
A Low-Code Approach for Creating Dynamic Map-Based Web Applications
Using W3C Web Components

Andreas Schmidt∗‡ and Tobias Münch†
∗ University of Applied Sciences

Karlsruhe, Germany
Email: andreas.schmidt@h-ka.de

‡ Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: andreas.schmidt@kit.edu
† Münch Ges. für IT Solutions mbH, Germany

Email: to.muench@muench-its.de

Abstract—We present a set of web components that enable the
declarative development of web-based, map-centered applications
in a simple way. To do this, we used the World Wide Web
Consortium (W3C) standard Web Components, which enables the
development of new HTML elements. The developed components
encapsulate the functionality of the leaflet library, a widely used
Javascript library for the realization of map-based applications.
The declarative approach makes it possible for non-programmers
to develop applications within a short time. Some of the developed
components have interfaces for accessing server-side information,
such as GeoJSON-data sources and time series databases. This
makes it possible to develop information-rich, “live” applications
with our components.

Keywords-dynamic interactive map applications; low-code; web-
components; geojson; time series databases.

I. INTRODUCTION

For geospatial data, maps are the ideal form of presentation.
The Open Street Map initiative [1] has created a global, freely
available dataset that is suitable for displaying electronic maps
of any scale. Leaflet [2] is a popular JavaScript library for
developing web-based map applications that run in the browser.

A. Leaflet

The main visual components of the leaflet library are
basemaps, overlay-layers, and geometric elements, such as
markers, lines, polylines, circles, polygons (closed polylines),
and rectangles.

The map displayed is composed of a basemap and optional
overlay-layers. There are many freely available basemaps for
leaflet, many of which are based on the open street map
dataset [1], but there are also basemaps from other providers,
such as Google, ESRI, etc. Overlays consist of images (i.e.,
png, svg) that are placed on top of the baselayer and enrich
it with additional information, such as nautical marks [3] or
hiking routes. Overlays can be shown or hidden on the map
as needed.

Markers represent specific points on a map and can be
displayed either with a standard visualization or with your own
icon. The graphical elements can be enriched with tooltips and
popup menus. In addition, leaflet has a wide range of events
to which you can attach your own functions.

Graphic components, such as markers, lines and polygons
can be grouped in so-called layer-groups. The idea behind this
is that these can then be easily shown or hidden with a single
instruction, analogous to the overlays.

The GeoJSON class allows the display of graphical features
that are described in the form of GeoJSON [4] data sets. These
can be points, (multi) lines, (multi) polygons, or geometric
collections (multiple instances of the previous types).

B. Web-Components

The leaflet library is one of the most widely used JavaScript
libraries for developing map-based applications. Its advantage
lies in its technical maturity and good documentation. Neverthe-
less, the library requires in-depth knowledge of the underlying
classes and programming experience with JavaScript to develop
even the simplest applications. In contrast, this work takes
a low-code approach in which the components of the card-
based application are defined declaratively. The W3C composite
standard web-components [5] is used for this purpose. A web
component is a JavaScript class that must implement a series
of methods in order to be integrated into the Document Object
Model (DOM) tree within a website. The class is then mapped
to an HTML tag-name that can then be used within the website.

The main goal of our work is to provide the leaflet library
with a new declarative interface based on the W3C standard
Web Components, so that non-programmers are also able to
create map-based applications. But our components also make
things easier for the experienced developer, since a large part
of the code that would typically need to be implemented can
be covered by our components, and only specific parts need to
be implemented by hand. This is possible because the leaflet
objects encapsulated by the Web Components can be accessed
at any time.

The remainder of the paper is organized as follows: In
Section II, some related work will be presented. Section III
presents the overall architecture before Section IV demonstrates
an example application that shows the implemented components
in action. Section V concludes the paper with a summary and
an outlook on further work in this field.

72Copyright (c) IARIA, 2025. ISBN: 978-1-68558-244-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DBKDA 2025 : The Seventeenth International Conference on Advances in Databases, Knowledge, and Data Applications

II. RELATED WORK

An approach using the Polymer [6] library for building a web-
component interface around the leaflet library was established
in 2015 [7]. However, the development seemed stopped in 2016.
We follow the approach chosen there in the structural design,
but go further in that our components access data provider on
the server side. This can be used in particular to implement
“live scenarios", as well as to load and display GeoJSON objects
from multiple data-sources. Furthermore, the development of
leaflet has continued over the last 9 years and our components
also use additional packages, such as hierarchical clustering of
markers at larger scales to avoid cluttering the map view [8].
The DB-Web Components [9] that we developed last year
follow an analogous low-code approach in which relational
database content is embedded declaratively in HTML pages.

III. ARCHITECTURE

The architecture of our application is shown in Figure 1. On
the client side, our components run within a browser. There they
are responsible for displaying maps, overlays, and geographic
features, such as markers, lines, etc. A number of components
can optionally obtain their information from data sources
on the server side. For example, the marker component can
cyclically read its position from a time series database, or our
GeoJSON component can access one or more FeatureSets
and thus visualize many objects of different types with a single
instruction.

Figure 1. Architecture.

Next, we will show by way of example how the components
can be used to implement a sample application.

IV. EXAMPLE

Figure 2 shows the implemented application. On it, two
paddlers can be seen paddling towards each other to enjoy a
beer together at the picnic spot (represented by a beer icon).
The associated application code can be seen in Figure V.
The basemap and an additional alternative ESRI satellite
image are defined between line 2 and line 12 in the context
of the ll-map, ll-tile, and ll-overlay component.
The ll-overlay element starting at line 9 defines that an
additional overlay, labeled "Sea layer", with nautical symbols
is displayed on top of the basemap.

The ll-geojson element on line 13 loads the data about
the portages (location where the boat has to be transported
over land) from a server-side geojson data source specified
by the url parameter. In addition, an icon symbol (a paddler
carrying his boat overhead) is specified using the icon-url
and icon-size parameters.

In line 19, the picnic spot is defined at a fixed point specified
by longitude and latitude. It also has its own icon and a tooltip
text that is displayed when the icon is clicked.

The two paddlers to be displayed are defined in lines 25
and 31. Instead of hard-coding the position of the two paddlers
as at the picnic area, you can get their current position cyclically
from a time series database, which is specified by the parameter
url. The two further parameters lat-path and lng-path
specify where the information about longitude and latitude is
located in the json response.

Figure 2. Screenshot of Example Application

Finally, the element ll-group is to be explained. As the
name suggests, it functions as a grouping element and groups
the child elements, which can then be switched on and off
using the layer control at the top right. This can be seen in
Figure 3, where the opened layer control is visible at the top
right.

Figure 3. Open layer control (top right), which handles the selection of the
basemap ("Esri Satelitte"), as well as the overlays ("Sea layer") and groups
("Portages [Img]", "Paddle tour ...") to be shown.

In the figure, the alternative Esri satellite image was selected
as the basemap and the sea layer with the nautical signs is
turned off. The ll-geojson data source (portages) also
appears in the layer control under the specified label.

V. CONCLUSION AND OUTLOOK

We have implemented a first prototype based on the Lit
Framework [10]. In addition to the components presented
in the example, there is also an ll-polyline component
for displaying lines and an ll-icon component for the

73Copyright (c) IARIA, 2025. ISBN: 978-1-68558-244-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DBKDA 2025 : The Seventeenth International Conference on Advances in Databases, Knowledge, and Data Applications

1 <body>
2 <ll-map id="mymap"
3 zoom="15">
4 <ll-tile url=’http://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/\
5 MapServer/tile/{z}/{y}/{x}’
6 label="Esri Satellite">
7 © Esri
8 </ll-tile>
9 <ll-overlay url="http://t1.openseamap.org/seamark/{z}/{x}/{y}.png"

10 label="Sea layer">
11 © OpenSeaMap
12 </ll-overlay>
13 <ll-geoJSON label="Portages "
14 icon-url="./icons/portage.png"
15 url="http://localhost/llwc/readGeoJSON.php?file=data/portages.json">
16 path="result">
17 </ll-geoJSON>
18 <ll-group label="Paddle tour February 22, 2024">
19 <ll-marker lat="48.8776"
20 lng="8.1339"
21 icon-size="20"
22 icon="icons/beer.png"
23 tooltip="Picnic
Place">
24 </ll-marker>
25 <ll-marker icon="icons/kanu2.png" icon-size="20"
26 tooltip="Thomas"
27 url="http://localhost/llwc/readFromInflux.php/thomas?num=1"
28 lat-path="result[0].lat"
29 lng-path="result[0].lon">
30 </ll-marker>
31 <ll-marker icon="icons/kanu.png" icon-size="20"
32 tooltip="Andreas"
33 url="http://localhost/llwc/readFromInflux.php/andreas?num=1"
34 lat-path="result[0].lat"
35 lng-path="result[0].lon">
36 </ll-marker>
37 </ll-group>
38 </ll-map>
39 </body>

Figure 4. Markup code for example application

definition of icon objects, which can then be referenced by
other components.

Further work is planned in the area of simplified integration
of JavaScript functions into the leaflet event mechanism, as
well as the processing of feature information when representing
GeoJSON objects.

REFERENCES

[1] OpenStreetMap, “OpenStreetMap”, Last accessed 17.1.2025,
2024, [Online]. Available: https://www.openstreetmap.org.

[2] V. Agafonkin, “Leaflet api reference”, Last accessed Last
accessed 17.1.2025, 2024, [Online]. Available: https://leafletjs.
com/reference.html.

[3] OpenSeaMap, “The free nautical chart”, Last accessed
17.1.2025, 2024, [Online]. Available: https://openseamap.org/
index.php?id=openseamap&L=1.

[4] H. Butler, S. Gillies, and T. Schaub, “Rfc 7946 - the geojson
format”, Last accessed 17.1.2025, 2016, [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc7946.

[5] webcomponents.org, “WebComponents - Specifications”, Last
accessed 17.1.2025, 2024, [Online]. Available: https://www.
webcomponents.org/specs.

[6] POLYMER, “Polymer library”, Last accessed 17.1.2025, [On-
line]. Available: https://polymer-library.polymer-project.org/.

[7] Hendrik Brummermann et al., “Leaflet-map”, Last accessed
17.1.2025, 2015, [Online]. Available: https://github.com/leaflet-
extras/leaflet-map.

[8] Erik Nikulski, “Leaflet.markercluster”, Last accessed 17.1.2025,
2024, [Online]. Available: https://github.com/Leaflet/Leaflet.
markercluster.

[9] A. Schmidt and T. Münch, “Web Components for Database
Developers”, in Proceediungs of the Sixteenth International
Conference on Advances in Databases, Knowledge, and Data
Applications, (Athen, Griechenland, Mar. 10–14, 2024), 2024,
pp. 20–22.

[10] LIT, “Simple. Fast. Web Components”, Last accessed
17.1.2025, 2024, [Online]. Available: https://lit.dev/.

74Copyright (c) IARIA, 2025. ISBN: 978-1-68558-244-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DBKDA 2025 : The Seventeenth International Conference on Advances in Databases, Knowledge, and Data Applications

https://www.openstreetmap.org
https://leafletjs.com/reference.html
https://leafletjs.com/reference.html
https://openseamap.org/index.php?id=openseamap&L=1
https://openseamap.org/index.php?id=openseamap&L=1
https://datatracker.ietf.org/doc/html/rfc7946
https://www.webcomponents.org/specs
https://www.webcomponents.org/specs
https://polymer-library.polymer-project.org/
https://github.com/leaflet-extras/leaflet-map
https://github.com/leaflet-extras/leaflet-map
https://github.com/Leaflet/Leaflet.markercluster
https://github.com/Leaflet/Leaflet.markercluster
https://lit.dev/

	Introduction
	Leaflet
	Web-Components

	Related work
	Architecture
	Example
	Conclusion and Outlook

