
Decentralized Browser-based Cloud Storage: Leveraging IPFS for Enhanced Privacy

Georg Eilnberger
St. Pölten UAS

St. Pölten, Austria
e-mail: is211806@fhstp.ac.at

Timea Pahi
St. Pölten UAS

St. Pölten, Austria
e-mail: timea.pahi@fhstp.ac.at

Peter Kieseberg
St. Pölten UAS

St. Pölten, Austria
e-mail: lbkieseberg@fhstp.ac.at

Abstract—This work addresses the growing need for data
management solutions that prioritize security, privacy, and user
control, amidst the limitations of traditional centralized storage
systems with a particular focus on the InterPlanetary File
System (IPFS). The core objective is to explore the efficiency,
challenges, and potential of IPFS in revolutionizing data storage
and management. A significant contribution of this paper is the
development of a proof-of-concept web application that employs
IPFS for secure and efficient data handling. This application
serves as a practical illustration of integrating IPFS into real-
world data management scenarios. The security and performance
of the application within the decentralized IPFS framework are
thoroughly assessed. The study highlights the strengths of IPFS
in ensuring data integrity and privacy while acknowledging
the challenges in scalability and performance, particularly in
handling large files and addressing WebRTC-TCP (Web Real-time
Communication-TCP) socket incompatibility issues. Furthermore,
we present recommendations for future enhancements of the
proof-of-concept web application. These include improving direct
file transfer capabilities, advancing file handling techniques,
integrating robust key management solutions, and developing
dynamic data replication strategies. The research in this paper
underscores the potential of decentralized systems like IPFS in
shaping the future of data storage, offering a more secure, private,
and user-centric approach.

Keywords-IPFS; Data Privacy; Cloud Storage; Decentralized
Storage.

I. INTRODUCTION

The field of data storage and access is experiencing a
rise in popularity of decentralized models. Centralized data
management systems, while established and efficient, present
limitations in security, privacy, and user autonomy. This work
examines the transition towards decentralized systems, with a
focus on the IPFS and distributed data management principles.
The motivation for this study arises from an increasing need
for secure, private, and user-centric data management solutions.
The research addresses several questions:
1) How do decentralized systems like IPFS compare with tra-

ditional centralized storage solutions in terms of efficiency,
security, and data integrity?

2) What are the main challenges associated with the imple-
mentation and use of decentralized storage systems?

3) How can web applications effectively integrate decentralized
systems like IPFS for data management, and what are the
associated challenges and security implications?

The remainder of the paper is organized as follows. In
Section II, we provide some required background and relevant
related work, in Section III, we provide details on the design
and implementation, whereas in Section IV the approach is

evaluated with respect to security and performance. Section V
provides some ideas for future work.

II. BACKGROUND & RELATED WORK

A. Decentralized File Systems

Decentralization in computing and in the web represents
a shift from centralized to distributed control. This shift is
not merely technical but also philosophical, highlighting ideas
such as autonomy, resistance to censorship, and enhanced
robustness against failures or attackers. In the early days
of computing, centralized systems dominated due to their
simplicity. However, the inherent drawbacks, such as single
points of failure, scalability issues, and potential for abuse of
power led to the exploration of decentralized alternatives [1].

The concept of decentralization in computing started taking
shape with early developments. A pivotal development in this
direction was the emergence of Peer-to-Peer (P2P) networks,
characterized by their lack of reliance on central servers.
Napster, one of the first widely used P2P networks, facilitated
file sharing by allowing direct file transfers between users’
computers. Despite its legal controversies, Napster demon-
strated the potential for efficient, decentralized data distribution.
Similarly, BitTorrent further advanced this model, efficiently
handling large files and numerous simultaneous uploads and
downloads, a significant step towards practical decentralized
data sharing [2].

The advent of blockchain technology represented a critical
development in decentralized systems. Blockchain’s intro-
duction of a popular tamper-proof ledger without central
authority was first successfully implemented by Bitcoin, the
initial decentralized digital currency. This implementation
of blockchain technology demonstrated the feasibility of
achieving consensus in a trustless environment Subsequently,
the development of platforms such as Ethereum expanded the
blockchain’s applicability. Ethereum introduced functionalities
like smart contracts, which allowed for a broader range
of decentralized applications, illustrating the versatility and
potential of blockchain technology in various domains [3].

B. The InterPlanetary File System

IPFS is a protocol designed to create a peer-to-peer method
of storing and sharing media in a distributed file system.
Developed as a response to the limitations of the traditional
centralized web storage model, IPFS represents a paradigm
shift in how information is distributed and accessed [4].

75Copyright (c) IARIA, 2025. ISBN: 978-1-68558-244-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DBKDA 2025 : The Seventeenth International Conference on Advances in Databases, Knowledge, and Data Applications

https://orcid.org/0000-0001-7346-3450
https://orcid.org/0000-0002-2847-2152

A defining aspect of IPFS is its decentralized nature. Unlike
conventional web storage solutions, which rely on centralized
servers, IPFS distributes data across a network of nodes. This
distribution of data not only mitigates risks associated with
single points of failure but also enhances data accessibility and
data permanence. Central to IPFS’s functionality is content
addressing. Traditional web uses location-based addressing, for
example, URLs pointing to specific server addresses. In contrast,
IPFS addresses content through its content itself by utilizing
cryptographic hashing. This approach results in unique content
identifiers (CIDs), making content retrieval more efficient
and less redundant. Compared to location-based addressing,
this method significantly improves both the efficiency and
security of data storage and access. By relying on the content’s
cryptographic hash, immutability is inherent, allowing for
verifiable data integrity and significantly contributing to the
system’s overall robustness [4].

Security in decentralized systems presents a unique set of
challenges and considerations distinct from those in traditional
centralized architectures. The decentralized nature, while
offering advantages in terms of redundancy and resistance to
certain types of attacks, also introduces specific vulnerabilities
that must be addressed [5], [6].

a) General Security Challenges in Decentralized Systems:
Decentralized systems face distinct security vulnerabilities. One
key issue is the increased attack surface due to the distributed
nature of these systems. Each node in a decentralized network
can potentially become a target for attacks. Furthermore, in
public decentralized systems, such as IPFS each participat-
ing node can potentially be malicious. To ensure that data
remains unaltered and private over a distributed network robust
encryption and validation mechanisms are required. However,
implementing these effectively in a decentralized context, where
control is inherently distributed, presents unique challenges in
itself [7].

b) Vulnerabilities in DHT-Based Routing Protocols:
Distributed Hash Table (DHT) based routing protocols, such
as IPFS, have their own vulnerabilities. These include Sybil
attacks, where an attacker tries to create a large number of fake
identities/nodes to gain a disproportionately large influence on
the network [8], [9], and Eclipse attacks, where the attacker
isolates a single node or user from the rest of the network,
potentially feeding it false and/or harmful information.

c) Network Reliability: Maintaining a consistent and
reliable network is another critical challenge in decentralized
systems. In IPFS, for instance, the absence or unavailability
of nodes can lead to difficulties in data retrieval, highlighting
the need for robust network health.

d) Data Persistence and Redundancy: In decentralized
systems like IPFS, data persistence is dependent on nodes
electing to store that data. Unlike centralized systems where
data storage can be systematically managed and guaranteed,
IPFS faces the challenge of ensuring that data remains available
even when the node originally providing that data goes offline.
This issue necessitates a redundant storage mechanism and an
incentive for nodes to retain data.

III. APPROACH

The web application developed as part of this work represents
a proof-of-concept for a secure, decentralized file storage
system. It operates within the broader ecosystem of IPFS,
leveraging the decentralized nature of the platform to offer a
novel approach to data storage and access. The application
is hosted directly on IPFS, which provides a resilient and
distributed hosting solution. This hosting choice aligns with
the overarching theme of decentralization, ensuring that the
application itself is as robust and distributed as the data it
manages.

A. Attacker models

In this work, we focus on the following three attacker models,
as we consider them to be the most important ones with respect
to IPFS:
1) Malicious IPFS Nodes: Given the open nature of IPFS, the

application may interact with nodes that attempt to access
or manipulate user data. To mitigate this, the application
employs end-to-end encryption, ensuring that data remains
secure and unreadable by unauthorized nodes.

2) Data Manipulation Attacks: The possibility of an attacker
altering the data in transit is addressed through the use of
IPFS’s content addressing and the application’s encryption
mechanisms. The integrity of data is maintained as any
alteration in the encrypted data will be detectable due to the
change in its CID. Contrary to the next attack, this attacker
might only try to redirect traffic or alter information, even
without being able to actually decode it.

3) Eavesdropping Attacks: The risk of data interception is
countered by encrypting the data before it is shared or
stored on the network. This ensures that even if the data is
intercepted, it remains incomprehensible to the attacker.
Contrary to the previous attacker, this attacker is only
passively involved, i.e. he/she does not change data.

The logic behind the selection of these three models is that
one is an attack from inside the network, namely the most
prominent one where a node is made malicious, while attacker
model two and three model an active, as well as a passive,
attacker respectively.

B. Connectivity and File Processing Framework

In the current IPFS ecosystem, direct file transfers using
the Helia library face challenges due to a WebRTC-TCP
incompatibility issue in current IPFS nodes. As a pragmatic
approach, the application utilizes third-party HTTP APIs for
interactions with storage providers like Filebase or Pinata. This
strategy is a temporary solution until direct transfer of files via
IPFS becomes feasible. The use of HTTP APIs as a current
means of file handling offers reliable storage and retrieval,
albeit with a modest departure from the ideal decentralized
model [10].

C. Custom Identity Management and File Synchronization

This section elaborates on the unique approach to identity
management and file synchronization within the developed web

76Copyright (c) IARIA, 2025. ISBN: 978-1-68558-244-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DBKDA 2025 : The Seventeenth International Conference on Advances in Databases, Knowledge, and Data Applications

application. The system hinges on the creation and utilization
of a user-specific identity file, coupled with a dynamic file
indexing mechanism, ensuring secure and efficient interactions
with the IPFS network.

a) Identity File Creation and Usage: The first step is the
creation of an identity file for the user. This pivotal process
involves:
• Generation of an AES (Advanced Encryption Standard)

private key, either supplied by the user or automatically
generated by the application.

• Requirement for the user to input an API key from a chosen
third-party storage provider. This is required due to current
Helia limitations (WebRTC - TCP incompatibility).

The identity file, essentially a JSON object, encompasses crucial
components for user identification and interaction with the IPFS
network:
• The IPNS (InterPlanetary Name System) name, pointing to

the file index JSON object
• The user’s AES private key
• The user’s third-party API key
This identity file represents the core of user data portability,
enabling access to their IPFS storage from any device by merely
transferring this file.

b) File Structure and Index File Mechanism: Every file,
including the index file, adheres to a structured format:
• Composed as JSON objects
• Contains encrypted data as a Uint8-Array
• Includes the AES-GCM initialization vector it was encrypted

with
Upon uploading the first file, the index file is generated, and
an IPNS entry is created to consistently point to the latest CID
of this index file. The index file plays a crucial role in the
system:
• Structured as a JSON object.
• Contains an encrypted list of all files, each entry detailing:

– File CID
– File name
– File size
– SHA-256 hash of the file
– Optional metadata for enhanced file information (e.g. a

timestamp of the last change).
Currently, this approach does not account for collisions, as 256
bit hashes have a wide result space, thus the probability of
accidental collisions is very low. Still, this could be improved
in future versions.

c) File Retrieval Process: The steps to retrieve a file are
as follows:
1) Connect to IPFS and query the CID of the index file JSON

object.
2) Download the index file JSON object.
3) Decrypt the file list using the attached AES-GCM initial-

ization vector and the user’s AES256 private key.
4) Display metadata of all files contained in the index.
5) On file request, query the specific CID.

6) Download the requested file JSON object.
7) Decrypt the file using the attached AES-GCM initialization

vector and the user’s AES256 private key.
d) File Storage Process: When a new file is uploaded or

an existing one modified, the following steps are undertaken:
1) Encrypt the file using the user’s AES256 private key and a

newly generated initialization vector.
2) Create a JSON object for the file, storing the encrypted

data and the initialization vector.
3) Upload the file to an IPFS storage provider (using Helia or

third-party HTTP APIs).
4) Record the file’s CID and metadata, appending it to the

index file.
5) Request the storage provider to pin the new file on IPFS.
6) Upon successful pinning, upload the updated index file and

request pinning.
7) Update the IPNS entry to reflect the new index file.
8) Unpin the old index file (and the old file if it was an update)

after successful IPNS update and new file pinning.
This architecture ensures a secure, user-friendly, and efficient
mechanism for managing files on the decentralized IPFS
network, addressing current limitations while laying the ground-
work for future improvements in direct file transfer capabilities.

D. Encryption in the Application

The approach implements AES-GCM, an Advanced Encryp-
tion Standard in Galois/Counter Mode, for its data encryption
and decryption processes. AES-GCM is chosen primarily
due to its integration with the Web Crypto API, along with
its Authenticated Encryption with Associated Data (AEAD)
properties and widespread hardware acceleration support. The
selection of AES-GCM for encryption in the application is
driven by several factors:
• Web Crypto API Compatibility: AES-GCM is readily avail-

able in theWeb Crypto API, facilitating easy implementation
in web applications [11].

• AEAD: AES-GCM provides both encryption and data
integrity, ensuring data confidentiality and protection against
tampering [12].

• Hardware Acceleration: The widespread hardware support for
AES that allows for fast computation with cheap hardware.

IV. EVALUATION AND CONCULSIONS

A. Security evaluation

The web application was designed with specific attacker
models in mind, primarily focusing on safeguarding user data
from unauthorized access and manipulation. With respect to
the attacker models outlined in Section III, the following
conclusions could be drawn:
1) Malicious IPFS Nodes: The primary threat comes from

malicious nodes within the IPFS network that may attempt
to access or tamper with user data. The application’s use
of AES-GCM encryption effectively counters this threat
by ensuring data confidentiality. Encrypted files, even if
intercepted, remain inaccessible to unauthorized parties.

77Copyright (c) IARIA, 2025. ISBN: 978-1-68558-244-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DBKDA 2025 : The Seventeenth International Conference on Advances in Databases, Knowledge, and Data Applications

2) Data Manipulation Attacks: Another concern is the poten-
tial for data manipulation during transmission. The self-
verifying nature of IPFS CIDs, combined with the integrity
assurance of AES-GCM, provides robust protection against
such attacks. This dual layer of security ensures that any
tampered data is easily detectable.

3) Sybil and Eclipse Attacks: While the application does not
directly mitigate DHT vulnerabilities like Sybil and Eclipse
attacks, it minimizes their impact on user data privacy. The
encrypted data stored on IPFS remains secure against these
attacks, as the encryption layer acts independently of the
underlying DHT’s vulnerabilities [7], [9].

In addition, the use of AES-GCM for encryption plays a crucial
role in securing user data:
• Data Confidentiality: AES-GCM ensures that file contents

remain confidential. By encrypting data before it is uploaded
to IPFS, the application prevents unauthorized access, even if
the data is replicated across potentially untrustworthy nodes.

• Data Integrity: Alongside confidentiality, AES-GCM provides
data integrity checks. This feature is critical in a decentralized
setting where data passes through multiple nodes, as it
enables the detection and rejection of tampered data.

• Performance Considerations: While AES-GCM is computa-
tionally efficient due to widespread hardware acceleration
support, the application’s encryption process is dependent on
the user’s device capabilities. This can impact performance,
particularly for larger files.
In conclusion, the security evaluation reveals that the web

application effectively addresses key security concerns within
the decentralized IPFS framework. The robust encryption
strategy ensures data confidentiality and integrity, mitigating
risks associated with decentralized data storage and transmis-
sion. The application’s current security measures provide a
solid foundation, though future enhancements could focus
on advanced key management and addressing broader DHT
vulnerabilities.

B. Performance and Stability

This section focuses particularly on efficiency in handling
large files, WebRTC and TCP socket compatibility issues, and
the implications of these factors on data loss prevention and
redundancy strategies.

1) Efficiency and Large File Handling: The application’s
current architecdture faces challenges in managing large files
due to limitations in the splitting and handling of large data
sets. Key observations include that large files lead to extended
encryption and upload times, constrained by the device’s
RAM and processing power. Furthermore, there are also some
concerns regarding scalability: Without the ability to split large
files into manageable blocks, the application’s scalability is
hindered, particularly when dealing with extensive data sets or
high-volume storage requirements.

2) WebRTC and TCP Socket Incompatibility: One of the
primary limitations in the current implementation of the
application is the incompatibility between WebRTC and TCP
sockets within the IPFS ecosystem. This limitation impacts the

stability of the application. Regarding connection limitations,
due to this incompatibility, the application primarily relies on a
few nodes that act as gateways for browser-based interactions.
This reliance can lead to bottlenecks and potential points of
failure [10]. Furthermore, the reliance on HTTP APIs could
be a problem: The application currently uses HTTP APIs of
third-party IPFS storage providers like Filebase or Pinata for
file handling, which, while reliable, deviates from the ideal
decentralized model and could impact long-term scalability
and decentralization goals [10].

3) Data Loss Prevention and Redundancy: In addressing
the concerns of data loss and ensuring redundancy, the
application leverages the inherent strengths of the IPFS network.
Regarding the decentralized storage, data availability in IPFS
is independent of the storage location, allowing for convenient
replication and enhanced scalability. Utilizing crypto-based
storage providers like Filecoin offers a cost effective solution
for redundant storage. At the time of writing, the cost of storing
10TB of data on Filecoin (1.95 USD per month) is significantly
lower than traditional cloud storage options like Amazon
S3 (235 USD per month) [13], [14]. Regarding collateral-
based reliability, Filecoin storage providers are required to
provide collateral, adding an additional layer of reliability and
commitment to data preservation [15].

In conclusion, the evaluation of the application’s performance
and stability highlights key areas for improvement, particularly
in large file handling and direct file transfer capabilities.
Despite these challenges, the application benefits from the
decentralized, scalable nature of IPFS and the cost-effective,
redundant storage solutions offered by crypto-based storage
providers. Future work should focus on enhancing file transfer
capabilities and exploring more efficient file processing methods
to bolster the application’s performance and scalability within
the decentralized web.

V. FUTURE WORK

Based on the findings, several recommendations are proposed
to advance the field in terms of future work: Regarding
technical improvements, a lot of improvements could be done
by addressing the limitations identified in IPFS, particularly
in file transfer and with respect to compatibility. Regarding
key management, fruitful future work lies in investigating
more sophisticated encryption key management techniques,
including hardware solutions like TPM2 [16], which could
significantly improve security. Regarding automated data repli-
cation, developing mechanisms for user-defined data replication
will increase redundancy and reliability, especially using cost-
effective storage solutions like Filecoin.

REFERENCES

[1] M.-Å. Hugoson, “Centralized versus decentralized information
systems: A historical flashback”, in History of Nordic Comput-
ing 2: Second IFIP WG 9.7 Conference, HiNC2, Turku, Finland,
August 21-23, 2007, Revised Selected Papers 2, Springer, 2009,
pp. 106–115.

[2] P. Raj et al., “High-performance peer-to-peer systems”, High-
Performance Big-Data Analytics: Computing Systems and
Approaches, pp. 317–337, 2015.

78Copyright (c) IARIA, 2025. ISBN: 978-1-68558-244-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DBKDA 2025 : The Seventeenth International Conference on Advances in Databases, Knowledge, and Data Applications

[3] W. Wang et al., “A survey on consensus mechanisms and
mining strategy management in blockchain networks”, Ieee
Access, vol. 7, pp. 22 328–22 370, 2019.

[4] IPFS, “Official ipfs documentation”, retrieved: March 2025,
[Online]. Available: https://docs.ipfs.tech/.

[5] E. Karaarslan and E. Konacaklı, “Data storage in the decen-
tralized world: Blockchain and derivatives”, arXiv preprint
arXiv:2012.10253, 2020.

[6] N. Z. Aitzhan and D. Svetinovic, “Security and privacy in de-
centralized energy trading through multi-signatures, blockchain
and anonymous messaging streams”, IEEE transactions on
dependable and secure computing, vol. 15, no. 5, pp. 840–852,
2016.

[7] B. Prünster, A. Marsalek, and T. Zefferer, “Total eclipse of
the heart–disrupting the {interplanetary} file system”, in 31st
USENIX Security Symposium (USENIX Security 22), 2022,
pp. 3735–3752.

[8] L. Wang and J. Kangasharju, “Real-world sybil attacks in
bittorrent mainline dht”, in 2012 IEEE Global Communications
Conference (GLOBECOM), IEEE, 2012, pp. 826–832.

[9] J. R. Douceur, “The sybil attack”, in International workshop
on peer-to-peer systems, Springer, 2002, pp. 251–260.

[10] ipfs-helia, “Helia github repository.”, retrieved: March 2025,
[Online]. Available: https://github.com/ipfs/helia/issues/256.

[11] Mozilla Foundation, “Web crypto api”, retrieved: March 2025,
[Online]. Available: https://developer.mozilla.org/en-US/docs/
Web/API/Web_Crypto_API.

[12] D. McGrew, “An interface and algorithms for authenticated
encryption”, Tech. Rep., 2008.

[13] Amazon Web Services, “Amazon s3 pricing”, retrieved: April
2024, [Online]. Available: https://aws.amazon.com/s3/pricing/.

[14] Storage.market, “Ipfs storage market”, retrieved: April 2024,
[Online]. Available: https://file.app/.

[15] Filecoin, “Official filecoin documentation”, retrieved: March
2025, [Online]. Available: https://docs.filecoin.io/.

[16] K. Shang et al., “Cluster nodes integrity attestation and
monitoring scheme for confidential computing platform”, in
2023 IEEE 22nd International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom),
IEEE, 2023, pp. 740–749.

79Copyright (c) IARIA, 2025. ISBN: 978-1-68558-244-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DBKDA 2025 : The Seventeenth International Conference on Advances in Databases, Knowledge, and Data Applications

https://docs.ipfs.tech/
https://github.com/ipfs/helia/issues/256
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://aws.amazon.com/s3/pricing/
https://file.app/
https://docs.filecoin.io/

	Introduction
	Background & Related Work
	Decentralized File Systems
	The InterPlanetary File System

	Approach
	Attacker models
	Connectivity and File Processing Framework
	Custom Identity Management and File Synchronization
	Encryption in the Application

	Evaluation and Conculsions
	Security evaluation
	Performance and Stability
	Efficiency and Large File Handling
	WebRTC and TCP Socket Incompatibility
	Data Loss Prevention and Redundancy

	Future Work

