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Abstract— Rapid and accurate decision-making is essential for 

identifying and treating life-threatening conditions in 

emergency medicine. This paper presents an enhancement to an 

existing Knowledge Graph-based clinical decision-making 

framework by integrating an emergency strategy layer to 

prioritize critical diagnoses. By categorizing diseases as life-

threatening or non-life-threatening, our approach emphasizes 

the immediate exclusion of high-risk conditions. The 

enhancement is manifested on two primary levels: (a) we 

augmented the KG by incorporating conditional edges that are 

dynamically activated based on patient-specific indicators, such 

as age, gender, and pre-existing conditions. These conditional 

edges allow the framework to adapt to individual patient 

profiles, supporting a more precise and personalized diagnostic 

process; and (b) we refined the framework’s algorithms to 

prioritize excluding life-threatening diseases. Future work will 

evaluate the framework with real-world clinical data and 

expand the KG’s logic to include continuous data, further 

enhancing inference accuracy. Our contribution provides a 

foundation for expanding clinical decision-making frameworks 

to address urgent clinical needs, potentially improving patient 

outcomes in critical medical scenarios. 

Keywords- knowledge graph; semantic reasoning; decision 

support systems; semantic technology. 

I. INTRODUCTION 

Healthcare 4.0 addresses key challenges related to the 
expansion, virtualization, and innovation of modern 
healthcare practices, such as home-based care, precision 
medicine, and personalized or remote drug therapies [1]. It 
represents the shift towards leveraging advanced technologies 
to overcome barriers in healthcare delivery. In particular, we 
focus on utilizing semantic technologies powered by large 
datasets and complex algorithms. 

Advancements in healthcare technology have increasingly 
leveraged Knowledge Graphs (KG) - a graph data model that 
has gained popularity for representing complex knowledge 
structures [2] - constructed from electronic medical records to 
enhance clinical decision support systems. Rotmensch et al. 
demonstrated the potential of such an approach by learning a 
health KG from electronic medical records, which improved 
the structuring of complex patient data and facilitated more 
accurate inferences in diagnostic processes [3].  

This aligns with our framework's utilization of a KG to 
support medical experts in making timely and informed 
decisions, especially in environments where time constraints 
impact diagnostic accuracy. In our ongoing research [4][5] in 
the medical domain, we investigate clinical decision-making 
processes that facilitate interactions between healthcare 
experts and patients. The goal is to assist medical experts in 
helping patients resolve health issues. These interactions 
typically consist of multiple iterations, where the expert asks 
questions, and the patient responds. With each iteration, the 
medical expert moves closer to making a decision concerning 
the patient’s condition, which usually culminates in a medical 
diagnosis. However, time constraints often limit these 
interactions, which can impact the accuracy of diagnoses. 

To address the goal mentioned above, we developed a 
framework based on semantic technologies that support the 
decision-making process. Each iteration suggests a question 
relevant to the patient's symptoms. In the final iteration, the 
framework produces a ranked list of hypotheses consisting of 
disease-symptom pairs, ordered by the likelihood that the 
disease is the correct diagnosis. This framework is built on a 
KG, which effectively models interconnected data [6], with 
nodes representing symptoms and diseases and edges 
connecting symptoms to diseases when relevant. We have 
developed a set of interactive algorithms that utilize both the 
KG and the patient's initial input to suggest relevant questions 
during the interaction. 

The basic KG was enriched with semantic knowledge, 
extracted from symptom ontology, expanded the knowledge 
base, and added hierarchic layers. The framework was fully 
implemented in Python and evaluated via a set of tests [5]. 

While the existing framework provides a solid foundation 
for supporting decision-making among medical experts, its 
scalability allows for easy extension through KG’s capacity to 
grow in volume and knowledge layers; for instance, it can be 
enhanced by adding information to edges that can yield deeper 
insights and more accurate hypotheses. Based on this, our 
current research introduces an emergency strategy knowledge 
layer to enhance decision-making processes further. This 
layer simulates an emergency room environment, focusing on 
promptly identifying emergency conditions and appropriate 
treatment despite time-constrained communication between 
patients and medical experts. Interviews with two physicians 
revealed key insights: (1) physicians observe additional 
symptoms through physical examinations and abnormal vital 
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signs beyond those reported by patients; (2) personal patient 
information (e.g., age, gender, pre-existing conditions, 
medications) is crucial in diagnostics; (3) diseases are 
classified into life-threatening and non-life-threatening 
categories based on symptoms and patient data; and (4) the 
proposed strategy prioritizes the immediate exclusion of life-
threatening conditions. 

Following the above, the basic architecture of our 
framework has been enhanced to provide medical experts with 
a list of hypotheses related to life-threatening diseases. This 
enhancement includes augmenting the KG with conditional 
edges based on patient-specific indicators (such as age, 
gender, and pre-existing conditions) and refining the 
framework algorithms to prioritize excluding life-threatening 
diseases. The list of hypotheses is generated through an 
inference process that searches for symptoms to either rule out 
or confirm life-threatening conditions. By simulating an 
emergency room environment, this enhancement enables the 
framework to prioritize the rapid identification of critical 
conditions in time-sensitive settings. 

The paper is organized as follows: Section 2 discusses 
knowledge representation and reviews studies that utilize KGs 
for healthcare applications. Section 3 details our framework, 
and Section 4 describes the framework enhancements 
developed to support the emergency strategy. Finally, Section 
5 concludes with a summary of contributions and suggestions 
for future work. 

II. BACKGROUND 

In this section, we discuss how knowledge can be 
represented and provide an overview of researches that use 
KG in healthcare-related applications. 

A. Knowledge Representation 

Knowledge Representation (KR) serves several essential 

roles, such as enabling entities to predict the outcomes of 

actions, establishing frameworks for perceiving the world, 

providing foundations for intelligent reasoning, facilitating 

efficient computation, and acting as a medium for human 

expression [7]. Key methods of KR include KGs, ontologies, 

and semantic technologies. 

KGs, also known as semantic graphs, represent 

information by encoding relationships between entities into 

graph structures. They offer semantically structured data that 

supports innovative solutions in tasks like question 

answering, recommendation systems [8], and information 

retrieval [9]. KGs hold significant promises for developing 

more intelligent machines. 

Ontologies are explicit, machine-interpretable 

specifications of conceptualizations, defining entities within 

a domain, their attributes, and their interrelationships [10]. 

They establish a common vocabulary for humans and 

machines to share information, facilitating shared 

understanding, reuse of domain knowledge, and systematic 

analysis [11]. 

Semantic technologies aim to derive meaning from 

information by managing knowledge and integrating diverse 

data streams for inference. By representing both data and 

domain knowledge using graph models—since ontologies are 

often graph-based—graph algorithms can be employed to 

infer new insights. 

B. Literature Review 

Recent advancements in clinical decision support systems 

have increasingly leveraged KGs to enhance diagnostic 

accuracy and personalized care. For example, the 

construction and evaluation of causal KGs for diabetic 

nephropathy have demonstrated improved support in clinical 

decisions by modeling complex causal relationships within 

patient data [12]. Similarly, integrating KGs with large 

language models has been explored to enhance emergency 

decision-making, providing real-time support in critical care 

scenarios [13]. Furthermore, incorporating proteomics data 

into clinical decision-making through clinical KGs has 

shown promise in personalized medicine, allowing for more 

precise diagnostics and tailored therapies [14]. Additionally, 

enriching KGs from clinical narratives using natural 

language processing (NLP), Named Entity Recognition 

(NER), and biomedical ontologies has advanced healthcare 

applications by improving the extraction and structuring of 

valuable clinical information [15]. These studies underscore 

the significant potential of KGs in augmenting clinical 

decision support systems, particularly when combined with 

semantic technologies and patient-specific data. This aligns 

with our approach of integrating an emergency strategy layer 

into a KG-based framework to prioritize life-threatening 

conditions. 

Recent studies have applied machine learning to clinical 

decision support, relying on large datasets for diagnosis 

prediction. While effective, these methods often require 

extensive labeled data and lack interpretability. Our 

approach, based on semantic reasoning within a KG, enables 

transparent and adaptive decision-making, allowing experts 

to incorporate new insights in real-time without retraining, 

enhancing explainability in time-sensitive medical settings. 

III. THE FRAMEWORK  

This section summarizes the framework we developed in 

our previous study [4][5], detailing its key algorithms and 

how they interact.  

Recall that our objective is to support collaborative 

decision-making through an efficient exchange between a 

domain expert and an end-user, where both parties share 

questions and answers. In the medical context, the domain 

expert is a medical expert, and the end-user is a patient. The 

questions and answers revolve around symptoms and 

potential diagnoses. The framework facilitates this 

interaction by suggesting relevant questions for the medical 

expert to ask the patient (e.g., “Does the patient exhibit a 
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particular symptom?”), with the decision-making process 

advancing based on the patient’s responses. The framework 

output is a ranked list of hypotheses, where each hypothesis 

links a specific disease to a related symptom. As a result, the 

key terms in this framework are symptoms, diseases, and 

hypotheses. 

The framework utilizes a KG, a widely adopted approach 

for representing knowledge [5]. KGs have become 

increasingly popular due to their ability to represent 

interconnected data [16][17] naturally. In this context, the 

KG comprises nodes representing symptoms and 

diseases, with edges connecting a symptom to a disease 

when the symptom indicates that condition, named 

symptomOf within the KG. Building on the KG, we 

formulated an inference process comprised of a set of 

developed interactive algorithms that leverage both the KG 

and the patient’s initial input to generate relevant questions 

for the medical expert. 

The framework comprises two main stages: (1) an initial 

pre-processing phase upon framework initialization and 2) a 

subsequent processing phase triggered with each new patient 

interaction.  

A. Pre-Processing Phase 

In the pre-processing phase, a KG is constructed from raw 

data from Kaggle [18] using Neo4j Graph Database, Version 

5 [19]. The dataset consists of patient records, each 

corresponding to a single patient. These records include each 

patient's diagnosed disease and the symptoms they reported. 

In total, the dataset covers 41 distinct diseases and 130 unique 

symptoms. Some symptoms appear only once, indicating 

they are linked to a single disease, while others are associated 

with multiple diseases. 

The KG was enriched by semantic knowledge extracted 

from an ontology of symptoms (SYMP) [20] and their 

interrelationships. Key elements from this ontology, 

particularly its hierarchical structures, were incorporated into 

the KG as follows: the symptoms were defined in the KG as 

ontology symptoms, and the hierarchical relationships 

were defined as ISA edges. The enriched KG, with its 

expanded symptom representations and hierarchical 

organization, offers several advantages for the inference 

process. These enhancements include a wider range of 

recommended questions for the medical expert during each 

interaction with the patient and symptoms  that can be 

represented by the patient (referred to as evidence symptoms 

or ES) [21]. Figure 1, a Neo4j screenshot, demonstrates a 

subgraph of the enriched KG, particularly the creation of the 

cough symptom node, which is linked by a symptomOf 

edge to the GERD disease node. Additionally, it shows the 

node for its descendant (e.g., dry cough), connected to the 

parent node via an ISA edge. Note that the dry cough node 

has its descendant, the dry hacking cough node. 

Finally, we applied the Louvain hierarchical clustering 

algorithm [22] to the KG to identify clusters of diseases—

called communities—that share similar symptoms. We 

named this step as Algorithm 1 [3]. 

B. Processing Phase 

The processing phase begins whenever a new interaction 

between a medical expert and a patient starts, with the patient 

presenting evidence of symptoms (ES). During this 

interaction (named Algorithm 2 [3]), the framework executes 

inference algorithms that utilize the identified communities 

to determine which diseases are compatible with the patient's 

symptoms. Specifically, Algorithm 2 identifies the most 

probable diseases that align with the evidence symptoms. 

Next, Algorithm 3 [3] iteratively, as needed, suggests to the 

medical expert questions (i.e., symptoms) that point toward 

the community most likely to include the patient's disease. 

Finally, the processing phase concludes with Algorithm 4 [3], 

which infers and outputs a ranked list of hypotheses—

ordered pairs of a disease and an indicative symptom—that 

the patient might have. 

The entire framework was implemented in Python, and we 

conducted a series of tests to evaluate its output and 

effectiveness [4]. 

Figure 1. An example of integrating a hierarchical tree of 

symptoms into the KG. Disease nodes are represented in gray, 

symptom nodes in yellow, and ontology nodes in red. 

IV. EXTENDING THE FRAMEWORK: INTEGRATING AN 

EMERGENCY STRATEGY 

Within this section, we describe the framework 

enhancement we developed to support an emergency strategy 

along with its formal representation and its set of algorithms. 

In addition, we provide two simple examples that 

demonstrate how the enhanced framework can be utilized in 

emergency mode. 
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A. Motivation 

The existing framework supports decision-making 

processes and is easily extendable through a scalable KG) 

that can incorporate additional insights. Our current research 

adds an emergency strategy knowledge layer to the KG, 

simulating an emergency room setting to prioritize 

identifying and treating life-threatening conditions under 

time constraints. 

To develop this emergency strategy, we interviewed two 

physicians and gathered the following key insights: 

1. In addition to the symptoms reported by the patient, 

there are other symptoms observed by the physician, 

which result from physical examination and abnormal 

vital signs (e.g., blood pressure outside the normal 

range). 

2. Personal information about the patient (in particular, 

age, gender, pre-existing conditions, and 

medications) plays a crucial role in the diagnostic 

process. 

3. given the symptoms and the above data, the possible 

diseases are classified into two categories: life-

threatening and non-life-threatening. 

4. The proposed strategy: first, rule out immediate life-

threatening conditions. 

In the following subsections, we describe the strategy and 

how we formulated it into a representation and a set of 

algorithms integrated into our framework. 

B. Emergency Strategy Overview 

To incorporate the aforementioned insights, we undertook 

two main actions: (a) enhancing the KG and (b) enhancing 

the processing phase to support the emergency strategy. 

1) KG Enhancement 

KG enhancement involves two steps, both conducted 

during the pre-processing phase:  

A. Risk Attribute for Diseases: For all diseases in the 

graph, we add a Boolean attribute called risk?, which 

indicates whether a disease needs to be ruled out 

promptly or not. 

B. Incorporating three indicators: age, gender, and pre-

existing conditions into the KG. To incorporate the 

influence of these indicators on the presence of a life-

threatening disease, we define a new type of 

SymptomOf edges: conditional edges. These edges 

are associated with an attribute formulated as a logical 

rule. The rule can involve one to three indicators 

connected with AND/OR operators. 

For instance, to signal a life-threatening condition 

given a symptom s1 indicating disease d1, if the 

patient is over 60 years old and male, the rule would 

be formulated as (age > 60 AND gender = M), and it 

assigns the conditional SymptomOf edge from s1 to 

d1. 

The second step (B) involves categorizing the 

SymptomOf edges in the KG into unconditional and 

conditional edges. Unconditional edges represent permanent 

relationships between symptoms and diseases that are 

universally applicable. In contrast, conditional edges are 

associated with logical rules involving patient-specific 

indicators. These conditional edges are incorporated into the 

patient's graph at runtime (processing phase) only when their 

associated logical rules are evaluated to be true. This 

mechanism allows the graph to adjust to individual patient 

profiles dynamically, enabling more precise and personalized 

inference during the diagnostic process. Figure 2 presents an 

example of a KG that was enhanced according to the 

described steps: It includes two diseases (d2, d5) that are 

characterized as high-risk, and conditional edges (e.g., the 

edge from s5 to d3, marked with “age<2”).  

2) Processing Phase Enhancement 

Enhancing the processing phase builds upon the original 

process by introducing new algorithms that support the 

emergency strategy. The evidence input process has 

expanded to include, beyond the symptoms reported by the 

patient, vital signs (such as blood pressure), and additional 

symptoms discovered by the medical expert during the 

patient's examination (e.g., a rigid abdomen). Despite the 

broader range of evidence entering the framework, all inputs 

are still characterized as evidence symptoms. Additionally, 

the patient's data, specifically the three noted indicators (age, 

pre-existing conditions, gender), are inputted. At this point, a 

new algorithm is introduced, which performs logical 

inference on the dependent edges. If the logical rule evaluates 

to true for each such edge, the associated edge is added to the 

patient's graph. 

With the patient's graph now prepared for further analysis, 

identifying possible diseases and inferring potential 

communities proceeds with a slight modification to 

Algorithm 2: it now sorts the possible diseases as follows: a 

primary sorting of diseases with the attributed risk? = true, 

followed by a secondary sorting of all other diseases. 

Subsequently, the communities are ranked based on their 

disease scores. The disease score is decided, as before, by the 

degree of supporting evidence, that is, the number of 

evidence symptoms pointing to the disease, including the 

conditional edges becoming true (e.g., if three evidence 

symptoms indicate a disease, its score is 3). 

Algorithms 3 and 4 are executed as described in [4][5]. 

Thus, for each community, we search for a symptom that can 

either rule out or confirm a life-threatening disease and the 

inference process concludes with a ranked list of hypotheses 

that the patient might have. Naturally, if the inference process 

identifies any life-threatening diseases, they will be 

prioritized first. 
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C. Formalizing the Emergency Strategy 

In this section, we provide a formal description of how the 

strategy aligns with the KG, which includes the refined KG 

process and is supported by the algorithms. 

1) KG and Pre-processing Formalizing 

Refining the KG includes two main steps, as explained 

earlier. Both steps are implemented in the framework's pre-

processing phase, as they do not involve the patient and 

remain consistent across patients. 

A. Identify the diseases with high risk and add a 

Boolean attribute that recognizes them in the graph:  

a. Let D be the set of nodes representing the 

diseases in the KG. For every disease 𝑑 ∈ 𝐷, add 

a Boolean attribute named risk? with the default 

value false.  

Let 𝐷𝑟𝑖𝑠𝑘 ⊆ 𝐷 Be the set of diseases with high 

risk. For each disease 𝑑 ∈ 𝐷𝑟𝑖𝑠𝑘 , set risk? to true.  

B. Incorporating the indicators age, gender, and pre-

existing conditions into the KG: this step translates 

a set of rules R into conditional edges 𝐸𝐶  in the 

processing step. Each rule 𝑟 ∈ 𝑅 represented by a 

tuple 〈𝑠, 𝑑, 𝑓(𝑖𝑎𝑔𝑒 , 𝑖𝑔, 𝑖𝑝𝑟𝑒)〉, where s is a symptom, d 

is a disease, and f is a boolean function that receives 

three personal indicators (𝑖𝑎𝑔𝑒 , 𝑖𝑔, 𝑖𝑝𝑟𝑒)  representing 

age, gender, and pre-existing conditions, 

respectively. The function f returns true if s indicates 

d according to the patient indicators. The set of 

conditional edges 𝐸𝐶   are defined as follows: 𝐸𝐶 =
{(𝑠, 𝑑)|𝑓(𝑖𝑎𝑔𝑒, 𝑖𝑔, 𝑖𝑝𝑟𝑒) = 𝑡𝑟𝑢𝑒}.  These edges will be 

evaluated during the processing step when a patient 

arrives. 

Figure 2. The Enhanced KG  

2) Framework-specific Terminology  
Table 1 (An extensive view is in Appendix 1) presents the 

terminology that we use to describe the algorithms. 

Additional terms supporting the emergency strategy are bold.   

3) The Refined Framework Algorithms 

We describe the refined algorithms developed in our 

framework to support the emergency strategy.  

Algorithm 1 builds the personalized subgraph from KG by 

adding the patient's personal information (the indicators). 

Algorithm 2 incorporates the patient's symptoms into the 

personalized sub-graph and uses inference to generate a 

ranked list of potential diseases. This list then serves as the 

input for Algorithms 3 and 4 [4][5], which return a set of 

hypotheses prioritized by their urgency. Each hypothesis is a 

pair consisting of a disease and a symptom indicating it.   

Figure 3. Algorithm 1: personalized sub-graph 

    Figure 4. Algorithm 2: identify possible diseases (sorted 

according to risk) 

D. Simplified Example  

We illustrate two distinct scenarios involving different 

patients who exhibit the same symptoms: s1, s5, s9, and s10. 

However, despite sharing identical symptoms, the patients in 

Algorithm 1: personalized sub-graph 

Input: K𝐺 = ( 𝐷⋃𝑆, 𝐸), PI, ES 

Output: personalized sub-graph PKG 

Algorithm:  

0. Let PKG be KG 

1. For every s ∈ 𝐸𝑆: 

a. For every 𝑟 ∈ 𝑅 that contain s, that is 

𝑟 = 〈𝑠, 𝑑, 𝑓〉: 

b. If f(PI)=true, add the edge (𝑠, 𝑑) to 

PKG. 

      2. Return PKG 

 

Algorithm 2: identify possible diseases 

Input: PKG, ES, C 

Output: possible diseases, sorted according to their 

risk 

Algorithm:  

     1. Let 𝑃𝐷 ⟵ {} 

        2. Let 𝐶′ ⊆ 𝐶 be the set of communities having 

positive LinD. 

3. Sort  𝐶′ in a non-decreasing order according to 

their Risk (primary), and then according to their 

LinD (secondary).   

      3.1. Let c be the community in the order:  

            3.1.1 Go over the diseases in c.  

                    First go over the diseases d with 

risk?==true. Sort them according to their 𝑅𝑑(d) 

(in a decreasing order) and add them in that 

order into PD.  

                    Then add the rest of the diseases in c, 

sorted (in a decreasing order) according to their 

𝑅𝑑(d). 

4. return PD 
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each case have unique personal characteristics and health 

profiles. 

The first scenario involves a 75-year-old man with no prior 

health conditions. The resulting graph (PKG1), after his 

personal indicators were entered and processed, is presented 

in Figure 5.   

The second scenario involves a 9-month-old baby without 

any prior health conditions. The resulting graph (PKG2) after 

inputting and processing his personal indicators is shown in 

Figure 6. 

It is important to note that these two scenarios produce 

different graphs, meaning the algorithms process different 

inputs and generate distinct hypotheses. In the first scenario, 

only communities C1 and C3 are examined, and since 

𝑅𝑖𝑠𝑘(𝐶3) ≥  𝑅𝑖𝑠𝑘(𝐶1), the first disease to be ruled out is d5. 

In the second scenario, all communities are considered, and 

since: 𝑅𝑖𝑠𝑘(𝐶1) ≥  𝑅𝑖𝑠𝑘(𝐶2) =  𝑅𝑖𝑠𝑘(𝐶3), the first disease 

to rule out is d2. 

Figure 5. PKG1 – the graph for the 75-year-old man 

Figure 6. PKG2 – the graph for the 9-month-old baby 

V. CONCLUSION AND DISCUSSION 

In emergency medicine, the rapid identification and 

treatment of critical conditions are essential for optimizing 

patient outcomes. Horng et al. demonstrated the effectiveness 

of machine learning in developing an automated trigger for 

sepsis clinical decision support at emergency department 

triage, showcasing how advanced technologies can enhance 

patient care in high-stakes settings [23]. Our enhancement 

similarly integrates an emergency strategy layer into our KG-

based decision-making framework to prioritize life-

threatening conditions, thus improving decision-making 

efficiency and patient outcomes in urgent scenarios. 

A. Summary 

This study categorizes diseases based on symptoms and 

patient data into two main types: life-threatening and non-

life-threatening. The proposed strategy focuses on the rapid 

exclusion of life-threatening diseases, which is crucial for 

optimizing patient outcomes in emergency care. 

To improve the inference process for identifying life-

threatening conditions, we augmented the KG by 

incorporating conditional edges. These edges, which rely on 

patient-specific indicators such as age, gender, and pre-

existing conditions, are dynamically added to the patient's 

graph at runtime when specific conditions are met. This 

adaptive approach allows the decision support framework to 

tailor diagnostics to individual patient profiles, facilitating 

more precise and personalized recommendations. 

B. Contribution 

Our work advances clinical decision-making processes by 

formulating and integrating an emergency strategy 

prioritizing life-threatening conditions. We developed an 

enhanced KG with conditional edges informed by patient-

specific data, allowing for real-time personalization. We also 

refined existing algorithms to incorporate this emergency 

strategy, enabling a diagnostic process that is more accurate 

and responsive to critical clinical needs.  These contributions 

establish a more adaptable decision-making framework for 

emergency contexts, providing a robust foundation for 

further developments in emergency medical diagnostics. 

C. Next Phase and Future Work 

The next phase of this research will involve validating the 

emergency strategy using real-world clinical data to assess its 

effectiveness in supporting healthcare professionals in 

practice. Furthermore, we plan to refine the logic for 

conditional edges by incorporating continuous data, which 

will improve inference granularity and diagnostic accuracy 

within the KG. Expanding this work, we aim to integrate 

machine learning models that dynamically update the KG 

based on incoming data, thereby increasing the system's 
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adaptability to evolving clinical practices and patient 

populations. 
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APPENDIX 1 

TABLE 1: THE EXTENDED ALGORITHMS TERMINOLOGY 

 

Term   Definition 

D The set of disease nodes  
𝑫𝒓𝒊𝒔𝒌 Let 𝑫𝒓𝒊𝒔𝒌 ⊆ 𝑫 be the set of high-risk diseases.  

S The set of symptom nodes  

ES The set of evidence symptoms (i.e., the symptoms indicated by the patient)  

PI The patient's personalized indicators 

C The set of communities   

|c| The size of a single community 𝑐 ∈ 𝐶.  

Defined by the number of diseases that belong to c 

Risk(c) Defined by diseases number of diseases in 𝑫𝒓𝒊𝒔𝒌 + the number of evidence symptoms indicates a dieases in 𝑫𝒓𝒊𝒔𝒌 

LinD(c) The Local-in-Degree of a given 𝑐 ∈ 𝐶.  

Defined by the number of edges that point to diseases of c, by ES, hence, it is the sum of 𝑅𝑐(s,c), for each 𝑠 ∈ 𝐸𝑆 and the given 
𝑐 

PD's 
communities 

The set of communities 𝑐 ∈ 𝐶 with a positive LinD(c), hence, a community in which at least one edge from 𝑠 ∈ 𝐸𝑆 points to c 

𝑅𝑑(d) The Disease’s Symptoms Rank.  

Defined by the number of symptoms the patient has that indicate D 
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