fault tolerant systems.

II. THE LANGUAGE OF CSP

CSP is a language where processes proceed from one state to

another by engaging in (instantaneous) events [5]. A process is

a component that encapsulates some data structures and

algorithms for manipulating that data. It interacts with

enviroment through synchronised message passing along

channels, or events. The set of all events in the interface of a

process P, written α.P, is called its alphabet. However, the

interface events are not as autonomous actions under the

control of a single process but intended as synchronization

between the participating processes.

The language of CSP used in this paper is described in Figure

1, which is defined by the following pseudo Backus-Naur form

definitions. In Figure 1, c denotes an event, A is a set of events

and b is a Boolean expression. The Skip is the process that does

nothing but terminates successfully. The prefix process c -> P is

ready to perform event c and waits until the environment

prepares well event c. Once the event c is performed, the

subsequent behaviour of c -> P will be that of process P. In the

Specification and Verification of the

Triple-Modular Redundancy Fault Tolerant

System using CSP
Lanfang Tan, Qingping Tan, Jianli Li

School of Computer

National University of Defense Technology

Changsha, China

tlf1022@126.com, eric.tan.6508@gmail.com, ljl_003@163.com

14

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

sequential composition P; Q, the combined process firstly

behaves as P and then Q becomes active immediately after the

termination of P. The internal choice P ┌┐Q waits to perform

events that either P or Q is ready to engage in. Once an event of

a component is performed, the subsequent behaviour is given

by this component. Selecting either P or Q depends on its

internal environment.

The parallel combination P |A| Q only synchronises on events

in A, and interleaves on all other events. The hiding operator P

\ A makes a given set of events in A internal, thus beyond the

control of its environment. The prefix choice a: A-> Pa is ready to

perform any event from set A until one is chosen. Pa is its

subsequent behaviour, which is dependent on the chosen event

a. A process can be defined to allow the input on channel in of

any item x in a set M, and the value x determines the subsequent

behavior [5]:

in?x:M →Q(x)≅a:in.M →Pa

where the set in.M={in.m| m∈ M} and Pin.m=Q(m) for every

m ∈ M. The atomic synchronization events here are of the form

in.m. The output prefix has the form out!x →P and this is simply

a shorthand for out!x → P.

The indefinite loop process P* repeats the actions of P after

the successful termination of P. The condition operator if b then

P else Q fi selects either P or Q according to the Boolean

expression b.

P := c -> P | P ; P | P ┌┐P |

 P |A| P | P \ A | a: A -> Pa |

 P* | if b then P else P

Figure 1. The CSP operators

III. SPECIFICATION OF A FAULTLESS MODULE

In this section, we want to model the faultless module as a CSP

process that represents the general computing model. As Figure

2 illustrates, a faultless module can be abstracted as a

computation process, which consists of a processor and a

memory. Assume that the program to be performed in the module

is deterministic and sequential, consisting of data segment and

text segment. During program executing, the processor either

executes an instruction in text segment to change the content of

data segment, or issues write operation to the memory.

Therefore, the processor can be abstracted as a function d=

funp(l), where d denotes the content of data segment and l

denotes the next instruction to be executed. For each input

program, the mapping function funp is determined. The write

operations can be performed just as certain instructions are

executed, such as store instructions. So we specify the

behaviour that the processor needs write data d to the memory

by an assertion NeedWrite(d), whose value is true if and only if

the store instruction is performed. When the processor issues

write operations defined as Output (d), the memory updates data

segment, which is represented by a function Update(d).

Processor

Faultless

Module

In.Program
NeedWrite Memory Legends:

External channel

Internal channel

Figure 2. The faultless module

As is mentioned above, we can illustrate the behaviour of the

faultless module in the CSP language in Table I.

TABLE I SPECIFICATION FOR T HE FAULTLESS MODULE

1 Faultless Module: = Processor | { Output(d) } | Memory \

{ Output(d) }

2 Processor: =in? Program →

(if (Exited(l)) then Skip else

(if (NeedWrite(d)) then out! Output (d) else funp (l) fi.)fi.)*

 →Processor

3 Memory: = (in? Output(d) → Update (d)) → Memory

The faultless module is encoded as a parallel combination

construction, with two processes synchronizing on the event

Output (d). The CSP process is defined by the expression on the

right-hand-side of the definition “:=” symbol. Processor

specifies the module initially inputs a program through channel

in and then executes in terms of the input program. During

executing, the Processor either exits the program and prepares

for the next input program, or continues executing depending on

the Boolean expression Exited(l). When Processor output d

through channel in, Memory updates the values of the data

segment and then returns to its initial s tate preparing for the next

write operation.

IV. SPECIFICATION OF THE TMR SYSTEM

The TMR system allows parallel execution of the three

modules on three processors thereby providing tolerance of

certain permanent and transient hardware faults. Suppose that

the hardware faults only occur on processors and memories are

protected by error correcting codes (ECC) mechanism [7].

The principle of the TMR system is shown in Figure 3. It works

as follows. Once a program is input, the three processors start

executing. When a processor needs writing data in memory, it

issues a signal “Needwrite” to the Voter. When all signals to

write memory arrive, the voter chooses the correct data to be

written into memory and then sends the answer message to the

three processors.

We may specify the behavior of the Voter by the following

CSP process in Table II. It is a sequential composition, where the

process first waits the signals to write data and then choose the

correct data. The notations of answer message are defined as

follows:

1) Ack !”0”: denotes the data to be written into memory if three

processors are equal.

2) Ack !”i”(i=1, 2,3): denotes the data to be written of

processori is not equal to the data of the other two

15

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

processors.

3) Ack !”4”: denotes the data to be written of three processors

are not equal to each other. Of course, this case is not

possible unless the Voter works abnormally.

Processer1

Processer2

Processer3

Voter

Needwrite1

Writedata

Ack

In.program

fault1

fault2

fault3

Memory1

Memory2Needwritt2

Needwrite3

Memory3

 Figure 3. The TMR system

 TABLE II SPECIFICATION FOR T HE VOTER OF THE TMR SYSTEM

1
Voter: = (in? Needwrite1 → SKIP ||in? Needwrite2 → Skip ||

in?Needwrite3 → SKIP);

2 If (d1==d2 and d2==d3) then (Writedata!(d1) || Ack ! 0)

3 else if (d1==d2 and d2!=d3) then (Writedata!(d2) || Ack ! 3)

4 else if (d1==d3 and d2!=d3) then (Writedata!(d1) || Ack ! 2)

5 else if d3==d2 and d1!=d3) then (Writedata!(d3) || Ack ! 1)

6 else (Ack !4)

7 → Voter

Similarly, the behavior of the Modules can be expressed as

Processori and Memoryi in CSP language, which is shown in

Table III. The Process i is designed as a sequential composition,

which begins with an internal choice waiting to perform events.

If a fault occurs, the data values will be corrupt, which is

expressed by a function Wrong (d). We can speculate that once

a fault occurs, it will be responded by the answer message and

then the data will be recovered, which is described as Recover(d).

Memoryi process is similar to the Memory process of the

faultless module.

 TABLE III SPECIFICATION FOR T HE PROCESSOR OF THE TMR SYSTEM

1 Processori := (in?fault i → (Wrongi (d) → SKIP)

┌┐(in? Program →
if (Exited(l)) then Skip else

2 (if (NeedWritei) then out! Output i(d)

3 else funp(l) fi.)
*→ SKIP)┌┐

4 (Ack?x →(if in?Ack.x= i then Recoveri(d)

5 else SKIP))

6 →Processori (i=1,2,3)

7

Memoryi: = (In? Output(d) → Update (d)) → Memory i

(i=1,2,3)

As mentioned above, the TMR system can be illustrated in

Table IV. It is designed as a parallel combination construction

containing two processes. The first process is that three

processors and Voter synchronize on events “Output” and

“Ack”. The second process describes the synchronizing

between the first process and the three memories on event

“Writedata”. All the events are internal to the TMR system, thus

the hiding operator is adopted.

TABLE IV SPECIFICATION FOR THE TMR SYSTEM

1 TMR System := (Processor1 || Processor2 ||

Processor3

2 |{ Output1, Output2, Output3, Ack } | Voter)

3 |{Writedata}|

4 (Memory1 || Memory2|| Memory3) \

5 \{ Output1, Output2, Output3,WriteData, Ack }

V. VERIFICATION OF FAULT TOLERANCE

The verification of fault tolerance for the TMR system

amounts to showing that the behaviour of the TMR system

suffering from hardware faults is a refinement of the behavior of

a faultless module, as stated in the following lemma:

Lemma 1: Faultless Module ≦TMR System

Proof: One straightforward way to show the refinement

relationship is to apply semantics preserving transformation

upon the process definition based on the algebraic rules

associated with CSP operators [5]. This approach explores or

enumerates manually all possible states of a process defined by

parallel combination. Also, since here we target at the behavioral

properties rather than the functional property of the process, an

abstract version of TMR system which ignores the functional

aspect including values, variables, and Boolean expressions can

be obtained. Table V shows the proof for Lemma1.

TABLE V THE PROOF OF THE TMR SYSTEM

1 TMR system= (Processi|{ NeedWritei, Ack } | Voter) |{WriteData}|

Memory i \{ NeedWritei, Ack,WriteData } i=1,2,3 (1)

2 Fill the definitions of Processori ,Memory i and Voter in (1)

3 Apply the following algebraic laws (2) to simply (1)

4 P || (R; Q) = (P || R); (P|| Q) (2)

5 Apply the following algebraic laws (2) and (3) to simply (1)

6 (P┌┐ Q)|| R= (P || R) ┌┐(Q|| R) (3)

 Assume that two faults cannot occur synchronously, (1) can be

simplified as (4)

8 Faultless Modulei=1, 2; Ack?x->SKIP|| (fault i? → (Wrong (d)

→SKIP)|| Voter ; (4)

9 Assume that the Recover(d) can restore the program effectively,

apply the following laws to simply(4)

10 SKIP ; P=P (a→P);Q=a→(P;Q)

11 (4) can be simplified as following :

12 Faultless Modulei=1,2,3

However, it is too laborious to verify the property of the TMR

system manually. Fortunately, the FDR model checking tool [6]

can be used to verify the above lemma automatically. To verify

whether the TMR system suffering from hardware fault is a

refinement of the faultless module, the failures -divergence model

[6] in which the possible behaviours of a process are denoted by

a set called its failures-divergence is adopted. A process Q is a

16

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

refinement of another process P, written as P [FD= Q, if (and only

if) the failures-divergence set of the former is contained in the

failures-divergence set of the latter. Firstly, the system is defined

as a CSP process. Then, it is translated into the input language of

FDR. A listing of the FDR2-compatible source can be found in

the appendix. While a detailed introduction to the semantics of

FDR is beyond the scope of this paper, the appendix specifies

the TMR system obtained by translating the CSP process into

the input language of FDR.

VI. CONCLUSION AND FUTURE WORK

This paper has shown how the FDR refinement checker for

CSP can be used to specify and verify the fault tolerant system.

Firstly, a faultless module that is abstracted as a computation

model is encoded as a CSP process. Then the TMR system

suffering from hardware errors is illustrated in CSP. By verifying

the TMR system is a refinement of a faultless module, the fault

tolerance property of the TMR system can be verified. Moreover,

by the model checking tool FDR, the verification is performed

automatically.

The work with more similarity to ours is described in [3], but

ours is much more general and practical. Our work just needs to

encode the system in CSP processes, and then the verification

can be performed automatically by FDR. FDR searches the state

space of the system until it either finds an undetected error or

exhausts the state space. This search is automatic in the sense

that it does not require user guidance once the system has been

modeled in CSP. On the contrary, the work in [3] validates the

correctness of fault tolerant systems using axioms and proof

rules. It can only be used by experts who are well-drained in

logical reasoning and have considerable experience. Thus it is

not practical.

However, we only focus on the write operation between the

processor and the memory. In order to simplify the process

description, the read operation that the processor reads data

from the memory is not considered. In general, it is just an early

work. In the future, we will investigate the read operation and

apply the method to some complicated system.

APPENDIX

{- The idea of this script is to prove that the TMR system is a

refinement of the behavior of a faultless module -}

-- Event definitions

Output (d) =yes|no

Tags_ack= {0, 1, 2, 3}

NeedWrite= NeedWrite1| NeedWrite2| NeedWrite3

Data=d1|d2|d3

--channel declarations

Channel Processor_in, Proceesor_in1, Proceesor_in2,

Proceesor_in3

channel Memory_in, Memory_in1, Memory_in2, Memory_in3:

Output

channel Voter_ack : Tags_ack

channel Voter_in: NeedWrite

channel Voter_WriteData

-- The specification is for the processor of the faultless module

Processor=Processor_in? Program-> (if (NeedWrite) out!

Output (d).yes else funp(l) fi.) ->Processor

-- The specification is for the memory of the faultless module

Memory = (Memory_in? Output(d).yes > Update (d)) -> Memory

-- The specification is the faultless module

Faultless Module= (Processor [| {| Output(d)|} |] Memory) \ {|

Output(d) |}

-- The specification is the Voter of the faultless module

Voter: = (Voter_in? Needwrite1 --> SKIP || Voter_in? Needwrite2

--> SKIP || Voter_in?Needwrite3 -> SKIP);

if (d1==d2 and d2==d3) then (Voter_WriteData!d1 || Voter_ack ! 0)

else if (d1==d2 and d2! =d3) then (Writedata! d2 || Voter_ack! 3)

else if (d1==d3 and d2! =d3) then (Writedata! d1 || Voter_ack! 2)

else d3==d2 and d1!=d3) then (Writedata!d3 || Voter_ack ! 1)

--> Voter

-- The specification is the Processor1 of the faultless module, it is

similar to Processor2 and Processor3

Processori = ((in?faulti -> (Wrong (di) -> SKIP) [] In? Program->

(if (NeedWritei) Out! Outputi(di)

else funp(l) fi. --> SKIP);

Ack? ->(if in?ack.x= i then Recoveri(d)

else SKIP);

Processori (i=1,2,3)

Memoryi= (In? Output(d) -> Update (d)) -> Memoryi (i=1,2,3)

-- Finally we put it all together, and hide internal communication

TMR System = (Processor1 || Processor2|| Processor3 |{Output1,

Output2, Output3,Ack}| Voter) |{Writedata}|(Memory1|| Memory2

|| Memory3)\{ Output1, Output2, Output3,Ack, Writedata}

--The Specification of Faultless Module ≦TMR System

assert Faultless Module [FD= TMR System

REFERENCES

[1] Kang G. S. and Hagbae K., “A Time Redundancy Approach to TMR

Failures Using Fault-State Likelihoods,” IEEE Trans. on Computers,

vol. 43, pp. 1151-1162, Oct . 1994.

[2] Siewiorek D. P. and R. S. Swarz, “Reliable Computer Systems:

Design and Evaluation,” Digital Press, 1992.

[3] Liu Z.M. and Joseph M., “Specification and verification of fault

tolerance, t iming and scheduling,” ACM Trans. on Programming

language and systems, vol. 21, pp. 46-49, Jun. 1999.

[4] Lamport L, “The temporal logic of actions,” ACM Trans. on

Programming language and systems, vol. 16, pp. 872-923, Nov.

1994.

[5] Hoare C.A.R, “Communicating Sequential Processes,” Prentice Hall,

1985.

[6] Formal Systems (Europe) Ltd, FDR2 User Manual, 2005.

[7] Lin S. and Costello D. J., “Error Control Coding: Fundamentals and

Applications”, second edition, Prentice Hall: Englewood Cliffs,

2004.

[8] Subhasish M. and Edward J. M.,” Word-Voter: A New Voter Design

for triple Modular Redundant systems”, Proc. IEEE Symp. VLSI Test ,

IEEE Press, pp. 465-470, Aug. 2000.

[9] Kang G. Shin and Hagbae Kim, “A Time Redundancy Approach to

TMR Failures Using Fault -State Likelihoods”, IEEE Trans. on

Computers, vol. 43, pp. 1151-1162, Oct. 1994.

[10] Lisboa C. A. L., Schuler E. and Carro L., “Going beyond TMR for

Protection against Multiple Faults”, IEEE Symp. Integrated Circuits

and Systems Design, IEEE Press, pp. 80-85, Sept. 2005.

17

DEPEND 2011 : The Fourth International Conference on Dependability

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-149-6

