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Abstract—We perceive music from various perspectives - the
melody, the rhythm, the emotions or passions they evoke, the
richness of sound, and how it correlates with the time of the day
(like Morning Raga) or with seasons (like Vivaldi’s Four Seasons).
This is a multimodal classification challenge for which correct data
annotation is a difficult issue. In this work, we propose a method
for visualizing audio signals from various musical instruments
to identify their variances and quantify their similarities and
distances. The appropriate tools (algorithms) for this task were
identified by experimental analysis. The work is conducted in two
stages: the first is audio feature extraction and compression,
and the second is the projection of high-dimensional audio
features on a two-dimensional plane using various unsupervised
visualization techniques. The aim is to determine which feature
compression and visualization tools can produce clearly separated
clusters of audio signals. The features of the STFT spectrogram
extracted using CNN provide the best compressed representations,
which are better visualized using t-SNE and UMAP techniques,
achieving silhouette scores of 84% and 81%, respectively. The
STFT spectrogram features are compressed more effectively using
UNet, resulting in improved cluster visualization with t-SNE,
UMAP, and even with PCA, with silhouette scores of around
75%.

Keywords- MFCC; STFT; Spectrogram; CNN; U-Net; t-SNE;
and UMAP.

I. INTRODUCTION

Each music sample has unique context-dependent audio
characteristics, making audio classification a challenging multi-
modal task. Additionally, training classifiers requires annotated
signals, which are difficult to obtain.

In this project, our aim is to analyse audio signals from
different musical instruments. The extracted features are high-
dimensional. We project them onto a two-dimensional plane
to visualize their similarities and dissimilarities. For our
experimental study, six musical instruments were selected, five
of which are traditional Indian Instruments: Flute, Nadaswaram,
Thavil, Santoor, and Veena. We also included the Western
classical instrument piano and compared the audio charac-
teristics of the music produced by the instruments. These
traditional instruments possess unique tonal features. Flute and
Nadaswaram are wind instruments that produce sound through
air vibration, the flute being side-blown and made of bamboo,
while Nadaswaram is a long wooden pipe with a conical end.
Santoor (struck) and Veena (plucked) are string instruments,

with Veena’s dual resonators, add uniqueness to the music.
Thavil, a South Indian percussion drum, has a hollow wooden
shell with stretched leather membranes, and is played by hand
or stick. The piano produces sound by hammering strings when
keys are pressed.

Traditionally, Fourier Transform (FT) [1] and Fast Fourier
Transform (FFT) [1] was used for signal analysis. But this
approach cannot capture sequential contextual audio informa-
tion. Advances in speech processing introduced techniques like
Short-Time FT (STFT) [2] , Wavelet Transform (WT), and
Mel-Frequency Cepstral Coefficients (MFCC) [3]. After using
such audio feature extraction tools, machine learning techniques
including deep neural networks that compress high-dimensional
audio data. This effectively facilitated viewing music pieces,
originiated from different instruments, as compact scatterplots
on a plane. The overall plan is shown in Figure 1.

Figure 1. Overall plan for the Experiments.

MFCC features were extracted from the musical samples [3].
Using standard MFCC window lengths (25 milliseconds), even
a few seconds of audio signal generate a high-dimensional
feature vector. In this high dimension, the distribution of
distances between samples exhibits low variance, making two-
dimensional visualization ineffective.

We used a second step of feature compression using deep
neural network. The effectiveness of the proposed methods was
validated through several experiments by projecting the data
onto two dimensions [4]. For spectral analysis, we used the
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Short-Time Fourier Transform. We converted the STFT features
into spectrogram images [2]. These spectrograms serve as visual
representations of the music features. To extract features from
spectrogram images, we used a CNN model [5], and a U-Net
model [6]. CNN and UNet were trained on STFT spectrograms.
Features were extracted from the output of filter layers of the
CNN where they are input to the dense classification layer.
Similarly, features were extracted from the bottleneck layer in
UNet. Section III details how CNN and U-Net architectures
extract features from images through their distinct approaches.

To visualize music signals on a two-dimensional plane, we
used PCA (a linear method), t-SNE, and UMAP. MFCC features
are directly fed into the above three visualization tools.

The remainder of this paper is organized as follows. Section
II reviews related work. Section III describes the methodology,
including data collection and pre-processing, feature extraction,
and the proposed solution. Section IV presents the experimental
results and their analysis. Finally, Section V concludes the paper
and discusses future research directions.

II. RELATED WORK

The Previous works on the Visualization of audio sample
characteristics are discussed below.

The authors used three different datasets in their work
reported in 2024 [7]. Two datasets with 10 classes and an
augmented version of one (using pitch shifting, time-stretching,
and noise) were used. MFCC features were extracted, CNN
and RNN-LSTM models were trained. CNN performed better
on smaller datasets, while RNN-LSTM excelled on larger ones.

In the work reported in 2020 [4], the authors experimented
with audio data of 10 classes, extracting MFCC features. They
visualized these high-dimensional features using PCA, t-SNE,
Iso-Map, and SOM. t-SNE produced well-separated clusters.
SOM showed slight separation, while Iso-Map failed to capture
meaningful structure. The conclusion was that Iso-Map failed
to work with this high-dimensional data.

In another work on the audio classifier, reported in 2020 [5],
the authors used a public dataset and converted the audio signals
into Mel power spectrograms. They applied two approaches
to capture features: a CNN model trained from scratch and a
pre-trained VGG19 model using transfer learning. Both models
performed well. The CNN model trained from scratch slightly
outperformed the VGG19 model.

III. PROPOSED METHODS AND EXPERIMENTS

This section outlines the paper’s workflow, including data
collection and preprocessing, feature extraction, projection of
higher dimension into 2D, and the proposed method, as detailed
below.

A. Data Collection and Pre-processing

Audio samples are collected from open public platforms like
YouTube and recorded media, ensuring each sample captures
the instrument’s unique tonal and spectral characteristics
without background noise or audio from other instruments.

We collected 180 audio samples, 30 samples per instrument,
using YTMP3 and converted them to MP3. We processed them

with Clideo, Clips were segmented into 30–45 seconds, then
converted to WAV, ensuring high-quality data for analysis.

B. Feature Extraction
1) MFCC Feature Extraction: MFCC feature is a standard

for audio analysis in music, speech recognition, and speaker
identification. Pre-processing standardizes samples to 30 sec-
onds by padding or trimming, followed by sampling at 44,100
Hz for high-quality signal preservation.

The MFCC extraction process begins with pre-emphasis to
enhance high-frequency components. The 30-seconds audio is
segmented into 25ms non-overlapping frames (1,201 frames,
each with 1,103 samples). A Hanning window is applied to
smooth edges and reduce distortions. The Discrete Fourier
Transform (DFT) converts the signal to the frequency domain,
capturing spectral characteristics. A Mel filter bank mimics
human hearing by dividing the spectrum into 26 bands, reducing
dimensionality while retaining essential information. A loga-
rithmic transformation follows to compress the dynamic range.
Finally, the Discrete Cosine Transform (DCT) decorrelates
Mel-spectral coefficients, retaining the first 13 MFCCs used
for classification.

Figure 2. The process of MFCC Feature Extraction.

The MFCC extraction process is shown in Figure 2. Each
30-seconds sample is converted into 13 MFCCs × 1,201 frames
and flattened into a 1-D vector of 15,613 elements. MFCCs
capture essential audio characteristics, preserving tonal, timbral,
and rhythmic features for classification and visualization.

The dataset for each musical instrument consists of 30
samples, each with 15,613 values, resulting in a data matrix
of 30x15,613 for each instrument.

2) STFT Spectrogram Generation: The audio waveform of
30 seconds is divided into equal parts with a window of size
25 milliseconds. Each segment contains 1,102 samples. DFT
of each segment is computed using the Fast Fourier Transform
(FFT). The result of the FFT for each segment represents
the frequency content of the audio within that window. These
frequency domain representations are then concatenated to form
the spectrogram image. The spectrogram displays the frequency
spectrum where the intensity of a frequency is converted into
brightness. The images corresponding to sequential windows
provide a view of the audio spectral characteristics over
the duration of the signal [8]. Figure 3 shows the STFT
spectrograms of each musical instrument capturing the tonal
and spectral characteristics of the instruments as images.
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(a) Flute (b) Nadaswaram

(c) Thavil (d) Santoor

(e) Veena (f) Piano

Figure 3. Sample Spectrograms for each musical instrument.

C. Projection of higher dimension into 2D

1) Principal Component Analysis (PCA): PCA is a
lightweight linear dimensionality reduction algorithm that
identifies variance directions (eigenvectors) from the covariance
matrix, which is symmetric with orthogonal eigenvectors.
Projecting data onto the first two eigenvectors in 2-D
highlights key data distributions [9]. In our project, PCA’s
effectiveness depends on the compression algorithm applied
to MFCC or STFT data. We noted that UNet-compressed
STFT spectrograms form well-clustered visuals even with PCA.

2) t-Distributed Stochastic Neighbor Embedding (t-SNE):
t-SNE [10] is a non-linear dimensionality reduction technique,
preserves the local structure of high-dimensional data by
converting distances into probabilities and placing similar
points close in lower dimensions. When applied to high
dimensional feature space, t-SNE effectively captures complex
patterns, revealing distinct clusters of audio data from musical
instruments and uncovering structures.

3) Uniform Manifold Approximation and projection (UMAP):
UMAP [2] is a non-linear dimensionality reduction technique
that preserves both local and global structures, making it more
effective for visualizing high-dimensional data in 2-D. By
modeling data relationships as a graph and maintaining these
connections in lower dimensions, UMAP faithfully presents
complex distributions in low dimension.

D. Proposed Method

To visualize the audio features on a two-dimensional plane,
we employed three visualization algorithms.

1) Visualization of MFCC Features: The MFCC features
are extracted from the audio signals, resulting in a dataset
with dimension 15,613 from every music piece of 30 seconds
duration. In total, we have 180 samples for 6 instruments.
Then we directly visualized them using PCA, t-SNE and
UMAP.

2) Feature Extraction using CNN: The spectrograms of
audio samples are used to train a CNN model with labels of
the musical instruments. The CNN model architecture includes
two convolutional layers, each followed by max-pooling layers,
a flatten layer, and a couple of dense layers.

In Figure 4, the architecture of the CNN model used for
training is illustrated. The input to the model is a spectrogram
of size 400x600x3. The first convolution layer is with 16
filters to extract features, resulting in an output dimension
400x600x16. A MaxPooling layer with a 2x2 kernel reduces
the spatial dimensions to 200x300x16. This is followed by a
second Convolution layer with 32 filters and after applying 2X2
size max pooling, the resulting output is reduced to 100x150x32.
The output is flattened into a vector and fed into a dense layer
classifier. Since the musical instruments are known, the network
is trained as a supervised classifier with feature vectors as input.

The extracted features are visualized using the visualization
techniques: PCA, t-SNE, and UMAP. Feature vector scatter
plots are projected on a 2-D plane to visualize the similarities
and distances of the audio signals.

3) Feature Extraction using UNet: UNet which was pro-
posed for medical image segmentation, is used to compress the
image features. The UNet architecture consists of encoder and
decoder structure: the encoding part uses convolutional layers
followed by max-pooling layers to extract features and reduce
dimensions, while the decoding part employs upsampling layers
to reconstruct the input. Essential compressed audio features
are available in the bottom layer of the UNet.

In Figure 5, the spectrogram of size 400×600×3 is input to
the UNET model. Initially, two Convolution layers with 32
filters are used, followed by MaxPooling with a pool size of
4×4. Next, two more Conv2D layers with 64 filters are applied,
followed by another MaxPooling operation. After that, two
additional Convolution layers are applied one with 128 filters
and the other with 64 filters leading to the bottleneck layer,
which captures the encoded representation of the input.
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Figure 4. Architecture of CNN Classifier Model.

Figure 5. UNet Architecture.

From the bottleneck layer, the features are upsampled using
a transposed convolution operation with 64 filters of size 4×4.
These upsampled features are concatenated with the previous
layer from the bottleneck. The process of Convolution, Upsam-
pling, and concatenation is repeated for feature reconstruction.
Finally, this process produces the reconstructed image. It is an
unsupervised method.

The features from the bottleneck layer are extracted and
used to visualize the data in a 2-D scatter plot using PCA,
t-SNE and UMAP.

First, we train the UNet using data from all six classes.
The compressed features from the UNet bottleneck, from
different classes, are superimposed in the feature space and
cannot be projected as separate clusters on 2-Dimensional
plane. In the next experiments, we trained UNet separately
with individual classes of features. After this training, the
features from UNet bottleneck layer are used. The visualization
algorithms projected them into clear isolated groups.

IV. EXPERIMENT AND RESULTS

In this section, we present the visualization results of MFCC
features, and the extracted features from CNN and UNet.

A. Visualization of MFCC Features

To visualize high-dimensional MFCC features on a 2-
dimensional plane we used PCA, t-SNE, and UMAP. The
resulting scatter plot of 30 × 6 datapoints are shown in
Figures 6, 7, and 8.

In Figure 6, the scatter plot for different instruments are
completely mixed up. In Figure 7, we observe that Piano and

Thavil samples are far apart and compact. It is as expected,
because they produce very different types of sound. Veena
samples are compact but mixed with Flute, Santoor, and
Nadaswaram, which are overlapping and spread out.

Figure 6. PCA visualization of MFCC features.

Figure 7. t-SNE visualization of MFCC features.

In Figure 8, the Piano samples are far from the others, while
the rest form compact clusters. But these clusters are close
to each other due to small interclass distances. The overall
conclusion is that the MFCC feature, used directly as input to
the visualization software, does not result in clear clusters.
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Figure 8. UMAP visualization of MFCC features.

B. Visualization of Extracted features from CNN model

Features extracted from the output of CNN, i.e., input to the
dense layer for classification, are much lower in number than
the MFCC features. These extracted features are fed into PCA,
t-SNE, and UMAP for visualization. The results are shown in
Figures 9, 10 and 11.

Figure 9. PCA visualization of CNN features.

In Figure 9, the thavil, nadaswaram, and piano samples
form well-separated clusters though the sample points are
scattered over a wide area. The santoor samples overlap with
the nadaswaram cluster, suggesting some similarity in their
features. The flute and veena clusters are positioned very close,
indicating the related characteristics of the two instruments.

In Figure 10, all the music samples are clearly separated with
large inter-cluster distances. The clusters are fairly compact,
i.e., intra-cluster distances are not large. The piano and veena
samples form compact clusters.

When UMAP was used for the 2D projection, as shown
in Figure 11, we got compact non-overlapping clusters with
clear large inter-cluster distances. The santoor and nadaswaram
clusters are close to each other.

Figure 10. t-SNE visualization of CNN features.

Figure 11. UMAP visualization of CNN features.

C. Visualization Results of UNet Features

The STFT spectrograms features were input into the UNet
model and features at bottleneck layer were extracted. Thus, the
original STFT features are compressed, and more abstraction
is achieved at the UNet bottleneck. These compressed features
are then used to visualize the data as scatter plot on a 2D
plane using PCA, t-SNE and UMAP. The scatter plot results
are shown in Figures 12, 13 and 14.

In Figure 12, we got clusters in which samples of every
instrument are very compact. Veena and santoor clusters are
very close to each other, which is quite contrary to what we
got using UMAP and t-SNE. Thavil and piano cluster distances
also close. Finally, nadaswaram and flute clusters are very far
from the remaining clusters. Two things are to observe here,
(1) the first eigenvalues are large and the second eigenvalues
are around one-third of the first eigenvalues, (2) the interclass
distances are very different from t-SNE or UMAP results,
whereas the t-SNE and UMAP results are similar. This is due
to linear projection with PCA.

In Figures 13 and 14, we got very well separated clusters
where the intra-class distances are small resulting in compact
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Figure 12. PCA visualization of UNET features.

Figure 13. t-SNE visualization of UNET features.

Figure 14. UMAP visualization of UNet features.

clusters. The inter-class distances are as expected and they are
similar for the two visualization algorithms.

TABLE I
COMPARISON OF VISUALIZATION TECHNIQUES BASED ON SILHOUETTE

SCORES

Visualization Technique

Feature Selection
MFCC Features STFT Spectrogram

Features (CNN)
STFT Spectrogram

Features (UNet)

PCA 32.85 35.21 76.50

t-SNE 37.37 83.99 74.60

UMAP 40.78 81.02 74.64

The Silhoutte score, which is the ratio of interclass and
intraclass distances, are displayed in Table I.
PCA demonstrates moderate performance for MFCC Features
and STFT spectrogram features using CNN but performs
significantly better for the STFT features using UNET. t-SNE
and UMAP outperform PCA for non-linear feature distributions,
with t-SNE achieving the highest silhouette score for STFT
Features using CNN and UMAP performing best for MFCC.
Both t-SNE and UMAP show similar performance for the
STFT features using UNET, indicating their suitability for
high-dimensional feature visualization.

V. CONCLUSION AND FUTURE WORK

This study aims to find the correct tools to successfully
visualize complex audio signals from musical instruments
using machine learning and deep learning techniques. MFCC
and STFT features were extracted and used to visualize their
scatterplots on a two-dimensional plane by PCA, t-SNE, and
UMAP. STFT features were converted to spectrograms, and
Deep learning models CNN and UNet, were used to obtain
a compressed version of the spectrogram image features. To
visualize them in 2D, t-SNE and UMAP gave the best results,
showing well-separated clusters.

It is difficult to quantify the correctness of the results. For
further investigation, we will
• Find the first few eigenvalues to check how fast the

eigenvalues are diminishing and how that is reflected when
the data is projected on the plane of the first two eigenvectors.

• Compare the interclass distances resulting from three dif-
ferent visualization algorithms, and whether the relative
distances from different methods are similar or not.

• Implement wavelet transform to extract music features, and
then use wavelet spectrogram like, STFT spectrogram, and
compare the results.

• Implement SOM as a tool for 2D visualization.
We will also extend this work for music generation combining
music generated by different instruments.
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