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Abstract— The work presented in this paper builds upon a 
previous approach to automatically detect tactics based on 
spatiotemporal data in the context of team handball. It will be 
shown how the availability of additional data allows us to verify 
the principal approach. However, it will also be shown that the 
previous approach for choosing parameters of the applied 
methods was suboptimal, and an application-oriented approach 
based on heuristics helps to improve the results significantly. 
Basically, the combination of Shared Nearest Neighbor 
Clustering and the search for frequent itemsets is used to find 
clusters of trajectory groups. These basic methods are enhanced 
by special notions of distance and cluster quality indexes which 
allows to find optimal parameter settings for the specific 
application scenario. Furthermore, an approach is presented to 
use the existing “composite model” to determine the cluster to 
which a group of trajectories belongs to (application of the 
composite model).  

Keywords- trajectory sets; SNN clustering; frequent itemsets; 
tactics recognition. 

I.  INTRODUCTION 
Previous work proposed using data from position tracking 

systems, such as Vector from Catapult or from Perform LPS 
by Kinexon to automatically process the position data of 
players of team ball games [1][2]. Schwenkreis proposed a 
deep learning-based classification approach to automatically 
recognize team tactics based on the abovementioned 
spatiotemporal sensor data [3]. The approach was 
subsequently modified to avoid the large amount of necessary 
training data and thus the need for labeling data [4]. The 
proposed solution was to use clustering based on the Fréchet 
distance [5] of trajectories combined with a silhouette 
coefficient-based [6] quality criterion to cope with noise. A 
subsequent paper enhanced the approach by avoiding the 
shortcomings of the Fréchet distance and eliminating the need 
for generating ordered sets [7]. Furthermore, the enhancement 
avoids the need for a distance criterion of sets of trajectories 
by introducing a combination of clustering and the search for 
frequent itemsets. 

In his latest paper, Schwenkreis explicitly identified the 
need to collect additional trajectory data to extract a stable set 
of groups of trajectory sets. However, there was no discussion 
regarding how to incrementally improve the model or how to 
determine a stable state. Furthermore, the actual objective of 
identifying frequent sets of trajectories is to identify tactical 
patterns that can later be used to automatically detect them in 

streams of trajectories. Hence, there needs to be a mechanism 
to decide whether a set of trajectories belongs to one of the 
previously identified clusters. 

Based on the previously introduced basic mechanisms for 
extracting a cluster model of trajectory groups from 
spatiotemporal data, this paper will present the latest 
developments of the extraction of a cluster model. 
Furthermore, this paper presents an approach for applying the 
extracted cluster model to determine whether trajectory 
groups extracted from a stream of trajectory sets belong to one 
of the previously identified clusters. 

An overview of related work is given in Section II. Then, 
Section III will introduce the underlying data model in Section 
III.A and the general clustering approach in Section III.B. An 
abstraction is introduced that allows the application of the 
approach in arbitrary situations in which similarity clusters are 
detected in sets of trajectory groups. In Section IV, the 
necessary distance functions, the quality criteria for clusters, 
and the assignment to clusters are discussed. Section V 
presents the results of an evaluation based on a real-world 
application of the approach. The paper is concluded with a 
summary and an outlook on the future application of the 
approach in Section VI. 

II. RELATED WORK 

A. Pattern Recognition 
Pattern recognition in the context of spatiotemporal data 

has a long history [8], and a significant number of related 
studies have been published in the area of trajectory 
clustering. Trajectory clustering provides the foundation for 
recognizing patterns in sets of team moves. However, since 
team moves consist of groups of trajectories, the targeted 
problem of tactic recognition is not identical to the family of 
problems that is addressed by classical trajectory clustering. 
Nevertheless, recent trajectory clustering approaches, such as 
those described in [9],  have made significant progress in the 
area of trajectory clustering, and the work presented in this  
paper has been influenced by these approaches. 

In particular, the flock pattern and later generalizations to 
the convoy pattern seem to overlap with the problem 
addressed by this work [10]. Unfortunately, there are 
significant differences that prevent the direct application of 
these approaches: 

• Current convoy mining approaches assume that 
clusters are searched in sets of points that have been 
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collected at the same point in time. This is not the case 
for the class of problems discussed in this paper. In 
contrast, the task is to search for clusters of 
trajectories that have not(!) "happened" at the same 
point in time. Furthermore, there is no fixed mapping 
on a common logical clock that would allow us to 
treat the coordinates of trajectories as if they were 
collected at the same time. 

• The usual approaches to trajectory clustering are 
based on the notion of density and use a density 
threshold to determine the clusters. The basic 
assumption of these approaches is that a single 
density threshold can be found, which is not possible 
in the given case. By inspecting the application area, 
it is known that the density of the trajectories 
significantly differs across different trajectory 
clusters (see also Section IV.B). 

• Convoy mining approaches assume that points of 
trajectories belonging to the same cluster also belong 
to a single cluster. In the given application scenario, 
this does not need to be the case. In terms of convoy 
mining approaches, points of the same trajectory may 
join other convoys and return to the original convoy 
because trajectories belonging to different clusters 
may have non-empty intersections from a geometrical 
point of view because they have identical points. 

The field of detecting optimal care pathways in health care 
[11] has some similarities to detecting team tactics based on 
an abstract notion of trajectories. Clustering approaches in this 
area are based on a completely different notion of distance 
[12]. Furthermore, the requirements regarding the temporal 
distance of "locations" differ significantly, which leads to 
methods that are based on the sequence only rather than 
considering the real distances in time. Hence, the work in that 
area cannot be applied in the given context. 

B. Sports Analytics 
Recently, the analysis of spatiotemporal data in the context 

of sports has attracted increasing attention. There are several 
attempts in the area of team sports to exploit the data that are 
produced by the position sensors carried by players [13]- [15]. 
Several activities focus particularly on soccer (or football) to 
extract models that help to explain the mechanics of the game 
[16]. This is because professional soccer teams can fund 
analysis projects, and there is still no accurate model for 
computing appropriate predictions. Some work can be found 
in the literature that derives patterns from spatiotemporal data, 
but these approaches use classification to predict, for example, 
ball losses or scoring probabilities because in these cases, the 
target value is available in the automatically collected data. 
This is not the case for tactical labels but essential for the case 
presented in this paper. 

Unfortunately, the mentioned work does not focus on 
detecting patterns of moves of groups of players. The reason 
is that soccer and other team sports significantly differ from 
team handball in terms of the speed of attacks. In the case of 
team handball, it is crucial that the individual moves (and 
resulting positions) of teammates are known upfront by the 
other players because, in most cases, the determination of the 

location of other team members by an explicit visual 
observation is too slow. Thus, the coordination of the players' 
moves is trained based on explicitly communicated movement 
patterns (called tactics). Ice hockey has some similarities to 
team handball because the players' speed is even greater than 
that of team handball players. However, tactics are focused on 
the movement patterns of individual players rather than on the 
coordinated patterns of a whole team, which has also been 
reflected in recent work that targets the analysis of 
spatiotemporal data in the context of ice hockey [17]. 

III. BASICS 

A. Underlying Data Model 
1) Individual trajectories 

As proposed in the aforementioned previous work, the 2D 
coordinates delivered by tracking sensors are “normalized” to 
avoid differences due to changing directions of play [4]. Given 
an observation interval of t2-t1 seconds and a position 
sampling rate f, the individual trajectory Ts(t1,t2) of a sensor is 
defined as the timely ordered set of r=(t2-t1)*f coordinate pairs 
p: Ts(t1,t2)=(p1, p2,… ,pr). It is assumed that all the observed 
sensors generate samples at the same rate in the given 
application context. Furthermore, there is a mapping for 
individual trajectories Ts that assigns a team O to the 
individual trajectory: team(Ts): Ts →O. 

 
2) Team Moves: Sets of trajectory class identifiers 

The notion of a team position has been defined by 
Schwenkreis as a vector of positions of the contained sensors 
(team members), which is similar to the coordinate of a team 
in a 2n-dimensional space, where n denotes the number of 
sensors [3]. The challenge of this approach is to associate a 
specific sensor with a well-defined position in the vector. This 
approach is challenging because the collection of sensors that 
comprises a team is not constant and might change due to the 
substitutions of team members. Originally, all possible 
permutations of a vector were generated when training a 
model (which is rather costly) [3]. Generating permutations is 
avoided in subsequent work by introducing a so-called 
canonical sort order of sensor positions contained in a team 
position [4]. The sorting order is based on additional 
information regarding the individuals who are carrying a 
sensor. As a result, there is a unique mapping of sensors to 
positions in a team vector. 

Alternatively, to the approach above, a core assumption 
regarding individual trajectories can be exploited. Individual 
trajectories are not randomly distributed across the feature 
space. There are rather clusters of similar trajectories that are 
intentionally followed. Hence, there exist only a limited 
number of trajectory classes, each representing an intended 
trajectory given a certain context. In application terms, this 
can be called the intended individual contribution given an 
intended team tactical move. Based on this assumption, 
individual trajectories Ts(t1,t2) can be mapped onto identifiers 
of intended trajectory classes: T→c, c € ℕ. There might be 
cases where individual trajectories do not match with any 
intended trajectory class. In these cases, the individual 
trajectory is mapped onto the “noise” class identifier 
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represented by a value of -1. As a result, a team tactical move 
M of a time interval can be defined as a tuple of trajectory 
class identifiers of the time interval M(t1,t2)=(c1, c2,…, cn) with 
n in the range of one to the number of sensors belonging to the 
observed collection, also called the team or group size. The 
sorting order of the class identifiers contained in M is 
irrelevant. Thus, we simply assume that the class identifiers 
are given in descending order: ∀ci, ck € M : i<k → ci >= ck. 

B. Clustering Aspects 
1) Two-Step Approach 

The automated detection of tactics based on clustering was 
proposed in [4] to avoid the need for labeling data. The 
approach did not explicitly select a clustering technique but 
introduced a quality criterion to compare different techniques. 
The mentioned approach uses spatiotemporal data that 
comprise groups of trajectories of team members to search for 
similar team moves by clustering. In a given example 
application scenario (team handball), this results in records of 
1.760 attributes (880 pairs of 2-d coordinates) per team move 
[4]. 

This number of attributes is rather high, and a number of 
clustering approaches have been described in the literature to 
reduce the dimensionality of the data, particularly in the 
context of time series data (such as trajectories) and [18]. A 
special group of these approaches is the set of multilevel or 
multistep clustering methods, which (from a high-level 
perspective) follow a stepwise approach to reduce the 
dimensionality of the data by clustering a “sub-aspect” first. 
The sub-clusters are then clustered again on the next level. For 
example, Aghabozorgi et al. introduced a two-step clustering 
approach for time series data by starting with a fine-
granularity cluster search, which is followed by a subsequent 
clustering step to merge similar clusters using a different 
criterion that is specific for the next level [19]. 

The basic idea of two-step clustering is adopted for the 
case of this paper to address the dimensionality challenge. 
Rather than directly trying to find clusters in a set of trajectory 
groups, it is proposed to search for clusters at the trajectory 
level first, given a trajectory-specific distance criterion. 
Subsequently, a search for similarity clusters of trajectory 
group clusters (denoted as team tactics) is performed. Thus, 
rather than having to find clusters based on 2nk attributes 
(when n is the number of positions of the trajectories and k is 
the number of trajectories per group), the clustering of the first 
step has to find clusters in records with only 2n attributes. The 
subsequent step has to handle records consisting of only k 
attributes. Projected on the application case of [4], there are 
only 220 rather than 1.540 attributes on level one and 7 
attributes on level two (each representing a the individual 
move of player of a team). 

The two-step approach is particularly promising for 
trajectory groups because it usually provides a meaningful 
explanation on the application level. The first clustering 
searches for patterns of individual contributions, while the 
second search focuses on patterns of combinations of 
individual efforts. In application terms from team ball games: 
what are the intended moves of players (or player types), and 
how are team tactics composed of these individual moves? 

2) Clustering of trajectories 
There is always “noise” in the trajectory data in the given 

context because there will always be player moves that are not 
intended moves in the sense of a contribution to some tactics. 
Thus, only clustering techniques can be used that can cope 
explicitly with noise, which excludes, for instance, basic 
spectral clustering [20]. Even later enhancements of spectral 
clustering called robust spectral clustering can only handle a 
low number of noise points compared to the number of non-
noise points [21]. Furthermore, no assumption regarding the 
cluster shape can be made. Trajectory clusters might have 
concave boundaries, which excludes clustering techniques, 
such as k-means clustering. Based on this, only two clustering 
concepts have been further investigated: agglomerative 
hierarchical clustering [22] and density-based spatial 
clustering of applications with noise (a.k.a. DBSCAN) [23]. 
However, agglomerative hierarchical clustering can be 
simulated using particular parameter settings of DBSCAN. 
Thus, this paper focuses on DBSCAN only. 

3) Finding similarity groups of team moves 
As described in Section III.A, team moves are represented 

by ordered k-tuples of trajectory cluster identifiers. To find 
groups of similar team moves, another clustering step can be 
used, but we lack a meaningful notion of distance for team 
moves. A straightforward approach would be to use the 
Hamming distance (based on [24]), as in the case of distances 
of words, which has no meaningful interpretation in the 
context of team moves. 

Alternatively, the search for similarity groups can be 
performed based on the method of searching for frequent 
itemsets, as is done in the case of association rule mining [25]. 
With this approach, all frequently occurring combinations of 
previously extracted cluster identifier combinations will be 
found without the need for a distance or similarity criterion. 
However, not every previously identified trajectory cluster is 
relevant when identifying team tactics. For instance, there are 
clusters that represent player trajectories in which the players 
(almost) do not move at all. These trajectory clusters can be 
seen as passive contributions to a team tactic rather than active 
contributions. Consequently, the trajectory clusters must be 
weighted based on the distance covered by the contained 
trajectories to reflect the contribution to a team tactic. 

When weighting trajectory clusters, the search for 
frequently occurring clusters needs to take weights into 
account, which is comparable to the process of searching 
weighted itemsets. In previous work in the area of weighted 
itemsets, the weights became somewhat part of the notion of 
frequency [26]. That is, the low weight of an itemset can be 
“compensated” by high support to still have a frequent itemset 
and vice versa. In the given application scenario, this is not the 
case. A trajectory cluster with a low weight is considered to 
be of low relevance regardless from its frequency. Even a high 
support of the cluster will not “make it more relevant”. In 
application terms, if a player does not move, there is no 
relevance of the trajectory with respect to a team tactic, no 
matter how often this occurs. 

The weight of a trajectory cluster is defined as the length 
of the trajectory (sum of the Euclidean distances of the 
contained points) representing the containing cluster 𝑡𝑡𝑟𝑟𝑐𝑐. The 
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representative trajectory of a cluster is defined as the trajectory 
with the minimal distance to all other trajectories of the same 
cluster: 𝑡𝑡𝑟𝑟𝑐𝑐 = 𝑡𝑡𝑖𝑖| ∀ 𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑘𝑘 € 𝑐𝑐:  𝐷𝐷𝑖𝑖𝑐𝑐 ≤ 𝐷𝐷𝑘𝑘𝑐𝑐  and Di is the sum of all 
distances of a trajectory of a cluster to any other trajectory of 
the same cluster 𝐷𝐷𝑖𝑖𝑐𝑐= ∑ dist(ti, tk) | ti, tk € c. 

The relevance coefficient ri is assigned to the tuples ti 
representing team moves: ti → ri, ri € ℕ0. The relevance 
coefficient represents the number of contained trajectory 
cluster identifiers that identify a cluster whose representative 
trajectory 𝑡𝑡𝑟𝑟𝑐𝑐 has a length greater than a specified threshold. 
The search for relevant frequent itemsets identifies the sets of 
trajectory cluster identifiers that have a support si greater than 
a given minimum support and a relevance greater than a given 
threshold: {ci} | si > smin ∧ ri > rmin. 

The Apriori approach to finding frequent itemsets [25] can 
be easily extended to cover cases with a relevance coefficient. 
The basic idea of Apriori is that the support of an itemset 
containing a certain number of items cannot be greater than 
the support of any subset containing fewer items. The 
relevance coefficients of team moves do not have this property 
in general because the relevance coefficient of an itemset 
cannot exceed the number of contained items. Hence, the 
straightforward approach is to use regular Apriori to generate 
the frequent itemsets, which are subsequently checked for 
their relevance based on the assigned relevance coefficient of 
the contained trajectory clusters and the specified minimum 
relevance. After the identification of the relevant frequent 
itemsets, itemsets containing non-relevant items can be 
eliminated to focus on team moves with relevant trajectories 
only. 

The straight-forward approach can be improved by using 
the relevance as a sort criterion of the items contained in an 
itemset (the itemset becomes a tuple). As introduced in [26], 
itemsets can be treated as sorted sets (tuples) based on the 
decreasing relevance of the contained items. The candidate 
generation then combines only trajectory cluster identifiers 
that represent a cluster whose representing trajectory has a 
length greater than the specified threshold (which means a 
contribution to the relevance coefficient greater than zero), 
and candidate itemsets with nonrelevant items are pruned. 
Finally, the resulting itemsets need to be checked for the 
minimum relevance limit and support. 

4) Assigning team moves to itemsets 
To group the team moves, a mapping of each team move 

ti onto one identified relevant frequent itemset fk is needed: 
ti → fk. A naïve approach would be to directly assign an 
itemset to any team move that supports the itemset. 
Unfortunately, this simple association is ambiguous because 
itemsets can have a subset relationship, and a single team 
move might even support multiple itemsets not having a 
subset/superset relationship. The latter case is an indication of 
not having enough data to be able to identify the “missing” 
superset of the union of the supported itemsets as relevant and 
frequent. The association of a team move to any of the 
itemsets can be chosen arbitrarily in this case. The case of 
nested itemsets is rather simple. A team move should be 
associated with the relevant frequent itemset that consists of 
the maximum number of items that is supported by the team 

move. It represents the specialization of another tactical 
move—the subset. 

IV. DISTANCES, SIMILARITY, AND QUALITY INDICATORS 

A. Trajectory Distance 
A distance or similarity function for individual trajectories 

is needed to be able to find clusters of similar trajectories in 
the absence of a labeling attribute (the ground truth) in the 
data. In previous work, the discrete Fréchet distance [5] was 
used as the distance between two trajectories without an in-
depth discussion of alternatives. In a more recently published 
comparison of trajectory distances, it was shown that the 
discrete Fréchet distance is sensitive to outliers and to timely 
shifts in trajectories [27]. It is also shown that dynamic time 
warping [28] outperforms the Fréchet distance in scenarios 
that are similar to the scenario addressed by this paper. 
However, dynamic time warping is not a metric (missing the 
triangle inequality property), which limits its applicability. 
Fortunately, the used approaches do not rely on the triangle 
inequality property because of their independence from path-
length based criteria.  

Continuous dynamic time warping was not covered by the 
comparison but was identified in later work as the most 
flexible distance criterion for trajectory distances in [29]. 
Continuous dynamic time warping was derived from dynamic 
time warping to cover cases in which the discretizations of 
trajectories are not uniform. However, in the cases addressed 
in this paper, uniform discretization can be guaranteed 
because the individual trajectories consist of the same number 
of coordinates distributed evenly over time. Thus, continuous 
dynamic time warping has no advantage compared to the 
original dynamic time warping approach in the given scenario. 
Paparrizos et al. argue against the use of dynamic time 
warping when clustering time series data [30]. However, this 
process is performed based on a generalized case without 
considering specific cases, such as a time series of two-
dimensional position data. The concerns raised in the paper do 
not hold in this specific case. 

The advantage of dynamic time warping compared to the 
discrete Fréchet distance is the concept of “warping”, which 
tolerates time shifts between the coordinates of two 
trajectories. Furthermore, the discrete Fréchet distance 
focuses on the maximum distance between pairs of 
coordinates, while the dynamic time warping distance is the 
sum of all distances between matching pairs, thus smoothing 
the effect of outliers. In conclusion, dynamic time warping is 
the optimal method for determining trajectory distances in the 
context of this work. However, the dynamic time warping 
distance has been slightly adapted to avoid a dependency on 
the number of points a trajectory consists of. Rather than the 
sum of all distances, the average distance is used. 

The optimal warping window size is highly application 
dependent. It depends on the accuracy of the frequency of the 
position detection technology as well as the absolute speed of 
the sensors. Furthermore, the notion of similarity of a given 
context limits the time gap that is tolerated when two 
trajectories are compared. In case of team handball moves, the 
time gap must be in the sub-second range. Non-
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comprehensive experiments with a tolerable time gap of up to 
half a second have shown acceptable results. 

B. Shared Nearest Neighbor Trajectory Similarity 
Distance-based clustering algorithms, such as DBSCAN, 

look for dense areas based on a single distance-based 
threshold. Consequently, algorithms cannot cope well with 
areas with varying densities. In the case of varying densities, 
clusters with lower density are not found if the distance 
threshold is set too low. On the other hand, if the distance 
threshold is too high, then multiple clusters with high density 
might be merged, and additional details may be lost. 

Unfortunately, the application scenario of this work must 
explicitly handle varying densities because the running 
distances of different player roles (positions in a team) and 
thus the DTW distances differ significantly. The so-called 
shared nearest neighbor similarity is an approach for handling 
varying densities while still using the original notion of 
distance as the underlying criterion [31]. Shared nearest 
neighbor similarity uses a notion of similarity that depends 
only indirectly on distance. Conceptually, the approach 
computes a list of nearest neighbors for each record based on 
the chosen notion of distance (the dynamic time warping 
distance in the case of this paper). When the similarity of two 
records is computed, prefixes of length l (a user-specified 
limit) of the records' lists of nearest neighbors are compared. 
The number of nearest neighbors contained in both lists is the 
value for the similarity of the two records. Then, a DBSCAN-
like clustering approach searches for clusters based on 
similarity values. 

The notion of similarity has a significant limitation: the 
similarity value depends on the number of points that are 
compared. Thus, the notion of similarity has been adapted as 
in the case of the dynamic time warping distance. The Jaccard 
coefficient is an alternative notion of similarity that 
“normalizes” similarity with the number of points considered: 
J(X,Y) = |X ∩Y|/|X∪Y| [32]. Hence, its value is in the interval 
of [0,1] independent of the size of the compared sets. 
Furthermore, it can be easily converted into a distance by 
subtracting it from 1, which allows us to use a “standard” 
subsequent DBSCAN approach to search for clusters. 

Interestingly, the basic concept of shared nearest neighbor 
similarity is analogous to the “sparsifying” approach used by 
Laplacians for robust spectral clustering [21]. Since 
computing the nearest neighbor similarity also “reduces” the 
noise in the original data, it might be interesting to compare 
the results of a subsequent DBSCAN with the results of a 
subsequent robust spectral clustering. 

C. Quality indicators 
1) Generalized Dunn index 

There are a multitude of quality coefficients for clustering 
[33]. These parameters are particularly important for finding 
the optimal parameter settings for clustering methods when no 
ground truths are available. In the context of the work 
presented in this paper, there is no upfront knowledge 
regarding similarity groups of team moves. Clustering is 
explicitly used to find representatives of groups that will be 
used by experts to label the tactics used in application terms. 

At least two aspects need to be considered when selecting 
a quality indicator for the extracted clustering model in the 
context of the presented work. Clustering methods that handle 
noise explicitly, such as DBSCAN, assign noise records to a 
separate noise cluster that must be excluded from the 
calculation of a quality indicator value. As a result, there are 
two extreme cases. In the first case, the parameter settings are 
chosen such that all the non-noise points are assigned to a 
single cluster or very few clusters. This is, for instance, the 
case when the search radius for similar points of DBSCAN is 
too large. The second extreme is the case when the search 
radius is rather small, such that most of the found clusters 
consist of only a single data point and are thus treated as noise. 
Consequently, there are only a few but well-separated clusters. 
The first case is indicated by a low number of noise points and 
clusters with a large distance between the contained points, 
while the latter case has only a relatively small number of non-
noise points and a very small distance between the contained 
points. 

Originally, Dunn introduced the idea of using the ratio of 
the diameter of a cluster to the distance to the closest 
neighboring cluster as a quality indicator for a clustering 
model [34]. This idea was later generalized by Bezdek and 
Pal, who introduced several notions of diameter (intra-cluster 
distance) and distance (inter-cluster distance) denoted as the 
Generalized Dunn Index (GDI) [35]. Since the chosen 
clustering approach does not compute any centroids, centroid-
based variants have not been considered. To avoid 
oversensitivity to outliers, the average distances of the intra-
cluster distances and the maximum distances of the inter-
cluster distances were chosen as the underlying values to 
compute the GDI, which is also denoted as GDI 2-2. The 
Generalized Dunn Index is always positive, and the higher the 
value is, the better the clustering. 

2) The side effect of excluding noise 
The described clustering approach based on nearest 

neighbor similarity has 3 main parameters that can be varied 
to find an optimal clustering for a set of trajectories: 

• The number of neighbors used to determine the 
similarity: The smaller the considered number of 
neighbors, the smaller the set of neighbors with a 
Jaccard coefficient greater than epsilon. The number 
of points treated as noise increases. 

• The ε limits the ability to find “close” points: 
A small epsilon of DBSCAN results in small sets of 
close points that can be assigned to the same cluster. 
Consequently, the number of points treated as noise 
increases. 

• The minimum number of points needed to form an 
initial cluster: A small number of close points results 
in many identified clusters. As a result, the number of 
points treated as noise increases because the cluster 
size decreases. 

All three parameters have a direct impact on the clustering 
model and the quality indicators not only by resulting in 
differing numbers of clusters and sets of contained points but 
also because the number of points treated as noise is directly 
impacted. This is also reflected by the quality indicators. If a 
single parameter is varied from low to high, we obtain the 
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same “behavior” for the quality indicators. Similarly, the 
silhouette coefficient and GDI 2-2 increase with an increasing 
parameter value, while the Davies–Bouldin index decreases 
with increasing parameter value (and the inverse Davies–
Bouldin coefficient increases as well). 

No indication of an optimal parameter setting can be 
derived from the course of the indicators' graphs. This is 
caused by the overlapping effect of a changing number of 
clusters and an increasing number of points considered noise; 
thus, these clusters are excluded from the quality indicator 
values. Hence, it is necessary to take the number of points 
considered valid into account as well as the number of clusters 
by weighting the clustering quality indicator. The basic 
concept of quality indicator weighting was introduced in [4]. 

A straightforward approach for weighting the quality 
indicator value is based on two simple observations 
(heuristics). Given that two clustering models have the same 
base quality indicator value, a clustering model consisting of 
more non-noise points is preferable because it represents more 
information of the input data. Second, if two clustering models 
have the same quality indicator values and the same number 
of non-noise points, then a model consisting of more clusters 
is considered preferable because it potentially allows for better 
differentiation of cases. 

Simple weighting with the number of non-noise (or valid) 
points 𝑁𝑁𝑣𝑣 = |{𝑡𝑡𝑖𝑖𝑐𝑐}|  results in a weighted quality indicator 
whose value depends on the sample size. Thus, the relative 
number of non-noise points based on the size of the input 
sample N=|{ti}| is used rather than the absolute input size: nv 
= Nv/N. Using the absolute number of identified trajectory 
clusters GC=|{cj}| as an additional weight would 
overemphasize the importance of the number of clusters. 
Using the maximum number of clusters to normalize GC 
would require knowing this number upfront. Thus, the ratio of 
the number of clusters to the sample size is used as the weight 
that represents the number of clusters: gC=|{cj}|/N. 

A weighted clustering indicator value qi
w can now be 

defined as the product of the original indicator value qi and the 
two weights introduced in the previous section: qi

w = qi nv gC. 

V. APPLICABILITY STUDY 

A. Complexity and Runtimes 
The concepts presented in this paper have been used in a 

real-world scenario of sports. In collaboration with a first 
league team and the first German Handball Bundesliga, HBL, 
the position data of all matches of the selected team in 2022, 
2023, and first half of 2024 were collected as a basis for 
identifying the offensive tactics they played. The future 
objective is to be able to detect the played tactics of a team, 
which can then be used to automatically determine the 
performance of played tactics for teams and players. 

The data consisted of 82 matches, from which a total of 
12,366 team moves were extracted before a scoring attempt. 
A total of 3,020 moves of the 12,366 were offensive moves of 
the selected team, from which 23,674 trajectories were 
extracted. Since so-called fast break attacks are not of interest 
in the context of tactic recognition and some trajectories 

contain erroneous data, the data for the analysis were reduced 
to 2,089 team moves with 16,277 trajectories. 

The practical evaluation was performed using MathWorks 
MATLAB™ R2024b version 24.2.0.2712019 running on 
Ubuntu 22.04.5 using a virtual machine with 16 vCPUs 
equipped with 32 GB of main memory. 

The runtimes of the different computation steps of a 
complete single run with the “optimal” parameter settings (see 
Section V.B) are listed in TABLE I. The most time-
consuming step of the data preparation is the calculation of the 
dynamic time warping distances for each pair of trajectories, 
which is of complexity n2-n or O(n2) when n denotes the 
number of trajectories. The distance calculation itself is 
implemented using the classical dynamic programming 
approach with a complexity of mw with respect to m as the 
number of points contained in the trajectories and w as the 
window size, which results in an overall complexity of n2mw 
(if w is defined as a ratio of m, then this results in O(n2m2)).  

The computation of dynamic time warping distances is the 
most time-consuming step of a clustering run, even when 
searching for optimal parameter settings consisting of 
repeating subsequent steps. Thus, parallelizing the 
computation of the DTW distances helps to reduce the overall 
computation time significantly. Furthermore, it is advisable to 
use only the computed distances rather than the original 
trajectory data in the subsequent steps. 

The second most time-consuming step after the 
computation of the dynamic time warping distances is the 
computation of the shared nearest neighbor similarity. Finding 
the k nearest neighbors (k≪ n) based on the previously 
computed distances is a set of nk simple searches of n-1 
distances when n denotes the number of trajectories. 
However, computing a full matrix of nearest neighbors might 
be advantageous when variations in k need to be computed 
(see the following Section V.B). This is particularly needed 
when varying the optimal number of trajectories used to 
compute the shared neighbor similarity (see Section IV.C.2). 
The subsequent calculation of the Jaccard similarity 
coefficients to determine the value of the shared neighbor 
similarity is of complexity nk2 and can be easily parallelized. 

The runtime of the subsequent search for relevant frequent 
itemsets is negligible given the runtimes of the previous steps. 
However, this heavily depends on the number of relevant 
frequent items found. 

TABLE I. MEASURED RUNTIMES OF COMPUTATION STEPS 

Computation Step Runtime in seconds 

Reading and filtering data 17 

Computation of DTW distances 6684 

Computation of similarities 926 

Single DBSCAN clustering 24 

Search for itemsets 3 
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B. Optimal Parameters and Results 
There are three parameters that can be varied while 

searching for trajectory clusters: 
• The number of nearest neighbors that are checked to 

determine similar trajectories (similarity window). 
• The minimum number of points that need to be close 

to be considered the core. 
• The limit of the Jaccard coefficient that is used to 

determine “close” trajectories. 
Rather than assuming that all of the mentioned parameters 

can be chosen arbitrarily, as indicated in [7], this paper follows 
a different approach. It is assumed that the ability of the 
Jaccard coefficient to identify close points is application 
dependent. In the given application context of trajectories of 
team handball players, we assume that at least 50% of the 
neighbors of two trajectories need to be “shared” in terms of 
the shared nearest neighbor approach to be considered “close 
trajectories”. This translates into a minimum Jaccard 
coefficient of 0.40 (DBSCAN ε of 0.60). 

Unfortunately, the similarity matrix directly depends on 
the number of nearest neighbors that are checked to determine 
similar trajectories. Hence, for each value of the similarity 
window, a similarity matrix needs to be computed, which is 
fairly time-consuming, as described in the previous Section 
V.A. However, to determine the optimal number of nodes in 
the similarity window, we compared 12 different cases. 

The last parameter that was varied was the minimum 
number of similar trajectories for being core in terms of 
DBSCAN. This parameter was varied in the range of [10, 40] 
with the assumption that at least 10 close trajectories are 
needed to be considered core. Figure 1 depicts the weighted 
GDI 2-2 values when varying the similarity window and the 
limit for the minimum number of points to be considered core 
points in the sense of the DBSCAN algorithm. The colors 
indicate ranges of similar index values. Yellow is the color for 
the highest range, while blue is the color associated with the 
lowest range of index values. An interesting observation is 
that the diagonal direction is the same for the same levels of 
index values. It seems that a decreasing lower limit for core 

points can compensate for the effect of an increasing 
similarity window to some extent. 

The global maximum of the weighted GDI 2-2 value is at 
a similarity window of 67 trajectories, and the minimum is 12 
necessary points for a core. The value of the weighted GDI 2-
2 peaks at 23.27 (based on a GDI 2-2 value of 1.05). The 
nearest neighbor similarity clustering identified 39 trajectory 
clusters that represented approximately 58% of the input 
trajectories. Approximately 42% of the trajectories are 
identified as noise. After coding the 1,757 team moves using 
trajectory cluster identifiers, 1,625 team moves with two or 
more non-noise trajectory cluster identifiers remained. A team 
move that contains fewer than two non-noise trajectory cluster 
identifiers is considered an individual move rather than a team 
tactical move. 

The search for relevant frequent itemsets was performed 
using the 1,625 team moves of the previous step. The lower 
length limit was set to 3.0, which means that a trajectory is 
relevant only if the length of the trajectory is greater than 3.0 
meters. This is an application-dependent limit and might differ 
between application scenarios. The absolute minimum 
support was set to 10, which means that an itemset is frequent 
if ten team moves support it. The search for frequent itemsets 
identified 143 itemsets of length 2, 41 itemsets of length 3, 
and 7 itemsets of length 4. 

While 6,790 of the 16,277 trajectories were associated 
with a trajectory cluster, 1,562 team moves of 2,089 (approx. 
75%) were associated with a team move group (or cluster of 
trajectory sets). 185 of 191 frequent itemsets were used to 
identify team move groups. The 6 “unused” frequent itemsets 
result from the criterion that was used to assign a frequent 
itemset with a team move (see Section III.B.4).  

C. Application-level evaluation 
To evaluate the results on an application level, the 

representative trajectories of each associated itemset were 
extracted. The contained trajectories were then visualized in a 
video presenting the tactical view and shown to team handball 
experts (coaches of the first league teams) to decide whether 
an actual team tactic was detected by the system and how the 
identified team tactic could be named. Figure 2 shows a 
snapshot of three example animations that have been 
presented to the coaches with their associated names. The 
seven offense players are depicted as green diamonds. Their 
trajectories are depicted as “sequences” of green diamonds. 
To depict the time aspect, the color of the diamonds starts with 
dark green and ends in bright green. Since the data have been 
transformed, such that attacks always occur from left to right, 
only the right half of the field is depicted. 

The coaches were able to confirm that the extracted 
similarity groups actually represent team tactics rather than an 
arbitrary collection of team moves. The evaluation of the 
trajectory clusters was successful as well. The trajectory 
clusters clearly represented the different positions (roles) of 
the players whose trajectories were contained in a cluster. 
Some of the detected tactics were considered similar when 

 
Figure 1. Weighted GDI 2-2 values with variations of the similarity 

window and the minimum number of points needed to be core 

54Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-244-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

DBKDA 2025 : The Seventeenth International Conference on Advances in Databases, Knowledge, and Data Applications



evaluated by human experts. A detailed analysis of the 
significant properties of these clusters needs to be performed 
to determine the key differences between the clusters. If the 
differences are correlated with the success or nonsuccess of 
the attacks, the analysis will help to identify the critical aspects 
of the realized tactics. 

D. Development of a stable cluster model 
Originally, 32 matches were used to evaluate the 

clustering approach, and it has been observed that the dataset 
was too small to extract a comprehensive set of trajectory 
clusters [7]. Thus, the approach is continuously evaluated with 
larger data sets. The results presented in this paper are based 
on the data of 82 matches. The originally identified trajectory 
clusters have been confirmed to a vast extent. However, some 
smaller clusters have been merged, which can be explained by 
the availability of additional data points that “bridge” the 
distance between the small clusters. 

We assume that the set of identified trajectory clusters will 
eventually reach a stable state when enough trajectories can 
be used to extract the cluster model. Since we still observe 
significant changes in terms of clusters and the number of 
clustered trajectories, this stable state has not yet been 
reached. When a stable state has been reached, the number of 
team moves can be used as a “team move window size” to 
continuously extract models from the current data. These 
models can then be compared with previous models to detect 
significant changes in the set of clusters indicating significant 
changes in the applied tactics. 

E. Using the model to automatically detect tactics 
1) Concept for applying the model 

The trajectory cluster model can be used to determine 
whether a detected trajectory belongs to one of the clusters 
based on the criteria that were used to extract the cluster 
model. Trajectories are assigned to a cluster if they belong to 
the core points of a cluster or if they are directly reachable 
from a core point in the sense of DBSCAN. Consequently, a 
trajectory is considered to belong to a previously identified 
trajectory cluster if it is directly reachable from any of the core 
points of that cluster. 

To evaluate the criteria above, the similarity-based 
distances to all the core trajectories that are part of the 
clustering model need to be computed. If the distance to any 
of the core trajectories is less than the ε that was used to 
compute the clustering model, the trajectory belongs to the 
cluster of that core trajectory. If no core trajectory is within 
the ε distance, the trajectory that is checked cannot be assigned 
to any of the clusters and is treated as noise. 

With the assignment of trajectories to clusters, team moves 
can be “recoded”, as described in Section III.A.2) Then, it is 
determined whether the team move supports any of the 
previously identified items. In this case, the team move 
contains the tactic that is represented by the supported 
frequent itemset. 

2) Performance aspects 
Given the current set of data used to compute the 

clustering model, 3,912 core trajectories were identified. The 
SNN-based distance that is derived from the DTW distances 
needs to be computed for each trajectory contained in a team 
move to check the ε limit of direct reachability. A rough 
estimation using the measured time for calculating the 
distances and similarities of the trajectories to derive the 
cluster model is based on the total number of distances that 
have been calculated so far. In total, approximately 132 
million distances and similarities were calculated, which took 
about 7,610 seconds. For the application case, approximately 
27 thousand distances and similarities (3,912 times 7) need to 
be calculated, which can be estimated with an elapsed time of 
half a second. The encoding and the search for supported 
itemsets are in the millisecond range. 

Overall, we can assume an upper limit of one second for 
automatically determining the tactics based on a stream of 
trajectories, which is fast enough for the given application 
case because the data of the team moves consist of 5.5 seconds 
of position data before an attempt happens, i.e., after an 
attempt, there is a minimum time gap of 5.5 seconds until we 
might have another set of trajectories of an attempt. 

VI. CONCLUSION AND FUTURE WORK 
A clustering approach has been proposed to find similarity 

groups of team moves without the need for the upfront 

 

Figure 2. Three snapshots of animation videos of team move clusters: “empty crossing right”, “runner from position 1”, and “7 versus 6” 
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assignment of class labels. Using a two-step approach based 
on the concept of shared similarity and the dynamic time 
warping distance addresses multiple shortcomings of the 
original approach in finding similarity groups. In particular, 
the need for manual collection of data in addition to 
spatiotemporal data is avoided. 

The results of the clustering of trajectories (the first step) 
can be verified by evaluating representatives of the identified 
clusters. From an application perspective, the representative 
trajectories should correspond with the intended individual 
moves of certain player types at the application level. With 
this application-level mapping, end-users are more likely to 
establish trust in the approach. 

The second step of the search for similarity groups 
involves searching for relevant frequent itemsets that deviate 
from the usual approaches that try to solve the task via a 
clustering approach. Using the search for relevant frequent 
itemsets avoids the need for an explicit distance criterion, 
which is difficult to define and difficult to explain in the 
application context. Furthermore, the concept of relevance is 
important when combining individual trajectories with team 
tactical moves. It has been shown that the search for frequent 
itemsets can be efficiently combined with the concept of 
relevance of trajectories. 

Rather than arbitrarily varying the parameters of the 
approach, application-level decisions have been made to limit 
the number of cases that need to be considered when looking 
for optimal parameters. With this approach, the quality of the 
trajectory cluster model and the number of “represented” 
trajectories increase significantly. Furthermore, the 
assignment ratio of team moves to team move similarity 
groups increased as well. 

The results of the applicability study show that the 
approach works in a real-world scenario. Previously 
recognized problems due to the low amount of available data 
cannot be observed anymore. The long-term objective is to 
derive a stable model that allows us to assign a label to team 
moves during matches by using the previously extracted 
cluster model. Hence, we have a basis for a novel approach to 
take individual contributions to a team tactic into account 
when evaluating players' performance in the future. 
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