
Implementing the draft Graph Query Language Standard

The Financial Benchmark

Malcolm Crowe

Emeritus Professor

University of the West of Scotland

United Kingdom

e-mail: malcolm.crowe@uws.ac.uk

Fritz Laux

Emeritus Professor

Reutlingen University

Germany

e-mail: fritz.laux@reutlingen-university.de

Abstract—The International Standards Organization (ISO) is

developing a new standard for Graph Query Language, with a

particular focus on graph patterns with repeating paths. The

Linked Database Benchmark Council (LDBC) has developed

benchmarks to test proposed implementations. Their Financial

Benchmark includes a novel requirement for truncation of

results. This paper presents an open-source implementation of

the benchmark workloads and truncation.

Keywords- typed graph language; property graph

management; relational database; implementation; truncation.

I. INTRODUCTION

The growth in the use of graph models has led to the
development of standards including the publication of ISO
9075-16: Property Graph Queries (PGQ) [1], and the
imminent emergence of a draft international standard for
Graph Query Language (GQL) [2]. These developments
draw on experience with commercial graph database
products and envisage a clear convergence at the conceptual
level between graph-based and relational database
management, while GQL remains a separate standard. The
principal novelty of GQL is its support for repeating graph
patterns, which are useful in many applications including
detection of fraud, analysis of supply chains, and
cybersecurity [3].

Our previous work [4] has recommended the
implementation of graph databases by extending the
capabilities of a suitable Relational Database Management
System (RDBMS) using metadata and additional built-in
data types and syntax, particularly for the graph-oriented
CREATE and MATCH statements, and has presented a
working open-source solution that conforms to the usual
requirements for RDBMS including transactions and
security. In this paper we present an open-source RDBMS
implementation, PyrrhoDB [5] that is able to perform graph
creation and pattern matching including repeating patterns
and also aligns well with the draft international GQL
standard.

In particular, we will focus on the Financial Benchmark
from the Linked Data Benchmark Council (LDBC), which
explores the important use case of fraud detection and
contains sample databases and illustrative workloads. The
benchmark allows the performance of different
implementations to be compared and introduces the new

concept of truncation for managing the extent of searching,
especially for historical data.

The benchmark envisages a database built to collect data
on transfers between (possibly blocked) accounts, multiple
ownership of accounts and relationships with and between
companies, loan applications, guarantees, and remote
operation of accounts (possibly using blocked or stolen
devices), with a view to discovering and documenting
criminal behavior including theft, fraud, and money
laundering. The UML diagram is shown in Figure 1.

When graph databases contain event data accumulated
over years, simply searching for a particular suspicious graph
pattern can take an unreasonably long time. In extreme cases,
where early detection is important (tight latency
requirements), but nodes of interest have millions of edges to
be investigated (power-law distribution of data) despite all
available restrictions, it can become desirable to have a
tunable mechanism to truncate the number of edges searched
at each stage. The proposal in the benchmark is to maintain
deterministic behavior by specifying a specific ordering to be
used when the number of edges to be traversed exceeds a
threshold. This threshold should be tunable on a per-query
basis.

Naturally, the benchmark does not specify a mechanism
for truncation. In this paper we offer an efficient
implementation of this concept suitable for the direct,
incremental, search algorithm in our open-source RDBMS.

The plan of this paper is to review the new
implementation details in Section II. Section III presents an
illustrative example, and Section IV provides some
conclusions.

II. IMPLEMENTATION DETAILS

We begin with a brief review of the graph pattern
matching support in the standard, and the syntax definitions
used in our relational database implementation. Further
details are available in the references. Section B below
discusses LDBC’s truncation concept and the added syntax
for this feature used in our implementation.

A. Node and Edge Types

Our implementation of GQL using relational technology
is fully described in [4] and [5]. Its database server accepts
and directly implements both SQL and GQL source from the
client, and its storage consists of the transaction log.

7Copyright (c) IARIA, 2024. ISBN: 978-1-68558-138-1

DBKDA 2024 : The Sixteenth International Conference on Advances in Databases, Knowledge, and Data Applications

Specifically, GQL’s CREATE statement is executed by a
deep traversal of its graph patterns described while obeying
the implied SQL DDL and DML actions, and the MATCH
statement has its own query engine, which constructs a
derived table resulting from a deep traversal of its graph
patterns. Most MATCH statements have a dependent
statement: for example, the GQL YIELD or RETURN
statement, which provides expressions to construct results for
the client. For example:

MATCH (P:Person{name:'Hatfield'})-[:own]
->(A:Account) return P.id,A.id

This example will give a table showing the id and
account numbers of the persons called Hatfield. Unbound
identifiers such as P and A above can be introduced at any
point in the pattern, as shown in our next example, which
also shows a MATCH statement without a dependent

statement.
The MATCH statement allows the user to specify a

graph fragment in queries instead of using joins. For
example, with the scenario shown in Figure 1, the following
query shows the details of all transfers in the database from
any account owned by Hatfield:

MATCH (:Person{name:'Hatfield'})-[:own]->()
-[:transfer{amount:m,"timestamp":d}]->()
<-[:own]-(:person{name:r})

Figure 2 shows the result when this query is applied to
the small LDBC financial benchmark database sf001.

The implementation begins by treating node and edge
types are special kinds of SQL user defined types. Then each
node or edge type corresponds to a base table in the
relational database, whose rows are specific nodes and edges
in the graph. Edges must identify two nodes: for directed

8Copyright (c) IARIA, 2024. ISBN: 978-1-68558-138-1

DBKDA 2024 : The Sixteenth International Conference on Advances in Databases, Knowledge, and Data Applications

edges these are called the source or leaving node and the
destination or arriving node. The implementation constructs
primary and foreign key indexes to support this structure.

The CREATE statement allows creation of nodes and
associated edges in line using special tokens: nodes are
enclosed in parentheses and edges join these using
tokens -[,]-> , <-[,]-. One or more such patterns can
be provided in a single CREATE statement. Within the
parentheses or square brackets there is provision for an alias,
a type label, and properties. The alias can be used to refer to
the node or edge later in the same statement. Execution of
the CREATE statement constructs new nodes and edges in
the database with the given properties.

The MATCH statement allows retrieval of graph data by
providing one or more patterns of nodes, edges and
properties, similarly written to the CREATE statement,
which is tested against the contents of matching database
tables. A pattern will generally yield a table of bindings of
new identifiers encountered in the pattern, which can be used
in a dependent statement (e.g., a CREATE or RETURN
statement). The RETURN statement can also contain
aggregations whose scope is the entire binding table.

In addition to the simple graph patterns such as those in
CREATE statements, MATCH statements can contain
quantified path patterns (an example is given below), which
match a sequence of nodes and edges in the database that
traverses the path pattern a number of times that conforms to
requirements in the quantifier such as ? (0 or 1), + (1 or
more), * (0 or more) or {a,b} (at least a and not more than b).
The rules provide for management of duplicate edges, nodes,
or bindings.

In the resulting binding table, aliases that occur within
such repeating patterns will have values that are arrays: one
element for each traversal of the path pattern.

B. The LDBC Truncation concept

In the financial benchmark specification [6], there is a
concern that in selecting edges to follow from a given node
(for example, traversing a set of transfers to or from an
account) there may be hundreds or even millions of edges at
each step, resulting in billions of cases to consider. It
suggests a mechanism “to do truncation on the edges when

traversing out from the current vertex”, and to specify a sort
order on such vertices to achieve consistency of results.

Since the traversal mechanism takes place inside the
implementation of the MATCH statement, it makes sense to
us to allow the truncation parameters to be specified as part
of the creation of the MATCH statement, and we have
constructed a syntax for this. The full syntax for Match in
PyrrhoDB is shown in Figure 3. It includes:

MatchStatement = MATCH
 [Truncation] Match {',' Match}
 [WhereClause] [Statement] .

Truncation = TRUNCATING TruncationSpec
 {',' TruncationSpec} .

TruncationSpec = [EdgeType_id]
 ['(' OrderSpec {',' OrderSpec} ')'] '=' int .

The Truncation clause defines an upper bound for the
number of edges to be traversed from a node in a step of the
match process. The limit can be applied differently to
specific edge types. Limits specified for supertypes of
selected edges are also applied, as is the unnamed limit if
present. It is explicit in the financial benchmark specification
that the resulting truncation is performed within the
execution of the database engine, and it is made deterministic
by the specified ordering. There is an example in Figure 4
below.

The financial benchmark describes the truncation order
as an enumeration and gives example values that are specific
to the benchmark scenario, such as TIMESTAMP_DESCENDING
and AMOUNT_ASCENDING. The syntax for OrderSpec is not
shown here: in its simplest form it is a column name, but it
can be a scalar expression optionally followed by ASC or
DESC. Neither SQL nor GQL specifies a mechanism
passing a parameter such as this to a stored procedure, but
textual substitution is supported in prepared statements,
which thus implement the notion of general parameter found
in the GQL draft standard.

C. The Financial Benchmark Example

Figure 4 shows the first complex read-only query in the
Financial Benchmark. The node types involved are Medium

9Copyright (c) IARIA, 2024. ISBN: 978-1-68558-138-1

DBKDA 2024 : The Sixteenth International Conference on Advances in Databases, Knowledge, and Data Applications

and Account, and the only edge type is Transfer. The
accompanying text in [6] reads: “Given an Account and a
specified time window between startTime and endTime, find
all the Account that is signed in by a blocked Medium and
has fund transferred via edge1 by at most 3 steps. Note that
all timestamps in the transfer trace must be in ascending
order(only greater than). Return the id of the account, the
distance from the account to given one, the id and type of the
related medium.”

To be relevant for this example, each link in a transfer
chain must occur later than its predecessor, and this is why
the timestamps are constrained to be in ascending order. To
implement this, we define the following stored function that
compares a given timestamp with the timestamp property of
the last element of the given array:

create function later (a Transfer array, t timestamp)
returns boolean

begin
declare c int=cardinality(a);
if (c=0) then

return true
else

return a[c-1]."timestamp"<t
end if

end

The specification uses the SQL reserved word
timestamp as a property name, so double quotes are needed
on each occurrence of the name of this property (the
occurrence of timestamp in the function heading declares the
parameter t as having type timestamp).

Our implementation of the complex query described

above reads as follows (parameters are in red, outputs in
blue, internal identifiers in green):
MATCH
 truncating Transfer
 ("timestamp" truncationOrder)=truncationLimit
trail p=(m:Medium{isBlocked:true})
 -[:signIn where "timestamp">startTime and

"timestamp"<endTime]->
 (:Account{id:otherId})
 [()-[x:transfer
where "timestamp" >startTime and "timestamp" <endTime
 and later(p.x,"timestamp")]->()]{1,3}
 (:Account{id:id1})
return

otherId,
(cardinality(p)-3)/2 as accountDistance,
m.id as mediumId,
m.type as mediumType

order by (accountDistance,otherId,mediumId)

Cardinality is an SQL function, and the cardinality of the
path p is the total number of nodes and edges traversed: the
formula here computes the account distance as the number of
Transfer edges traversed.

The path identifier gives SQL code such as the above
access to the binding table during and after construction, so
that p.x above refers to the current value of the x column of
the binding table, that is, before the new x edge is added to it.
On the other hand, p also gives access to the path of nodes
and edges, so that p[i] is the ith member of the path (a node
or an edge), and the cardinality of p is the length of the path.

Despite the multiple joins implied and the repeated
execution of the stored procedure, execution of this
statement is commendably fast: on the sf0 sample database

10Copyright (c) IARIA, 2024. ISBN: 978-1-68558-138-1

DBKDA 2024 : The Sixteenth International Conference on Advances in Databases, Knowledge, and Data Applications

from LDBC, with the truncation defined as transfer
("timestamp" desc)=10, start time timestamp'2022-01-01',
end time timestamp'2022-12-31', and id1
4884435270860017215 it yields 3 rows in 7 seconds. Having
identified the otherId accounts involved (here,
223491131508261941), an investigator can then investigate
further.

III. CONCLUSIONS AND FURTHER WORK

This step in our research into database technology was
inspired by the LDBC Financial Benchmark [6], which
suggested that truncation of graph pattern matching will
often be a practical necessity for large graphs. We have
proposed a general mechanism for search truncation, which
in initial tests seems to be usable for searches in any property
graph. With this in place, our prototype implementation is
able to perform search efficiently even in large graphs.

As implementations of the draft international standard
39075 start to appear, there will be an opportunity to refine
our proposal and compare it with other implementations of
the benchmark.

REFERENCES

[1] ISO 9075-16 Property Graph Queries (SQL/PGQ),
International Standards Organisation, 2023.

[2] https://www.GQLStandards.org, October 4, 2023 – GQL
status update [retrieved 18 October 2023].

[3] N. Francis et al.. A Researcher’s Digest of GQL. 26th
International Conference on Database Theory (ICDT 2023),
Mar 2023, Ioannina, Greece.
doi:10.4230/LIPIcs.ICDT.2023.1, pp. 1-22.
https://hal.science/hal-04094449 [retrieved: 18 October 2023]

[4] M. Crowe and F. Laux, “Database Technology Evolution II:
Graph Database Language”, IARIA International Journal on
Advances in Software, vol. 16 numbers 3 and 4, 2023, pp.
192-203, ISSN: 1942-2628.

[5] M. Crowe, PyrrhoV7alpha,
https://github.com/MalcolmCrowe/ShareableDataStructures
[retrieved: Dec 2023].

[6] Linked Data Benchmark Council: The LDBC Financial
Benchmark (version 0.1.0),
https://arxiv.org/pdf/2306.15975.pdf [retrieved Jan 2024].

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-138-1

DBKDA 2024 : The Sixteenth International Conference on Advances in Databases, Knowledge, and Data Applications

