
Privacy-preserving Data Sharing Collaborations:
Architectural Solutions and Trade-off Analysis.

Michiel Willocx , Vincent Reniers, Dimitri Van Landuyt ,
Bert Lagaisse, Wouter Joosen, Vincent Naessens

DistriNet - KU Leuven
Gent and Leuven, Belgium

firstname.lastname@kuleuven.be

Abstract—Businesses and governments possess vast data with
potential for analytical insights in areas like business intelli-
gence (consumer behavior, business solvability) and governmental
insights on population (crime, fraud). However, two primary
challenges hinder the adoption of data-driven analytics: the lack
of in-house expertise and the absence of sufficient data, which of-
ten requires collaboration with third parties. Such partnerships,
especially involving Machine Learning (ML), raise concerns due
to the sensitive nature of the data. This paper outlines two real-
istic use cases and proposes two privacy-preserving data sharing
architectures tailored for business-to-business and government-
to-business contexts. The first architecture uses de-identification
techniques before and during data transmission, while the second
assumes an already existing baseline ML model to test and refine
predictions without sharing data. We present an in-depth analysis
and evaluation of these architectures focusing on their complexity,
trust requirements, and data-sharing efficacy.

Keywords-privacy enhancing technologies, data collaborations,
anonymity, utility

I. INTRODUCTION

Nowadays, companies and organizations have widely
adopted the practice of collecting massive amounts of data
during daily business activities. Businesses increasingly rec-
ognize the value of this data, or as commonly said “data is
the new gold”. Companies apply data for targeted marketing
campaigns, to optimize the manufacturing process and inner
workings, or even to increase customer satisfaction. Not only
businesses, but also governments are increasingly interested
in looking into ways to further collect or apply existing
data. Governments are already sitting on vast amounts of
data that can be put to work, for example to detect social
fraud. For example, the case in which people benefit from
social housing while in fact already owning (foreign) housing
property [1]. Similarly, governmental data can be used to
further improve crime fighting effectiveness (e.g., identifying
problematic areas) [2] and for predictive analyses [3]. In order
for governments and organizations to be able to perform these
analyses, they first require (i) sufficient data, and secondly (ii)
the important know-how to process this data. However, many
business and governmental bodies are often lacking in both
areas. While many organizations already possess a significant
amount of data, more external data is often required in order
to build qualitative prediction models. This data is to be
acquired from third parties. Moreover, building these models
(ML or otherwise) is often no easy feat, requiring expertise
and experience to establish such models, and to subsequently

evaluate and validate their accuracy. Many businesses therefore
rely on third parties (i.e., data analytic parties) specialized in
performing data analytics and building ML models for this.

In practice, organizations engage or desire to participate in
a data sharing ecosystem that is highly beneficial to all parties.
Such a data ecosystem involves close cooperation between dif-
ferent data owners on one hand, and between data owners and
the ML party on the other hand. The benefits of sharing data
are typically win-win situations, although establishing these
data sharing collaborations comes with key problems related
to both privacy and trust. The privacy problems are related to
the fact that the data shared between parties often contains sen-
sitive and/or personal information. The GDPR regulation [4]
states that the type of personal data can only be shared when
sufficiently anonymized. This means that records — or in
some cases even attributes — in the shared dataset may no
longer be linkable to an individual. In most cases, these types
of issues can be tackled with state-of-the-art privacy models
such as k-anonymity [5] and l-diversity [6]. Furthermore, the
information may also be sensitive to the company, involving
details on their inner workings (e.g., customer base), results
(e.g., sales), or on collaboration with other companies, and
sharing these data may impact their competitive advantage or
reputation. Companies are very reluctant to share this type of
information with their direct competitors, requiring significant
trust, even if the result of the analysis of the data over all
parties involved could be beneficial for all parties. Similarly,
governments also posses data which may be highly beneficial
when analyzed further by third-party analytical parties, yet
this may not negatively affect the trust citizens have in their
government and the safekeeping of their data.

In cases where a data provider is sharing data with a data
analytics party, it sometimes suffices that both parties sign
a non disclosure agreement. Even in this case, reducing the
amount of required trust in such collaborations is desirable.
New data collaboration strategies are required to solve these
situations, where the end goal is the sharing of data for the
purposes of gaining analytical insights via ML. In particular,
such governmental-business or B2B data sharing require in-
depth analysis of the requirements involved, as well as the
technological solutions present to limit issues related to pri-
vacy and trust.

In this paper, we present two real-life use-cases from
our collaboration with industry partners. In these cases, data
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Figure 1. Use cases overview: Single or multiple data provider(s).

collaborations between different parties (data owner(s) and
data analytics party) are required to solve important societal
and economical problems. The specific nuances of each use
case are laid out in detail. Next, two reference architectures are
presented that allow to perform this type of data collaborations.
The first strategy focuses on purely statistical methods, while
the second one combines cryptographic constructs and statis-
tics. The main advantages and disadvantages of each approach
are evaluated and discussed in-depth.

The remainder of this paper is structured as follows. Sec-
tion II introduces our motivating industry use cases and their
requirements. Subsequently, Section III proposes architectural
solutions, and the respective technological solutions that can
be applied for each architecture. Section IV provides an in-
depth comparison of both architectures via a trade-off analysis
on aspects such as approach, complexity and implementation
effort, and trust assumptions. Finally, Section V positions our
work in the state-of-the-art, and Section VI concludes.

II. MOTIVATING INDUSTRY USE CASES

The research presented in this paper is driven by the use
cases of two industry partners involving B2B and G2B data
sharing for the purpose of ML analytics. In each use case,
data is provided to the machine learning (ML) party by either
one or multiple data providers (e.g., companies, organizations
or governmental institutions), as shown in Figure 1. The
ML party processes this data to generate insights via ML
model creation and training, which they subsequently offer
as products to the ML party’s customers. The incentive for
the data provider(s) is either of monetary value, or to acquire
improved insights using their own data. Typically, the data
provider lacks either (i) know-how to generate such analytical
insights in-house or (ii) lack additional data gathered from a
multitude of sources to do so. For example, it’s possible that
the ML party may incorporate additional collected data from
private or public sources to enrich the data provider’s data,
and which enable it to in fact generate these insights. In both
of our cases, the data provider is in fact also the end customer,
which is the direct beneficiary of the obtained insights.

A. Use cases

We start off first by explaining the common denominator
between all use cases, regarding their willingness to share data,

which has to be abetted with privacy-preserving data sharing
techniques. Subsequently, we detail our uses cases.

1) Problem statement: Willingness to share privacy-
sensitive data: The common denominator between both use
cases is that the data providers wish to share data, but are
inhibited by the sensitive nature of the data. The data to be
shared may involve information about other companies, inter-
nal company information that when leaked may for example
impact the company’s competitive standing or reputation. The
data may also come from governmental sources, or involve
information on data subjects that should not be disclosed.
Therefore, typically a relationship of trust has to be established
between the data provider and the machine learning party
before data is shared, for example via contractual agreements.
In this research, we want to avoid or minimize the degree of
trust required before sharing data, by either applying privacy
tactics and abstracting the data to a degree, or keeping the data
on-site and steering the ML party’s generated insights. Such
tactics can enable B2B data sharing without a significant vote
of trust in the ML party, by managing what is shared, and what
can be learnt from it. Finally, the customers of the end ML
party’s trained model, should never be able to infer on which
data was used to train the data set. In the next subsection,
we more precisely formulate the nuances of each use case,
after which we will translate these use cases into concrete
requirements for both data provider and the ML party.

This paper identifies two theoretical dimensions that are
possible in a data sharing ecosystem, namely regarding (i)
sensitive nature of data (e.g., personal or non-personal data),
and secondly (ii) number of data providers. The first dimension
involves the nature of the sensitive data that is being shared,
which may either be personal or non-personal data, and which
influences the solution architecture on the potential require-
ment for GDPR-compliancy. The second dimension involves
the number of data providers which are involved for one case,
which may either be one entity providing all data required,
or many entities providing pieces of the puzzle. The latter
dimension may also impact potential solutions, for example
when there is only one data provider the source is already
self-evident. In the case of multiple data providers, possible
solutions may rely on techniques such as e.g., multi-party
computation to enable data intelligence gathering. These di-
mensions theoretically cover numerous use cases involved with
data sharing, which amount to several possible combinations,
for example non-GPDR data and many-to-ML data providers.
Our two industry use cases that motivate this work represent
different characteristics in these both dimensions. These use
cases may practically apply to a wide range of B2B or G2B
data sharing scenarios. We will detail the nuances of each of
these two specific use cases, their dimensions, and analyze
the requirements of each stakeholder, more specifically the
requirements of the ML party or data provider.

2) Industry use case A: Single governmental data provider
and ML party (G2ML): In our first use case A, which
motivates this work, the data provider is a single entity,
namely the government, that contains all required data on
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which the ML party can generate insights. Governments can
have vast pools of even public data that can be accessed,
such as information on the population, maps (building zones,
agriculture), environment (e.g., pollution). There may also be
more restrictive information involved, for example stored in
police or judicial databases. Based on such vast pools of
both public and private data the government can generate
a multitude of insights, to improve their enactment on for
example environmental polluters, or to identify problematic
areas in society. Governments typically lack in-house expertise
to generate such insights and therefore ideally rely on external
an ML party. In this case, when private data is involved, the
government has to either establish a trust relationship with
the ML party, although this can be tricky. Therefore, we aim
to provide technological solutions such as privacy-preserving
techniques and architectures to limit such trust requirements
in the ML party. Certain other requirements may also apply,
such as requiring the ML party not to disclose any of the
shared data, or even when privacy techniques are applied, to
not disclose the learned ML insights.

3) Industry use case B: Joining business data to generate
sector insights (B2ML): In our use case B, multiple industry
companies are data providers to a single machine learning
party. The data shared in the many-to-one relationship can be
of non-personal sensitive data, or data which has to be GDPR
compliant. For example, supermarkets may store a lot of data
on the shopping behavior of customers, such as products
frequently bought together, or even have the potential to
store very specific information on a per-customer basis. These
companies could contract a ML party to process their data and
generate sector-wide insights regarding purchasing behavior,
which could for example optimize advertising campaigns. In
certain cases, companies are however not inclined to share the
full details of the data set, or wish to omit certain person-
specific aspects, and this then requires technological solutions
to enable the B2ML data sharing process. Another requirement
is that these companies may not wish to share data among
each other, as this may impact their individual competitive
standing. In addition, the ML party must be trusted to not
disclose individual datasets to other competitors, or we can
rely on privacy-preserving tactics to facilitate this requirement.
In the next section, we generalize the requirements for each
stakeholder, for example regarding the data provider and ML
party. These requirements will guide our architectural solutions
for privacy-preserving B2B or G2B data sharing.

B. Requirements analysis

We enumerate the requirements for each party of primarily
the data provider, and the machine learning party that pro-
cesses this data. These requirements relate either to privacy
aspects, functionality, or non-functional requirements.

1) Data provider requirements (RDP ): The data providers
are companies or governmental institutions, which feature a
certain degree of willingness to share data, or are highly
reluctant to do so unless certain privacy guarantees are met.
This property of willingess to share data will impose more

subtle or stringent privacy tactics. For example, the data that
is shared may not be leaked to any other party than the ML,
or even more stringent, the ML party itself may not be able to
deduct which subjects were in the shared data set, a property
referred to as unidentifiability or unlinkability. These privacy
tactics ideally won’t impede certain functional requirements
the data provider desires in return for providing the data. For
example, the data shared must yield the data provider itself
with additional insights learned by and from the ML party.

2) ML party requirements (RML): In terms of functional
requirements, similarly the ML party will want to acquire as
much data as possible, or sufficient data that enables them to
generate ML insights. These insights can be of use to their
customers, which in our use cases is the data provider itself.
In terms of privacy requirements, which may be imposed by
the data provider, the shared insights cannot be used to deduce
which data subject was involved in the training set (member-
ship inference). In addition, the ML party wants to establish a
certain degree of trust in their process, which can come from
the privacy tactics that are applied before sharing the data with
the ML party. Such trust in algorithms, rather than the parties
themselves, will promote future data sharing collaborations.
Finally, regarding the insights generated, the process of the
ML model may be subject to intellectural property rights
(IPR), and therefore details regarding the ML model are ideally
not disclosed to any of the other stakeholders, as this may
compromise their core business. Optionally, the insights when
disclosed are also of a sufficient quality when shared (i.e., good
accuracy), to promote the reputation of the ML party.

3) ML party customer requirements (RC): The customer
of the ML party is typically the data provider itself, but
also other organizations or institutions that can benefit from
these insights, or generate additional insights using additional
combinations of their data. The requirements for this customer
is that the insights are sufficiently accurate, and potentially that
these insights do not come with stringent privacy measures (for
example imposed by legal laws). The latter could be the case
when certain data subjects can be identified from the analysis,
such linkability/identifiability is ideally not possible and a
previously listed requirement of the data provider, imposed
on the ML party.

4) Data subject requirements (RDS): In our use cases,
the data may or may not be subject to the GDPR legal
framework as in most cases the data is related to organizations
or institutions, and not individuals. An edge-case in this regard
is the situation where a company is a one-man company,
in which case data related to that organization is considered
personal data [7]. In cases where personal data in involved,
sufficient data anonymization should be applied in order avoid
re-identification.

III. ARCHITECTURAL DESIGNS FOR PRIVACY-PRESERVING
DATA SHARING

We present two architectural solutions to meet with the
general use case requirements outlined in the previous section.
The driving factor to choose between both architectures is
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mainly the degree of willingness to share data by the data
provider, and the individual architectural properties. Sec-
tion III-A presents an architecture in which privacy-preserving
tactics can be applied at the data provider-side before it reaches
the ML party. Alternatively when dealing with many data
providers, these privacy-preserving tactics can be applied once
more and intermittently by a mediator. Section III-B details
an architecture in which no large data sets are shared between
data provider and the ML party. Instead, the ML party tests its
predictions at the data provider, which only provides data in
the form of minimal feedback to correct the ML model. We
will detail each architectural design in-detail, followed by a
discussion of their properties and respective trade-offs.

A. Architecture 1 – Sharing privacy-enhanced data

The first architecture to accommodate data sharing be-
tween data provider(s) and the ML party relies on statistical
anonymization strategies. In this approach, the data is sent
from the data provider(s) to the ML party. However, before
transferring the data, it is anonymized by the data provider.

1) Core approach: Figure 2.A presents the situation in
which one data provider shares data with the ML party.
A client-side module (which can be provided by the ML
party) locally performs de-identification operations on the
data. These operations can include data scrubbing (deleting
vulnerable records/attributes), pseudonymization [8] (replac-
ing identifying attributes with a pseudonym), generalization
(applying privacy metrics such as k-anonymity [5]) and noise
addition. The required operations strongly depend on both the
nature of data and the intended use case. Hence, for each
case specific settings are required in the client-side privacy
module. These settings require considerable insights in the
data and the attacker model, and are therefore ideally created
in collaboration between the data provider and a privacy expert
party (e.g., which may be coincidentally be the ML party).

The major limitation of this approach is that it is only
applicable with suitable datasets. Data collected by companies
is often sparse or incomplete. In order to enable meaningful
data de-identification it is desirable to first complete and enrich
the data using external data sources. This data enrichment step
in Figure 2.A(1.b) is a second task of the client-side module.
Examples of data enrichment are replacing a social security
number of individuals by a range of quasi-identifying attributes
(e.g., date of birth, residence location, gender) or replacing the
VAT-number of a company by relevant information (e.g., lo-
cation, amount of employees, profit margins). The required
data can be collected from either public and private sources,
or provided to the client-side module by the ML party.

The first approach presented here allows the data owner
to remove personal identifying information (and hence to
share personal data in a privacy-friendly and GDPR compliant
manner). It can also ensure that certain sensitive aspects
of the data are also generalized away, although the input
and output of sensitive data should be carefully curated by
the data owner to ensure confidentiality. The main downside
of this configuration is that the machine learning party can

directly link the data to the data provider as it is originating
from this source. Our next alternative on this architecture in
Figure 2.B introduces a mediator to also further generalize
between multiple data providers, but also to hide which data
originates from which party.

2) Advanced approach with mediator: There are two major
disadvantages of the core approach, the first is that data
originating from the data provider is directly linkable to the
data source origin. In addition, when multiple data providers
are present, further data generalization and privacy-preserving
tactics can be applied on the combination of these data sets.

These issues can be solved by introducing mediator in the
system, such as a TTP (trusted third party). Figure 2.B presents
the approach that includes a mediator, and as example we will
assume the use of a TTP. In this setup, all data providers send
the data to the TTP. This data can be provided to the TTP
in a (partly) privacy-enhanced (e.g., de-identified) state. The
TTP collects the data from the different sources, after which
the records from the different data providers are merged and
mixed. Next, the TTP performs a de-identification step on the
data to ensure that the confidentiality of the data and/or the
privacy of the data subjects are preserved.

The addition of a TTP allows a decoupling of the data from
the data owner. In addition, it can provide an additional de-
identification step, and when this is performed correctly and
sufficiently, the ML party should be unable to link a record
back to the correct data owner. However, this approach is based
on the important assumption that the TTP functions correctly,
behaves honestly, and does not collude with the ML party.
Collusions with the ML party could allow the ML party to
link records to one specific business, as would be the case
for the core approach without mediator. The trust required by
the data provider shifts from the ML party to the TTP. As the
data still leaves the premise of the data provider, he might still
be reluctant to allow this. A high degree of auditability could
offer a solution in this regard. In this setup, the TTP could
also be responsible for the data enrichment step (as described
in the core approach). This is often even more desirable for
the ML party, as the data used for enrichment (which can
be intellectual property of the ML party) no longer needs be
shared with the data provider.

In the architecture we just presented, proposed a method to
share data after applying privacy-tactics at a client-side privacy
module, and possibly additionally again at a privacy module
located in an intermediate mediator. In these approaches, data
is effectively still charged, and even after the deliberate steps
and transformations to preserve privacy, this may still be
undesirable by parties that are highly reluctant to share data.
In our next architecture, we propose a method to improve the
ML party’s models without sharing data.

B. Architecture 2 – ML feedback-loop validation interface

The second architecture relies on cryptography in combi-
nation with statistics. The main advantage of this approach is
that the data provider is no longer required to share any data
with the ML party. This approach assumes that the ML party
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is able to create a preliminary ML model. This model can be
created based on a small amount of data retrieved from a data
provider (under NDA or by applying Architecture 1) or by
using publicly available data.

1) Core approach with the prediction validator module at
the data provider: In this approach, the ML party provides a
software module to the data provider(s), named the prediction
validator. This module runs on the premise of the data provider
and has access to the sensitive data of the data provider. The
data itself never leaves the premise of the data provider. Next,
the ML party makes predictions using its preliminary basic ML
model, and sends these predictions to the prediction validator
module at the data provider. Here, the validator compares the
ML party’s predictions to the sensitive data records. Based on
this analysis, the validator is able to generate the feedback the
ML party requires to enhance the ML model.

The kind of feedback and the level of granularity of the
feedback depend on the type and sensitivity of the data
involved. It is of major importance that the feedback does

not leak the sensitive data of the data provider. Therefore
it is not possible for the validator to provide the ML party
with feedback about individual predictions. However, it is
for example possible to give a general accuracy score about
groups of predictions. For example, the ML party can group
its predictions in confidence intervals, which allows the me-
diator module to give feedback about a group of predictions.
Furthermore, this approach could also support typical machine
learning metrics such as recall, precision and F1-score [9].

It is important to be aware not to disclose any sensitive
information of the actual data set. By executing consecutive
queries, the ML party could attempt to learn sensitive infor-
mation. For example, if in two consecutive queries, a set of
predictions is validated, but one query leaves out the prediction
of one record, the ML party could easily learn the details
of that one record. Query monitoring [10] prevents this type
of unwanted behaviour. Moreover, by applying differential
privacy [11], [12] to the output of the validator (adding
noise), an additional layer of protection against data leakage is
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introduced, protecting against information leakage even if the
ML party has (partial) knowledge about the sensitive dataset.

The presented approach requires the ML party to share
its predictions with the data provider in order to retrieve
feedback on these predictions. In an early phase of the training,
these predictions may still be very immature and may lead to
reputation damage for the ML party as the predictions may
be potentially very inaccurate. Furthermore, these intermittent
predictions may reveal part of the inner workings of the ML
party’s (protected) model, which may be subject to IP rights.
This may undermine the ML its competitiveness if the data
provider is able to steal (part of) the ML party’s model. As a
solution, we suggest an alternative approach with a validator
module located at a mediator to avoid the need for the ML
party to directly share its predictions with the data provider.

2) Approach with the prediction validator module in a
trusted mediator: One of the main disadvantages of the
core approach is that the ML party leaks its (preliminary)
predictions to the data provider. This is especially important as
both the ML parties in our industry cases listed this as a major
concern. In order to avoid data leakage from the ML party
to the data provider, the extended version of this approach
moves the prediction validator module to a trusted mediator.
Hence, the predictions of the ML party are no longer sent to
the data provider. The mediator’s main task is to compare the
predictions of the ML party to the (sensitive) data of the data
provider. In order to prevent the mediator from gaining access
to the sensitive parts of the data, the ML party and the data
provider can apply symmetric encryption to certain attributes
before transmission. To achieve this, the data provider and the
ML party must first exchange a shared secret key, of which
the trusted third party has no knowledge. Comparisons can
be made on the encrypted data without the need of additional
technologies However, homomorphic encryption – a technique
enabling (basic) operations on encrypted data [13] – can also
support more fine-grained analyses of the predictions. By
applying this approach, the trust required in the mediator is
significantly reduced compared to Architecture 1. The only
assumption that needs to be made is that the mediator operates
honestly. Honest means that it does not tamper with the
analysis results for the ML party, and that it does not share the
input retrieved from one data provider with another, or data
from a data provider to the ML party or vice versa.

IV. ARCHITECTURAL TRADE-OFF ANALYSIS

In this section we provide a comparison via a trade-off
analysis on the properties and merits of both architectures in
terms of approach, complexity (e.g., implementation effort),
but also requirements on trust between all stakeholders. Specif-
ically, we also detail which technologies, and for example
privacy techniques, can be concretely applied towards the
implementation of these proposed architectures.

A. Architectural comparison

Table I lists an extensive comparison between architectures
1 and 2, both when or when not using a mediator. This

comparison is conducted in terms of the factual shared data,
the required quality of shared data, the implementation effort
for each architecture, and overall complexity. In addition, we
detail the mediator’s task in each architecture, as well as
the overall followed approach, and eventual consequences for
data linkability. The main goal of the proposed architectures
includes that individual subjects cannot be identified from the
data set. We discuss each aspect from Table I in turn.

1) General approach: In architecture 1, we privacy-
enhance and actually share data with the ML party. In the
second architecture, we do not directly share data, but instead
provide feedback information (i.e., validation) on the ML party
its trained model, namely on its prediction accuracy.

2) Optional mediator’s involvement and task: In the first
architecture, optionally, a mediator is involved to further gen-
eralize from multiple data providers’, and consequentially hide
the data source from the ML party. In the second architecture,
the mediator is involved to either hide the data provider
which validates the forwarded predictions by the mediator.
Alternatively, the data provider can also entrust the data set
to the mediator, which then assumes the responsibilities to
provide feedback on ML predictions. The mediator has to
however ensure that subsequent feedback responses do not
reveal anything about the original data set, via techniques such
as differential privacy and query monitoring.

3) Data linkability: In terms of data linkabilty, depending
on the choice for the first architecture and the involvement of
a mediator, either the ML party can directly attribute a certain
data set to a certain provider, or the mediator is able to do this
and hides such information from the ML party. In the second
architecture, predictions cannot be linked to a concrete data
set, only the feedback to a certain mediator or data provider.

4) Shared data and quality: The main distinction between
both architectures is the willingness to share data, and archi-
tecture 1 is ideally suited for sensitive data which can be
privacy-enhanced and still shared, whereas in architecture 2
only feedback is given on the ML model its accuracy. In the
first case, we therefore need sufficient quantity and diversity
of data as to enable the application of such privacy tactics.

5) Implementation effort and complexity: In terms of im-
plementation, architecture 1 can make use of readily-available
software libraries featuring privacy tactics, such as the ARX
library [14]. The only difficult aspect is that the chosen tactics
have to be carefully considered regarding their suitability on
the involved data set, and their respective impact on privacy
threats and remaining data utility. In contrast, the second archi-
tecture is more visionary, and requires careful consideration on
how to provide feedback or validation of the ML’s predictions,
of which optionally this feedback can steer the training in a
positive manner. In addition, this feedback should not reveal
anything about the data provider’s data set, which may require
differential privacy and query monitoring, which consider
previously released queries’ and their respective feedback.
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TABLE I. CHARACTERISTICS AND PROPERTIES OF THE ARCHITECTURES WITH- OR WITHOUT MEDIATION.

Architecture 1 Architecture 2
Shared data Data sets which are privacy-enhanced (e.g., de-

identification, generalization of attributes).
No datasets shared, only minimal feedback regarding
the accuracy of the ML model.

Data quality
required

Needs sufficient data (e.g., minimum number of rows)
to privacy-enhance data (e.g., generalization).

Doesn’t need directly shared data. Feedback is given
to validate the ML model, and potentially improve it.

Implementation
effort

Standard libraries available to apply the privacy tactics,
such as the ARX library [14].

No ready-made available libraries/frameworks for such
an approach.

Complexity Hand tailored selection of privacy tactics per use case. Complex process to determine how to structure valu-
able and privacy-preserving feedback.

Mediator’s
task

Generalization, de-identification, and other tactics of
multiple already privacy-enhanced data sets.

Responding with feedback, querying or optionally
collecting data from/to data providers.

No mediator (1.A) With mediator (1.B) No mediator (2.A) With mediator (2.B)
Approach Data is privacy-enhanced at

the data provider and then
sent to ML.

After privacy-enhancing at
the data provider, addi-
tional generalization at me-
diator.

Data is not directly shared,
but the prediction accuracy
of the ML model is vali-
dated at the client side.

Data not shared directly,
ML model validated at
the mediator (entrusted the
data or has to query client).

Data linkabil-
ity

Data originates directly
from the data provider, and
is linkable to the source.

Removing direct link to
origin of data per DP.

Predictions cannot be
linked to a certain concrete
data set.

Client can maintain its own
data set, or share it with
mediator.

B. Trust model analysis

Table II elicits the trust assumptions, which are generally
minor, for all involved stakeholders, namely data provider, ML
party, and optionally a mediator.

Data provider: Regarding the data provider, we assume
that this provider acts honestly and shares a correct (privacy-
enhanced) data, or in the case of the second architecture
provides honest feedback on the basis of this data. In theory,
this should be in the interest of the data provider himself,
as he will typically rely on the insights gathered by the
ML party, which is a win-win for both actors. In turn, the
data provider could possibly attempt to reverse engineer the
ML model based on the insights, although this could prove
technically challenging, and is therefore a weak assumption.
These insights are more valuable in the second architecture,
which are presented intermediately, and the process of model
learning could be more evident.

ML party: The trust assumptions placed in the ML party
are more of a minor nature, as in the first architecture the data
that arrives is already privacy-enhanced. Yet, potentially we
could expect the ML party to not further disclose this privacy-
enhanced data set. We expect the ML party to share honest
insights gathered, but this could be facilitated or verified by
the data provider on the basis of real world scenarios, or
applicability in its own business processes. In the second
architecture, no concrete data is shared, but insights which
out of self-interest are ideally honest.

Mediator: As a mediator, many of the trust assumptions
of the data provider and ML party are partially inherited.
For example, we assume it forwards the original privacy-
enhanced data set in architecture 1, or the corresponding
feedback on the ML party its predictions when querying the

client. Alternatively, when the mediator is entrusted the data
set in architecture 2, we also assume it does not disclose this
data (which may be a stringent requirement, although when
sensitive we also do not expect the ML party to do this). In
addition, in this case we assume a correct handling of the
predictions. Furthermore, we also expect the mediator to hide
the data source, more specifically the data providers involved.

1) Meta-data encryption: In our architecture, and when it
is opted for a mediator, and specifically in the case of a trusted
third party, we assume that this TTP is honest-but-curious. In
Architecture 1, the data which arrives at the mediator is already
privacy-enhanced, and is ideally further aggregated. The trust
at this stage, is therefore mainly in the correct application
of this method and the forwarding. In Architecture 2, the
operations applied by the mediator are more complex, and he
can have insight into the predictions passed by the ML party,
as well as verifying these predictions by a query to the data
provider (or when trusted against the data set provided to the
mediator). In order to hide the insights that the mediator can
gain into the process, both ML party and data provider can
agree on a shared key to encrypt meta-data before sending
it over the mediator. This will enable part of the task of
responding to the prediction query by the data provider, or
in reading part of the feedback by the ML party.

2) Trusted execution environments: Such encryption can
not always be applied however, as the mediator may have
to be actively involved in assessing whether the prediction is
correct, and involved in the feedback process. Therefore such
key values may have to be in readable format. In order to
prevent the trusted mediator, which is assumed to be honest-
but-curious, from gaining such insights, and to actually also
relax this trust assumption we can integrate trusted executions
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TABLE II. TRUST ASSUMPTIONS OF THE ARCHITECTURES WITH- OR WITHOUT MEDIATION.

Architecture 1 Architecture 2
Trust in No mediator (1.A) With mediator (1.B) No mediator (2.A) With mediator (2.B)
Data provider Shares correct data set (win-win for insights), least

possible noise. No reverse engineering of ML insights.
Provides only honest feed-
back. Keeps intermediate
insights confidential.

Provides honest feedback
and keeps intermediate in-
sights confidential, or trusts
true data set to mediator.

ML party No data disclosure. Shares truthful insights. Provides truthful insights out of self-interest.

With mediator (1.B) With mediator (2.B)
Trust required
in mediator

Shares correct privacy-enhanced data, and only to ML
party. Hides source of the data.

Mediator passes correct insights and feedback, or op-
tionally keeps data confidential and provides feedback.

environments. Trusted execution environments provide a se-
cure tamper-resistant execution environment, isolated from –
in this case – the rest of the mediator’s own platform [15].
For example, Intel SGX [16] could be used to execute certain
of the mediator’s its functionalities. Subsequently, the data
provider its data can be sent to this module encrypted, and
will only be readable to the trusted execution environment.

C. Architectural selection process

The selection of one of the presented architectures for a
specific use case is influenced by multiple factors, namely
the quality and the nature of the data, the willingness of
the data provider to share the data with the ML party and
the willingness of the ML party to leak information about
the ML model with the data provider. A first distinction is
made between whether the data concerns sensitive company
data, as this is a driving factor for the willingness of the data
provider to share the data with the ML party. If the data is
not sensitive, and does not contain personal data, no privacy
enhancing tactics are required. If the dataset contains personal
data that is not sensitive to the company, Architecture 1.A is
advised when the data is suitable for anonymization (by default
or after enrichment). Alternatively, when data anonymization
techniques are not feasible, a variant of Architecture 2 is
required. In the scenario where the data provider is reluctant
to share the data with the ML party, Architecture 1.B can be
applied if multiple data providers are available and the link
between the data providers and their respective data can be
severed by mixing (and anonymizing) data from multiple data
providers. When this is not possible, a variant of Architecture 2
is advised depending on whether or not the ML party requires
model protection.

V. RELATED WORK

Our work is situated within the domains of classical privacy-
preserving techniques, data anonymization for ML purposes,
and collaboration strategies in this context such as federated
learning.

Data anonymization strategies: Many well-known data
anonymization strategies are described and evaluated in lit-
erature. Privacy metrics such as k-anonymity [5] and its

derivatives such as l-diversity [6] and t-closeness [17] are
extensively studied, in the context of privacy [18], [19] as
well as the theoretical [20] and the practical utility [21],
[22]. Moreover, they are readily available in tools such as
ARX [14]. Many real-life use cases have benefited from these
types of metrics. For example, Jakob et. al. [23] described an
anonymization pipeline to aid the gathering of medical data
for research during COVID.

Anonymized data applied in ML: The applicability of
anonymized data in machine learning applications specifically
has also already been discussed by several papers. For exam-
ple, Slijepcevic et. al. [24] and Carvalho et. al. [25] investigate
the effect of applying metrics such as k-anonymity on the
classification performance. Both works argue that it is hard
to exactly predict the impact of privacy preserving operations
on the accuracy of ML models, but find that the effects are
manageable if the anonymization operations are not too harsh.
The aforementioned data anonymization strategies are applied
as part of the solution in Architecture 1, but require additional
components in order to fulfill the trust requirements related to
the sensitive nature of the data.

Protecting machine learning models: In the context of
this paper, two important attack vectors on machine learning
models should be considered. First of all, many papers [26],
[27] have demonstrated that machine learning algorithms are
often prone to leak data used in the training set. Two popular
types of attacks are membership inference [28], [29] and
attribute inference [30], [31]. Defenses against these types of
attacks are proposed [32], [33] and should be considered in
both architectures presented in this paper.

A second threat to ML models that is relevant in the context
of this work is model stealing [34], [35]. As the machine
learning model is intellectual property (and the core business
incentive) of the ML party, the model should be protected
against such theft. Several defenses have been proposed [36],
[37], and should be implemented by the ML party.

Privacy-preserving querying: Within the context of pri-
vacy preserving data sharing, the concept of differential pri-
vacy [11], [12] is currently often presented as a one-size-fits-all
solution. In contrary to the aforementioned data anonymization
techniques, differential privacy is not a property of a dataset
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but of a function. Therefore, differential privacy is not directly
applicable for the data sharing part of our industry use cases,
as they require the actual records and not aggregates over
multiple records. Differential privacy is however applicable
in Architecture 2 in the mediator module, as it can prevent
data leakage in the feedback to the ML party.

Alternative privacy preserving data collaboration strate-
gies: In the realm of machine learning, federated learning
strategies [38] are being proposed, allowing companies to col-
laborate towards a common machine learning model without
the need to contribute their own data in one shared data pool.
For example, Dayan et. al.[39] demonstrate the advantages
of federated learning to create data collaborations in the
context of a large COVID-19 clinical study across multiple
countries and health institutions. Tools and frameworks such
as Flower [40] and Sherpa.ai [41] support developers in imple-
menting such strategies. However, it should also be noted that
successful attacks have been performed on federated learning
models before [42]. The business driver in our industry cases
is the ML party, whose incentive is the financial benefit
from commercializing the created machine learning models.
Applying federated learning in our industry use cases would
cut the ML party (and therefore the technology enabler)
from the equation. Additionally, a federated learning approach
would also rely on the data providers to set up such col-
laborations (and processing infrastructure) among themselves.
Such solutions are therefore undesirable and unfeasible in our
industry use cases. Another stream in privacy preserving data
collaborations is found in the realm of cryptography, where
techniques such as fully homomorphic encryption (FHE) [13]
and secure multi party computation (SMPC) [43] have gained
traction. FHE allows computations to be executed on encrypted
data. In this work, FHE can be applied as one of the building
blocks in Architecture 2 in order to support more complex
model validation in the mediator module and to enhance the
feedback towards the ML party. Note that the set of available
operations on encrypted data is still rather limited. SMPC
is a cryptographic protocol that allows multiple parties to
contribute to a common computation without the need to show
their data to the other parties. However, MPC is very resource
intensive, and therefore do not scale well in in larger and
more complex applications. The latter, in combination with
the required domain knowledge to build such systems makes
MPC unfeasible in our industry cases.

VI. CONCLUSIONS

The research which we presented in this paper is motivated
by two use cases from industry partners, respectively in the
context of B2B and G2B data sharing for ML purposes.
The problem which we identified is that there are two major
hindrances towards data-driven intelligence gathering, namely
a lack of in-house ML knowledge, and insufficient data to
enrich existing data sets and enabling the extraction mean-
ingful insights. As a solution, a third-party ML expert with
the necessary expertise is often brought in, which can gather
additional data from public or private sources when required.

However, the involvement of a third party ML party introduces
its own challenges, namely that business or governmental
entities now must trust these external parties with their data.

In this paper, we provide technological solutions in the form
of privacy-preserving data sharing architectures to alleviate
or reduce the stringent requirement of trust in a third party.
We outline two architectures, depending on the degree of
willingness by the data provider to share data, which is
typically dictated by the sensitivity of the data involved. The
first architecture involves readily-available privacy-enhancing
techniques (e.g., generalization, de-identification) at the data
provider-side before sharing datasets to the ML party. Op-
tionally, a mediator can be involved such as a trusted third
party to hide the source of the data set, as well as to further
aggregate, mix, and generalize data sets when they originate
from multiple data providers.

A second architecture is designed for situations where a data
provider is highly reluctant to share data (e.g., in the case of
highly sensitive data). In this case, an interface allows the ML
party to present predictions from an established baseline ML
model to the data provider. These predictions can be validated
or used to provide feedback for improving the analytical model
and deriving insights. It is crucial that even in such a case,
the feedback presented does not leak any information on the
original data set, which can be facilitated by means such as
differential privacy. Similarly, a mediator can be involved to
assume such responsibilities for a multitude of data providers.

We presented a trade-off analysis on both architectures in
terms of their approach, the type of required data, and shared
data, as well as the required complexity and implementation
effort. The first architecture is highly feasible, although re-
quires specific tailoring of the required privacy tactics on a per-
use case basis as it is highly dependent on the quality and type
of data provided. The second architecture is more visionary in
its nature, with many future technological challenges that can
enable validation of ML models, as well the ability to provide
useful feedback to steer and improve an ML process without
information leakage. This architecture provides a way to meet
many of the legal requirements such as GDPR and other
current and future responsibilities related to data ownership.
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